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Abstract: In this study, Zn-Al ferrite/polypyrrole (PPy) nanocomposites were synthesized and thor-
oughly characterized to explore their potential for microwave applications. X-ray diffraction analysis
confirmed the presence of ZnO, AlFeO3, and Fe2O3 phases, with the crystal size decreasing from
31 nm to 19.6 nm as aluminum content increased. High-resolution transmission electron microscopy
(HR-TEM) revealed a distinctive core–shell morphology, where the polypyrrole encapsulates the
ZnAlxFe2−xO4 particles. Magnetic measurements showed that decreasing aluminum concentration
led to a reduction in both saturation magnetization (Ms) from 75 emu/g to 36 emu/g and remanent
magnetization (Mr) from 2.26 emu/g to 2.00 emu/g. Dielectric analysis indicated that both the real
(ε′) and imaginary (ε′′) components of dielectric permittivity decreased with increasing frequency,
particularly between 10 and 14 GHz. Furthermore, electrical modulus analysis highlighted the
significant impact of aluminum doping on relaxation time (τIP), indicating the presence of interface
polarization. Impedance spectroscopy results underscored the dominance of interface polarization at
lower frequencies and the presence of strong conduction paths at higher frequencies. These combined
magnetic and dielectric loss mechanisms suggest that the Zn-Al ferrite/polypyrrole nanocomposite
is a promising candidate for advanced microwave absorption applications.

Keywords: Zn-Al ferrite; polypyrrole; nanocomposites; magnetic properties; dielectric properties;
microwave absorption; impedance spectroscopy; core–shell structure

1. Introduction

Microwave technology has become increasingly important in various applications,
including telecommunications, radar systems, and energy transmission. However, the
efficiency of microwave energy utilization remains a critical challenge. Many researchers
have made efforts to develop advanced microwave-absorbing materials that can be used
in the field of microwave applications [1]. Nanocomposites have been raised among
these materials, combining different elements for more refined and improved performance.
Then, further investigations have been made to include polymers in addition to these
nanocomposites, for example, Mn-Zn ferrites [2], Cu-Zn ferrites [3], ZnFe2O4 [4], and
Zn0.5Ni0.4Cr0.1Fe2O4 [5], all these nanocomposites are fabricated by combining the ferrite
with conductive polymers like polyaniline (PANI) and polypyrrole (PPy). These nanocom-
posites have shown excellent microwave absorption performance, which is attributed to
the effects of magnetic and dielectric losses.

Throughout this work, spinel ferrites, such as zinc–aluminum (Zn-Al) ferrite, have
been given significant attention due to their excellent dielectric and magnetic properties,
making them suitable for microwave absorption applications [6,7]. Polypyrrole, PPy [8], has
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been widely used with various ferrites to increase the magnetization saturation (Ms), and
their ability to absorb electromagnetic waves makes them suitable for shielding electronic
devices from unwanted interference. Accurately mixed ferrite powder with PPy produces
nanocomposites characterized by highly dielectric and magnetic properties. Understanding
the interplay between the spinel ferrite and conductive polymer components will contribute
to the development of advanced microwave-absorbing materials, ultimately leading to
improved efficiency and performance in various microwave-based technologies. The
improved structure of the Zn-Al ferrite/PPy nanocomposite leads to better electromagnetic
interference (EMI) shielding performance [9]. Moreover, this structure constitutes various
applications, including radar stealth technology, wireless communication systems, and
electromagnetic compatibility. In this work, the microwave absorption properties of the Zn-
Al ferrite/PPy nanocomposite will be explored, and the potential for effective microwave
absorption and shielding in diverse microwave-based applications will be discussed. This
will be achieved by investigating the structural, dielectric, and magnetic properties of
Zn-Al ferrite/PPy nanocomposites, with the goal of advancing the efficiency of microwave
applications. The research will focus on the synthesis, characterization, and evaluation
of the nanocomposites’ performance, providing insights into the underlying mechanisms
responsible for their enhanced microwave absorption capabilities.

2. Experimental Techniques and Procedures

ZnAlxFe2−xO4/polypyrrole nanocomposite with concentrations of x (wt.%) = 0.0, 0.2,
0.4, 0.6, and 0.8 were synthesized using solid-state reaction technique [8]. The zinc oxide
(ZnO), aluminum oxide (Al2O3), iron oxide (Fe2O3), and polypyrrole (PPy) powders were
weighed according to the desired composition ratio (wt.%) for each sample. ZnO, Al2O3,
and Fe2O3 powders were obtained from Sigma-Aldrich; also, PPy was synthesized using
a chemical polymerization method. A calculated amount of PPy powder, approximately
30% of the total weight of the nanocomposite, was added to the weighed ZnO, Al2O3,
and Fe2O3 powders. Then, the mixture was further ground to evenly distribute the PPy
within the ZnAlxFe2−xO4 matrix with ball milling. Finally, the mixture was calcinated
at 850◦ for 7 h. After the calcination process, the resultant nanocomposite powder was
removed from the furnace and allowed to cool down to room temperature. The synthesized
ZnAlxFe2−xO4/PPy nanocomposite was characterized using X-ray diffraction (XRD) using
X’Pert Philips (Eindhoven, The Netherlands) powder diffractometer with CuKα radiation
(λ = 1.54056 Å) in the range 10◦ ≤ 2θ ≤ 80◦. Additionally, the morphology of the speci-
mens was investigated using High-Resolution Transmission Electron Microscopy (TEM),
JEOL-JEM-2100 (Tokyo, Japan) equipment was operated at 200 kV, and included a SAED
(Selected Area Electron Diffraction) mode. The magnetic hysteresis loops were measured
at room temperature using a vibrating sample magnetometer (VSM) operating system
7400 Series-Lake Shore Cryotronics (Westerville, OH, USA). The frequency-dependent
electromagnetic properties and microwave shielding measurements were carried out on a
vector network analyzer (model 8510–45 MHz to 26.56 GHz, USA) by waveguide transmis-
sion line technique. A vector network analyzer (VNA) for the microwave measurements
was used. The measurements were carried out using the free space method, which is
ideal for minimizing interference from external sources and ensuring accurate results. The
configuration involved positioning the sample between two horn antennas in a free-space
environment to measure the S-parameters (S11 and S21). The S-parameters were then used
to extract the complex permittivity (ε) and permeability (µ) of the material. The extraction
was performed using the Nicolson–Ross–Weir (NRW) method, a well-established tech-
nique for determining electromagnetic properties from S-parameter measurements. All
instruments and methodologies used in this study were carefully selected to ensure high
precision and reliability of the results.
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3. Results and Discussion
3.1. XRD Analysis

The XRD peaks of ZnAlxFe2−xO4/polypyrrole nanocomposites with concentrations of
x (wt.%) = 0.0, 0.2, 0.4, 0.6, and 0.8 are shown in Figure 1a. The XRD of the nanocomposite
with x = 0.0 (wt.%) showed strong diffraction at 2θ = 31.82◦, 34.21◦, 36.33◦, 47.49◦, 56.52◦,
62.90◦, 67.95◦, 69.01◦, and 78.32◦, corresponding to 100, 002, 200, 102, 125, 103, 112, 201,
and 202 planes, respectively. The nanocomposite structure of Zn-Al ferrite/PPy contains
three phases: the ZnO hexagonal phase (JCPDS No: 01-079-2205), AlFeO3 orthorhombic
phase (JCPDS No: 01-084-2153), and Fe2O3 rhombohedral phase (JCPDS No. 01-084-0308).
Figure 1b illustrates the crystallite size (D) nm, and Figure 1c shows the lattice microstrain
(ε) and dislocation density (δ)nm−3 for ZnAlxFe2−xO4/polypyrrole nanocomposites with
concentrations of x (wt.%) = 0.0, 0.2, 0.4, 0.6, and 0.8. The corresponding results are
tabulated below in Table 1 and were obtained using the following formulae [10,11]:

D =
kλ

βcosθ
(1)

ε =
β cos θ

4
(2)

δ =
1

D2 (3)

where (k) is the Scherer’s constant, typically taken as 0.89; (λ) is the wavelength of the
X-rays; (β) is the full width at half-maximum (FWHM) of the diffraction peak; and θ is
the Bragg’s angle. From Figure 1b, the crystallite size, D, was observed to decrease from
30.01 to 19.89 nm as the Al3+ substitution ratios x (wt.%) were increased from 0.0 to 0.8,
showing a 66.27% loss in the total crystallite size. This reduction in size could be referenced
to the disruption of the crystal growth process due to the differing atomic size, bonding,
and diffusion characteristics of the substituted Al3+ ions compared to the original Fe3+

ions. The inhibition of the diffusion of atoms necessary for continued crystal growth is
caused by the altered atomic interactions and mobility introduced by the Al3+ substitution.
Moreover, the crystal structure destabilizes and hinders long-range crystal order due to
the incorporation of smaller Al3+ ions. The increased lattice strain and defects introduced
by the size mismatch between the substituted Al3+ and original Fe3+ ions interrupts the
normal crystal nucleation and growth mechanisms. The presence of the Al3+ ions disrupts
the regular crystal formation processes [12,13]. Doping can alter the nucleation and growth
kinetics of crystallites, leading to variations in size. Conversely, the lattice microstrain and
dislocation density exhibited an opposing trend, as illustrated in Figure 1c. Certainly, the
opposing trend observed suggests an intriguing aspect of the material’s behavior. This can
be attributed to the introduction of Al3+ as a dopant; the incorporation of foreign atoms into
the crystal lattice may cause lattice distortion or mismatches, contributing to an increase in
lattice strain [14,15].

Table 1. Crystalline size, D (nm); microstrain, ε; and dislocation, δ (nm−3).

x (wt.%) D (nm) ε δ (nm−3)

0.0 30.01 0.00072 0.00111

0.2 27.13 0.00107 0.00136

0.4 23.90 0.00135 0.00175

0.6 21.02 0.00169 0.00226

0.8 19.89 0.00175 0.00253
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Figure 1. (a) XRD of ZnAlxFe2−xO4/polypyrrole nanocomposite with concentrations of
x (wt.%) = (0.0, 0.2, 0.4, 0.6, and 0.8). (b) crystallite size D (nm), (c) microstrain (ε), and disloca-
tion density δ (nm−3) of the nanocomposite.

3.2. Morphology

The morphology of the ZnAlxFe2−xO4/polypyrrole composite powders was char-
acterized using transmission electron microscopy (TEM), as shown in Figure 2a–e. For
each compound, a TEM image (100 nm scale), an HR-TEM image (10 nm scale) (see
Figure 2a′–e′), another HR-TEM image (1 nm scale) (see Figure 2a′′–e′′), and a SAED di-
agram (see Figure 2A–E) are presented. TEM patterns show a significant difference in
particle shape upon the substitution of Zn for Al in the spinel framework. Figure 2a,d show
that most of the ZnAlxFe2−xO4 particles at concentrations of x = 0.0 and 0.6 are faceted with
a hexagonal shape [16]. These nanoparticles adopted a well-defined polyhedral morphol-
ogy with an alignment of 100 nm. This implies that the high calcination temperature (850 ◦C)
not only affects the shape but also the size of the particles. However, in Figure 2e, primary
particles have irregular shapes and are agglomerated, a morphology inside the composite.
This indicates that the coexistence of the ZnAlxFe2−xO4 spinel and the secondary Fe2O3
phase results in a polycrystalline sample with a large proportion of irregularly shaped
particles, where HR-TEM Figure 2b′′,d′′ enlarged from the selected area show lattice fringes
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with interplanar distances of 0.307, 0.339, and 0.348 nm for ZnAl0.2Fe1.8O4, ZnAl0.4Fe1.6O4,
and ZnAl0.6Fe1.4O4 samples, respectively. These match well with the (111) plane of the
Fd3m spinel phase. A careful examination of the HR-TEM of Zn-rich ZnAl0.8Fe1.2O4 in
Figure 2e exposes the presence of a matrix corresponding to the Fe2O3 and Al2O3 phases.
The SAED patterns in Figure 2A–E provide important insights into the crystal structures;
where x = 0.0 wt.%, the diffraction spots are indicative of a well-defined crystalline structure.
The rings in the pattern correspond to specific planes of the spinel structure. In Figure 2B,
for the ZnAl0.2Fe1.8O4/polypyrrole composite, the diffraction spots are slightly less sharp
than in Figure 2A, indicating a minor structural disorder. For Figure 2C–E, the SAED
pattern shows more pronounced rings, suggesting an increase in structural disorder. The
presence of rings alongside spots indicates that the samples contain regions of crystallinity
as well as areas with less order, possibly due to the presence of secondary phases.
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Figure 2. HR-TEM images of ZnAlxFe2−xO4/polypyrrole nanocomposite with concentrations of
x (wt.%) = 0.0, 0.2, 0.4, 0.6, and 0.8, (a–e) alignment 100 nm, (a′–e′) alignment 10 nm, (a′′–e′′)
alignment 1 nm, and (A–E) SEAD.
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3.3. Magnetic Properties

Figure 3 shows the magnetic hysteresis loop for the ZnAlxFe2−xO4/polypyrrole
nanocomposite, with key magnetic properties at ambient temperature, such as loop area,
saturation magnetization (Ms), remanence magnetization (Mr), the ratio of Mr to Ms
(squareness), and coercivity (Hc), presented in Table 2. Given the polycrystalline nature of
the structure with a size under 10 nm, it is likely to possess a mono-domain configuration,
facilitating alignment with the external magnetic field with relative ease [17]. A notably
low coercivity of 124.53 KOe suggests minimal resistance to domain alignment, with the
unsaturated magnetization further implying a singular domain structure. The minimum
value of Mr/Ms composites superparamagnetic-like properties. Polypyrrole, within this
context, acts as a barrier to domain alignment under an external magnetic field but facili-
tates domain rotation when the field’s strength increases. The composite film’s squareness
value, standing at a mere 0.106, reflects its soft magnetic ferrite nature [18]. The incorpora-
tion of polypyrrole, particularly at an x value of 0.6, degrades the magnetic attributes of the
composites, leading to decreased saturation and remanence magnetizations. Specifically,
the Ms and Mr readings for x = 0.6 are markedly reduced, registering at 0.4575 emu/g
and 48.75 × 10−3 emu/g, respectively, an effect attributed to the diminished A-B exchange
interaction caused by polypyrrole.
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Table 2. Saturation magnetization (Ms), remanent magnetization (Mr), coercivity (Hc), (Mr/Ms),
and magnetic moment (µB) of ZnAlxFe2−xO4/polypyrrole nanocomposite with concentrations of
x (wt.%) = 0.0, 0.2, 0.4, 0.6, and 0.8.

x (wt.%) Ms (emu/g) Mr (emu/g) Hc (Oe) Mr/Ms µB

0.0 75 2.26 38.91 0.030 10.79

0.2 67 3.87 38.52 0.057 9.17

0.4 55 2.19 38.86 0.039 7.15

0.6 45 1.48 39.17 0.032 5.54

0.8 36 2.00 39.64 0.055 4.18

4. Dielectric and Microwave Properties

The dielectric properties of the composite depend on the frequency subjected, which is
closely linked to the polarizability and orientation of the present dipoles. As the frequency
of the applied field increases, the dipoles of the system struggle to match the changing field
faster, giving decline to the real and imaginary parts of the dielectric constant (ε′) and (ε′′),
respectively. The value of ε′ represents the strength of the dielectric polarization, which in-
dicates the ability of the material to store electricity, while ε′′ indicates the energy transfer to
the dielectric material [19]. These values vary with the dielectric loss tangent (tan δ = ε′′/ε′)
at different frequencies. The frequency-dependent dielectric response of polypyrrole/Zn-Al
ferrite nanocomposites with different Al content, as shown in Figure 4, was measured at
ambient temperature in the frequency range of 10–17 GHz. The observation of a dielectric
diffusion pattern shows a significant decrease in the values of ε′ and ε′′, especially in the
range of 10–15 GHz [20]. From this point on, ε′ decreases linearly up to 17 GHz, while ε′′

and tan δ remain constant, unaffected by frequency changes. The initial phase decreases ε′

and ε′′ are mainly due to the frequency elevation affecting the interface polarization, which
is caused by charge accumulation at the interfaces between the conducting and dielectric
blocks under an alternating electric field. Moreover, charge hopping plays an important role
in Zn-Al ferrite. Nanostructures, with a large surface area compared to their size, exhibit
numerous defects, dipoles, and unpaired bonds, enhancing the dipolar electron polariza-
tion effect and thus enhancing interface polarization. Generally, Zn-Al ferrite nanoparticles
exhibit higher ε′, ε′′, and tan δ values compared to polypyrrole/Zn-Al ferrite nanocompos-
ites. ZnAlxFe2−xO4/polypyrrole composites, characterized by a dense granular structure
coated with polypyrrole chains on ferrite particles, exhibit variable electrical properties
due to interactions between ferrite and polypyrrole to initiate polymerization, which can
be degraded polymer chains and block electrical conductivity [21]. The encapsulation
of ferrite nanoparticles in polypyrrole lowers the electron density, resulting in decreased
conductivity. The addition of ZnAl ferrite to the polypyrrole matrix creates an additional
space charge at the interface. Increasing the amount of Al increases the number of free
valence electrons, which affects the conductivity properties of the composite. Figure 4c,d
presents the frequency-dependent behavior of the electric modulus components, µ′ and µ′′,
along with their representation on a Cole–Cole plot (M′ versus M′′). The M′ component
showcases a progressive increase up to a frequency of f = 17 GHz, with enhanced values
for the sample enriched with a higher Al concentration. Notably, at lower frequencies,
the M′ values are non-zero, suggesting that the diminished ε′ values in these samples are
not influenced by electrode polarization (EP) effects. There’s a clear correlation observed
between the rising M′ values and the decreasing ε′ values. Space charge accumulation
within electrical insulation emerges as a significant issue, as it amplifies the internal electric
fields, potentially leading to partial electric discharges or dielectric breakdown, a process
intricately linked to charge migration and storage [22]. The extraction of permittivity (ε)
and permeability (µ) from S-parameters is indeed complex, as it depends heavily on the
extraction model used. We have now explicitly described the NRW (Nicolson–Ross–Weir)
method utilized for the extraction of ε and µ values from the measured S-parameters.
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Additionally, we have provided a brief comparison with other methods, such as the NRW
(Nicolson–Ross–Weir) method [23] and the Boughriet method [24,25], to highlight the
robustness and limitations of our chosen model. The sensitivity of the extracted parameters
to the model selection has been discussed, acknowledging that different models could yield
varying results. However, the NRW method is widely recognized for its reliability in the
microwave frequency range, which justifies its use in this study.
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Figure 4. Frequency dependence of (a) real part of complex permittivity; (b) imaginary part of complex
permittivity; (c) tan (δ)ε for ZnAlxFe2−xO4/polypyrrole nanocomposite; (d) real part of complex
permeability; (e) imaginary part of complex permeability; (f) tan (δ)µ for ZnAlxFe2−xO4/polypyrrole
nanocomposite at x = (0.0, 0.2, 0.4, 0.6, 0.8) wt.%.

The M′′ component delineates two distinct relaxation peaks across different frequency
bands. The initial peak, found in the lower frequency domain, underscores the dominant
role of interfacial polarization (IP) relaxation phenomena attributed to charge build-up at
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the interfaces between the polypyrrole framework and the Zn-Al ferrite particles within
the core–shell configurations. The subsequent peak, observed at higher frequencies, is
attributed to α-relaxation, indicative of the local dynamics of polymer chain segments in
polypyrrole, particularly dipolar polarization. The intensity of IP peaks surpasses that of
the α-relaxation peaks significantly.

In addition to the NRW method used in this study, other methods, such as the
Boughriet method, are also commonly employed for extracting permittivity and perme-
ability from S-parameters. The Boughriet method, while effective in certain contexts, has
limitations in terms of its accuracy at higher frequencies and for materials with complex
magnetic properties. In contrast, the NRW method is widely recognized for its robustness
and reliability, particularly in the microwave frequency range, making it a suitable choice
for our study. However, it is important to note that the choice of extraction method can
significantly impact the results, and care must be taken to select a method that aligns with
the specific characteristics of the material under investigation.

The choice between these methods can significantly influence the results obtained in
material characterization. The NRW method’s robustness makes it a preferred option for
studies involving materials in the microwave frequency range, while the Boughriet method
may be more applicable in situations where its specific advantages can be leveraged.

The Cole–Cole plot exhibits a semi-circular trajectory, deviating from the Debye model,
followed by a linear increase. This semicircle’s radius inversely relates to the composite’s
electrical conductivity; a larger radius suggests reduced conductivity [26]. The relaxation
times (τIP) for samples with x = 0.0 wt.% and 0.2 wt.% are measured at 12,160.33 ms
and 17,054.75 ms, respectively, illustrating the significant influence of Al3+ content on τIP
values. The τIP values for Zn-Al ferrite samples are 816 ms and 2289 ms for grain boundary
relaxation and 6.19 ms and 41 ms for grain relaxation, respectively. However, the τIP values
for x = 0.4, 0.6, and 0.8 wt.% polypyrrole/Zn-Al ferrite nanocomposites are substantially
higher, showing an increase of 7 to 15 times that of the grain boundary relaxation time,
highlighting the profound effect of incorporating Al3+ into the matrix.

The impedance spectroscopy has been utilized to explore the electrical characteristics
of Zn-Al ferrite/polypyrrole nanocomposites, focusing on the analysis of changes in both
the real (Z′) and imaginary (Z′′) components of the impedance across different frequencies.
These variations are graphically represented in a Cole–Cole plot, as illustrated in Figure 5,
with measurements conducted at room temperature. To comprehend the dynamics between
Z′ and Z′′ over the entire frequency spectrum, it is essential to consider the behaviors of ε′

and ε′′. Integrating ferrite nanoparticles within the polypyrrole matrix markedly reduces
both Z′ and Z′′ in the lower frequency domain (11–13 GHz), affecting the polymer matrix’s
polymerization state and thus disrupting the continuity of its chains. This disruption leads
to the emergence of interfacial polarization [24]. Nevertheless, as frequency increases, the
significance of interfacial polarization wanes, giving way to the prominence of the charge-
hopping mechanism within the Zn-Al ferrite. Between frequencies of 14 and 17 GHz,
both Z′ and Z′′ demonstrate stability, suggesting that the conductivity of polypyrrole
predominates without interference from Zn ferrite, thus establishing a stable conduction
pathway. The Cole–Cole plot reveals a semicircle that characterizes the Debye relaxation
phenomena, essential for understanding the attenuation of electromagnetic waves. Z′ is
indicative of the dissipation component, which accounts for the energy conversion from
the input field to thermal energy, subsequently resulting in loss. On the other hand, Z′′

represents the impedance’s imaginary component, reflecting the non-dissipative segment
where the system temporarily stores the energy derived from the field, mimicking an ideal
capacitor scenario. The semicircle displayed on the Cole–Cole plot is indicative of various
Debye relaxation processes arising due to the interfacial polarization between the Zn-Al
ferrite nanoparticles and the conductive polypyrrole matrix, leading to a textbook example
of Debye relaxation. The impedance, or Nyquist diagram, delineates the relationship
between Z′ and Z′′ across varying frequencies (Figure 5), revealing a steady linear escalation
across the full frequency range. This trend suggests a direct relationship between the
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increase in the dissipative component’s ratio and the impedance, which denotes the non-
dissipative component. With an increase in frequency, there is a reduction in the energy loss,
implying a decrease in the energy transition from the input field to the thermal reservoir,
thereby allowing more energy to be conserved within the system.
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The potential applications of Zn-Al/polypyrrole nanocomposites in advancing mi-
crowave application efficiency are promising due to their excellent microwave absorp-
tion performance. The synergistic effects of magnetic losses and dielectric losses con-
tribute to their efficient electromagnetic wave absorption properties [27]. For instance,
ZnFe2O4/polypyrrole nanocomposites exhibit broadband electromagnetic wave absorp-
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tion at 8–18 GHz, with magnetic losses being the main microwave absorption mecha-
nism [28]. Similarly, ZnFe2O4/SiO2/polypyrrole nanocomposites show efficient electro-
magnetic wave absorption properties in the K and Ka band regions, with magnetic losses
and dielectric losses being the primary microwave absorption mechanisms [29]. In addition,
the nanocomposites of polypyrrole with Zn-Al-ferrite exhibit a core–shell structure, and
the possible bonding effect between metal cations and PPy results in a decrease in con-
ductivity [30]. Microwave measurements are essential for evaluating the electromagnetic
interference (EMI) shielding effectiveness (SE) of materials. The SE refers to the ability
of a shielding material to attenuate or reduce the propagation of electromagnetic waves.
It quantifies the level of attenuation provided by the shielding material and is expressed
using Equations (1) and (2):

SE(dB) = −10 log
(

Pt

Pi

)
(4)

SET = SER + SEA + SEM (5)

where Pi represents the power of the incident electromagnetic wave, and Pt represents the
power of the transmitted electromagnetic wave [31–33]. The total effectiveness of the elec-
tromagnetic shielding is being measured, by comparing the power of the electromagnetic
waves before they encounter the shielding (the incident power, Pi) versus the power of
the waves that are able to transmit through the shielding (the transmitted power, Pt). For
a shielding material, the total shielding effectiveness is the sum of the contribution due
to reflection (SER), absorption (SEA), and multiple reflections (SEM). From the scattering
parameters S11 and S21 of a vector network analyzer (measured by waveguide transmis-
sion line technique), the reflection coefficient (R) and transmission coefficient (T) can be
obtained as R = |S11|2 and T = |S21|2. Using the parameters R and T, the absorption
coefficient (A) can be evaluated as A + R + T = 1 [34,35]. With negligible multiple reflections
between both interfaces of the material, the relative intensity of the effectively incident
EM wave is based on the factor (1 − R), and the effective absorption can be expressed
as Aeff = (1 − R − T)/(1 − R). The reflection and effective absorption can be expressed in
decibels as SER and SEA [36–41]:

SER = 10 log(1 − R) (6)

SEA = 10 log
(

1 − Ae f f

)
= 10 log

(
T

1 − R

)
(7)

When negligible multiple reflections occur between the interfaces of the material, the
relative intensity of the effectively incident electromagnetic wave can be estimated using
the factor (1 − R). This factor determines the effective absorption of the material (Figure 6).
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5. Conclusions

This study presents the successful synthesis and comprehensive characterization of
ZnAlxFe2−xO4//polypyrrole nanocomposites with varying Al content (x = 0.0, 0.2, 0.4, 0.6,
0.8 wt.%). The addition of Al led to significant changes in both structural and magnetic
properties, notably reducing the crystal size from 31 nm to 19.6 nm and decreasing the
saturation magnetization (Ms) from 75 emu/g to 36 emu/g. The core–shell morphology
observed in TEM analysis significantly influenced the dielectric behavior, with both real
(ε′) and imaginary (ε′′) dielectric constants decreasing as the frequency increased.

The dielectric properties, coupled with the results from impedance spectroscopy, un-
derscore the role of interface polarization, with the relaxation time being notably affected
by the Al content. The stability of both Z′ and Z′′ within the 14–17 GHz frequency range
suggests that the conductivity of polypyrrole predominates without interference from the
Zn ferrite, making these nanocomposites particularly promising for microwave absorption
applications. Furthermore, the electromagnetic parameters, ε and µ, extracted using the
Nicolson–Ross–Weir method, confirmed the material’s potential for advanced microwave
technologies. The combination of enhanced magnetic–dielectric characteristics points to Zn-Al
ferrite/polypyrrole nanocomposites as viable candidates for applications in telecommunica-
tions, electromagnetic interference shielding, and other microwave-related technologies.

The Zn-Al ferrite/polypyrrole nanocomposite presents a promising material with
enhanced magnetic and dielectric properties compared to previously studied materials.
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Its unique combination of properties makes it suitable for a wide range of applications,
including magnetic data storage, microwave devices, and energy storage devices.
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