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Abstract: As an important biodegradable and partially biobased copolyester, poly(butylene succinate-
co-terephthalate) (PBST) possesses comparable thermal and mechanical properties and superior
gas barrier performance when compared with poly(butylene adipate-co-terephthalate) (PBAT), but
it was found to display poorer melt processability during pelletizing and injection molding. To
make clear its melt crystallization behavior under rapid cooling, PBST48 and PBST44 were synthe-
sized, and their melt crystallization was investigated comparatively with PBAT48. PBST48 showed a
PBAT48-comparable melt crystallization performance at a cooling rate of 10 ◦C/min or at isothermal
conditions, but it showed a melt crystallization ability at a cooling rate of 40 ◦C/min which was
clearly poorer. PBST44, which has the same mass composition as PBAT48, completely lost its melt
crystallization ability under the rapid cooling. The weaker chain mobility of PBST, resulting from
its shorter succinate moiety, is responsible for its inferior melt crystallization ability and processabil-
ity. In comparison with PBAT48, PBST48 displayed higher tensile modulus, and both PBST48 and
PBST44 showed higher light transmittance. The findings in this study deepen the understanding
of PBST’s properties and will be of guiding significance for improving PBST’s processability and
application development.

Keywords: biodegradable polymers; biobased polymers; aliphatic-aromatic copolyesters; melt
crystallization; transparency; mechanical property; poly(butylene succinate-co-terephthalate);
poly(butylene adipate-co-terephthalate)

1. Introduction

Aliphatic-aromatic copolyesters refer to a class of polyesters synthesized from an
aliphatic diol, an aliphatic α,ω-diacid, and an aromatic diacid. Such copolyesters can
be biodegradable within a suitable composition range [1–4]. Among them, only the
copolyesters synthesized from 1,4-butanediol (BDO), terephthalic acid (TPA), and adipic
acid (AA) or succinic acid (SA) have been commercialized to date. Poly(butylene adipate-
co-terephthalate) (PBAT) was commercialized in the mid-1990s and gradually found ap-
plications in various disposable film products like shopping bags, express packages, and
mulch film, due to its biodegradability, thermoplastic processability, well-balanced ther-
mal/mechanical properties [5–7], and relatively low cost. It is one of the most widely used
biodegradable polymers today. Researchers on the modification and applications of PBAT
are still very active in recent years [8–14].

Poly(butylene succinate-co-terephthalate) (PBST) is another biodegradable aliphatic-
aromatic copolyester, with a structure and properties similar to PBAT [15–18]. After
extensive studies on synthetic technology [19–21] and process optimization [22,23], PBST
was industrialized at Sinopec Yizheng Chemical Fiber Co., Ltd., Yizheng, China in 2020. It
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is a partially biobased polymer because SA is a biobased monomer [24,25]. In fact, biobased
SA has been commercially produced at a cost comparable to petroleum-based SA. As the
cost of biobased succinic acid gradually declines, the cost of PBST will become increasingly
competitive, although it is currently higher than that of PBAT. Furthermore, we found
recently that PBST displays 3–4 times more oxygen and carbon dioxide and a 1.6 times
stronger water vapor barrier performance when compared with PBAT. This demonstrates
that the two fewer methylene groups in the succinate moiety of PBST result in a smaller
free volume fraction and a slower gas diffusion [26]. The advantages of PBST’s gas barrier
have been confirmed by other subsequent reports [27]. The biobased nature and higher
gas barrier make PBST more promising in demanding applications such as food package
materials. In fact, the R&D of a variety of differentiated products based on PBST has been
reported recently [28–33].

Although PBST has advantages in sustainability and the gas barrier, its melt pro-
cessability seems inferior to that of PBAT. During PBST’s industrial development, it was
found that it is harder to cool it down in time for pelleting after melt polycondensation
or for demolding in injection molding. In comparison, PBAT is clearly easier to pelletize
and inject under the same conditions. The poorer melt processability of PBST suggests
inferior melt crystallizability. However, in most reports on PBST crystallization in the
literature [16,34,35], PBST displayed melt crystallization behavior similar to PBAT, with
the exception of the findings of Heidarzadeh et al. [36]. Heidarzadeh et al. reported that
PBST melt crystallization demonstrates a higher degree of super-cooling than PBAT. As
the cooling rate (mostly, 10 ◦C/min) used in these DSC studies of PBST [16,34,35] is much
slower than that in the real melt-processing process, these DSC results do not reflect the real
melt crystallizability of PBST in the industrial process. Therefore, it is necessary to evaluate
the melt crystallizability at a rapid cooling rate. On the other hand, the fact that PBST pos-
sesses a significantly higher gas barrier than PBAT [26] reminds us that the tiny difference
in chain structure between them may also result in a clear difference in melt crystallization
and even in some crystallization-related macroscopic properties. Although the physical
and mechanical properties of PBST and PBAT have been extensively studied [5–7,15–21], a
comparative study is still missing.

In this study, PBAT48, PBST48, and PBST44 copolyesters with the same molar (48 mol%
BT) or mass (50 wt% BT) composition as commercial PBAT resin were synthesized, and their
melt crystallization behaviors at normal cooling, rapid cooling, and isothermal condition
were studied comparatively. Their light transmittance performance and tensile properties
were also studied.

2. Experimental Section
2.1. Materials

One PBAT (PBAT48, the subscript means the molar percentage of butylene tereph-
thalate (BT) unit) and two PBST (PBST44, PBST48) samples were synthesized in a 2.5 L
stainless reactor from terephthalic acid (99%, Hengyi PetroChem., Co., Hangzhou, China),
1,4-butanediol (99.5%, Mitsubishi Chem. Co., Ltd., Ningbo, China), succinic acid (99%,
Anhui Sanxin Chem. Co., Chizhou, China) or adipic acid (99%, Liaoyang Petrochem. Co.,
Liaoyang, China) using tetrabutoxyl titanium (TBT, 99.8%, J&K Chem., Beijing, China)
as a catalyst. First, esterification was conducted at a diol/diacid molar ratio of 2/1 and
220 ◦C for about 3.5 h in the presence of 0.05 mol% TBT based on diacid until over 95 wt%
water was stilled out. Then, an additional 0.05 mol% TBT was added, and the pressure was
slowly reduced. The temperature was gradually raised to 250 ◦C over 45 min. Finally, melt
polycondensation was then carried out at 250 ◦C and 20–100 Pa for about 3 h.

The copolyesters were melt-processed by a heat press (GT-7014-A50C, Taiwan, China)
under about 15 MPa at 165 ◦C to prepare film samples with a thickness of about 400 µm.
The films were directly used for WAXD observation and optical property measurement.
Dumbbell-shaped standard specimens (2 × 25 × 0.4 mm3) were prepared from the films by
a cutter and used for the tensile test.
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2.2. Characterization

The copolyesters (0.1250 g) were dissolved in chloroform. The resulting solution
(0.005 g/mL) was used for an intrinsic viscosity (IV) measurement at 25 ◦C using a IVS300
semi-automatic viscometer tester (Hangzhou Zhongwang Co., Hangzhou, China) equipped
with an Ubbelohde viscometer (inner diameter 0.36 mm). 1H NMR spectra were recorded
with a Bruker AC-80 spectroscopy instrument (400 M). Deuterated chloroform was used as
the solvent and tetramethylsilane was used as the internal reference. The pulse sequence,
temperature, and pulse duration were one pulse, 25 ◦C, and 1 s, respectively.

Thermal transition behaviors of PBAT and PBST were recorded with differential
scanning calorimetry (DSC, Q200, TA Instrument Co., New Castle, DE, USA) under nitrogen
flow. For nonisothermal crystallization and melting, the samples (6–8 mg) were heated at
10 ◦C/min from room temperature to 220 ◦C, kept at this temperature for 5 min, then cooled
at 10 ◦C/min or 40 ◦C/min to −80 ◦C, kept at this temperature for another 5 min, and finally
heated to 220 ◦C at 10 ◦C/min. For the isothermal crystallization and melting, the samples
were heated at 10 ◦C/min from room temperature to 220 ◦C, kept at this temperature for
5 min, then quenched to the predetermined melt crystallization temperature (Tc), kept at
this temperature for 30 min, then cooled at 10 ◦C/min to −80 ◦C, and finally heated to
220 ◦C at 10 ◦C/min.

Wide-angle X-ray diffraction (WAXD) patterns of PBAT and PBST were recorded with
the X-ray diffractometer (PANalytical B.V., X-pert-Powder, Almelo, The Netherlands) with
a CuKα radiation (1.54 Å), working at 40 KV and 40 mA. The sample was scanned from
2θ = 5◦ to 2θ = 80◦ with a step size of 0.026◦ and an acquisition time of 30 s per step.

The transmittance and haze of the copolyesters were determined using a CS-821
N desktop spectrophotometric colorimeter (Hangzhou CHNSpec Technology Co. Ltd.,
Hangzhou, China). All of the tests were carried out in the visible wavelength range
400–800 nm.

The tensile properties of the copolyesters were measured with a Zwick/Roell Z020
(Zwick Co., Ulm, Germany) universal testing machine at a tensile speed of 50 mm/min. The
value of the load cell and preload were 500 N and 0 N, respectively. All of the specimens
were kept at 25 ◦C and 50% relative humidity for at least 48 h before testing. At least
five specimens were tested for each sample.

3. Results and Discussion

As the BT unit content in commercial PBAT is usually about 47–48 mol% or 50–51 wt%,
one PBAT (PBAT48) and two PBST (PBST44 and PBST48) samples with the same molar
(~48 mol%, PBAT48 and PBST48) or mass percentage (~50 wt%, PBAT48 and PBST44) of
BT unit were synthesized and used for this study. The 1H NMR characterization and
calculation of the chemical composition, average sequence length, and randomness degree
are listed in the supporting information (Figure S1). The copolymer molar and mass
compositions, the average sequence length, the randomness degree, and the intrinsic
viscosity of the copolyesters are listed in Table 1. Random copolyesters with high-enough
intrinsic viscosity (>1.0 dL/g, chloroform as solvent) and expected copolymer composition
were successfully synthesized.

Table 1. Structural characteristics of PBAT48, PBST44, and PBST48 used in this study.

Sample φTPA
a

(mol%)
ϕBT

b

(mol%)
ϕw,BT

c

(wt%) Ln,BX
d Ln,BT

e R f IV g

(dL/g)

PBAT48 46.0 47.8 50.2 2.07 1.89 1.01 1.15
PBST48 46.0 48.4 54.5 2.03 1.97 1.00 1.21
PBST44 42.0 44.4 50.5 2.24 1.81 1.00 1.08

a Molar percentage of TPA in diacid feed; b molar percentage of BT unit in copolyesters, calculated from 1H NMR
results; c mass percentage of BT unit in copolyesters calculated from ϕBT;

d,e number-average length of BX (X = A
or S) and BT sequences; f degree of randomness; and g intrinsic viscosity measured at 25 ◦C using chloroform
as solvent.
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When the resin melt was discharged out of the bottom outlet of the 2.5 L reactor with
the aid of nitrogen pressure, stretched into thin strips and cooled by tap-water in a 2-m
long tank, and then cut into pellets by a pelletizer, it was found that PBAT48 was easily cut
off but that PBST48 was not. The PBST pellets were connecting with each other, as shown
in Figure 1. PBST44 was too soft after water cooling and so more difficult than PBST48 to be
cut off under the same condition. The result implies that the melt crystallization of these
copolyesters under rapid cooling was quite different. Although there are extensive studies
on the melt crystallization of PBST [16,34,35] at a conventional cooling rate, research on
melt crystallization in the case of rapid cooling is still lacking. So, the isothermal melt
crystallization and the nonisothermal melt crystallization of PBAT and PBST at rapid and
conventional cooling rates are comparatively investigated in this work.
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3.1. Nonisothermal Melt Crystallization and Melting

First, the thermal transition behaviors of PBAT48, PBST48, and PBST44 were studied
with DSC at a cooling/heating rate of 10 ◦C/min, which is widely used in DSC studies of
PBST in the literature [16,34,35] After erasing the heat history, all of the copolyesters showed
melt crystallization during cooling at 10 ◦C/min (Figure 2a), then glass transition and
melting occurred during the 2nd heating at 10 ◦C/min (Figure 2b). The melt crystallization
and 2nd melting peaks are attributed to the BT sequence. The BA and BS sequences did not
crystallize from melt under the testing condition. But melting peaks of BA and BS sequences
were indeed observed in the 1st heating scan (see Figure S2 in supporting information).
It has been reported that, although the BS crystal of PBST can not be detected by X-ray
diffraction, it can indeed be formed slowly after long-time storage at room temperature,
and therefore can be observed in the first DSC scan [35]. The results in Figure S2 provide
evidence for a similar conclusion regarding the copolyesters in this study.

At the cooling rate of 10 ◦C/min, PBAT48 and PBST48 showed almost the same melt
crystallization behavior, with almost the same temperature, enthalpy, and half period
of melt crystallization (Tc 78 ◦C, ∆Hc 19.8–20.4 J/g, t1/2 43–45 s, see Table 2). No cold
crystallization was observed in the secondary heating curve, suggesting that the melt
crystallization of them occurred sufficiently. In comparison with the thermal transition
properties of commercial PBAT [37,38], the PBAT48 sample displayed almost the same
transition temperatures (Tg, Tc, Tm) but higher ∆Hc and ∆Hm. The existence of branched
or chain extender structures in the macromolecular chain of commercial PBAT may account
for its lower transition enthalpies. In comparison, PBST44 clearly showed poorer melt
crystallizability. The Tc, ∆Hc, and t1/2 of PBST44 were 47 ◦C, 17.3 J/g, and 98 s, respectively.
Its melt crystallization took place at a higher supercooling degree at a much slower rate
(t1/2 over 2 times). Due to insufficient melt crystallization, weak but still obvious cold
crystallization (∆Hcc = 1.2 J/g) can be observed during the 2nd heating. In summary, at
the conventional DSC cooling rate of 10 ◦C/min, PBST48 has excellent melt crystallizabil-
ity comparable to that of PBAT48 and better than that of commercial PBAT [37,38]. Its
thermal transition properties are also consistent with those reported for PBST45–50 in the
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literature [16,34,35]. But the PBST44 with lower ϕBT but the same ϕw,BT shows significantly
poorer crystallizability than PBAT48. It seems that the molar composition is the determining
factor for the melt crystallization of these copolyesters.
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Table 2. Thermal transition properties of PBAT48, PBST48, and PBST44 during cooling and 2nd
heating DSC scans a..

Sample Tc
b (◦C) ∆Hc

c (J/g) t1/2
d (s) Tg (◦C) Tcc (◦C) ∆Hcc

e (J/g) Tm (◦C) ∆Hm
f (J/g)

Cooling at 10 ◦C/min 2nd heating at 10 ◦C/min

PBAT48 78 19.8 43 −31 nd nd 122 19.2
PBST48 78 20.4 45 −13 nd nd 128 19.7
PBST44 47 17.3 98 −16 23 1.2 112 18.8
PBAT g 82, 80 8.3, 13.1 / −33, −35 / / 120, 119 5.7, 8.5

Cooling at 40 ◦C/min 2nd heating at 10 ◦C/min

PBAT48 63 20.1 15 −31 nd nd 118 20.6
PBST48 51 16.9 30 −14 21 4.7 127 21.6
PBST44 nd nd nd −5 24 15.4 111 19.2

a: Heat history was erased at 220 ◦C for 5 min; b melt crystallization temperature; c melt crystallization enthalpy;
d melt crystallization half period—namely, the time taken for the relative crystallinity reaching 50%; e cold
crystallization enthalpy during 2nd heating; f melting enthalpy during 2nd heating; g commercial PBAT with Mn
of 39,700 g/mol and melt flow index 3.5 g/10 min, reported in ref. [37,38].
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As the cooling rate during practical melt processing is much faster than the conven-
tional DSC cooling rate, the above DSC results do not represent the melt crystallization
behavior under real processing conditions. To make clear the melt crystallization of PBST
and PBAT under real processing conditions, the DSC cooling rate was raised to 40 ◦C/min
(the maximum controllable cooling rate of the DSC instrument) and other conditions were
kept unchanged. The DSC curves are shown in Figure 2a′,b′ and the results are summarized
in Table 2 too.

In comparison with the results for the cooling rate of 10 ◦C/min, PBAT48 showed lower
Tc (63 ◦C), shorter t1/2 (15 s), but constant ∆Hc (20.1 J/g) at a cooling rate of 40 ◦C/min, and
no cold crystallization was observed during the second heating. Obviously, PBAT48 still
manifested an excellent melt crystallization performance, though a higher supercooling
degree was observed. Under the same cooling rate, the Tc, ∆Hc, and t1/2 values of PBST48
were 51 ◦C, 16.9 J/g, and 30 s, respectively. The lower Tc, smaller ∆Hc„ and longer t1/2 of
PBST48 shown in Figure 3a indicate that it clearly has a poorer melt crystallizability than
PBAT48 under rapid cooling conditions. An obvious cold crystallization (∆Hcc = 4.7 J/g)
in the 2nd heating was observed, indicating that the melt crystallization of PBST48 was
insufficient. In order to compare the effect of the cooling rate on the melt crystallization of
PBAT48 and PBST48 more clearly, the difference between the melt crystallization tempera-
ture and enthalpy (∆Tc = Tc,10 − Tc,40, ∆ (∆Hc) = ∆Hc,10 − ∆Hc,40) of PBAT48 and PBST48
are defined and compared in Figure 3b. It can be seen that the ∆Tc and ∆ (∆Hc) values of
PBST48 are clearly higher than those of PBAT48. This indicates that PBST48 was affected
more remarkably than PBAT48 by the cooling rate in melt crystallization and exhibited
weakened melt crystallizability at a cooling rate of 40 ◦C/min. As for PBST44, no obvious
melt crystallization peak was observed during the rapid cooling, and there was a big cold
crystallization peak (∆Hcc 15.4 J/g) in the 2nd heating. This means that PBST44 almost
completely lost its melt crystallization ability. The above results indicate that the melt
crystallizability of PBST48 and PBST44 is clearly inferior to that of PBAT48 under rapid
cooling, regardless of having the same molar or mass composition. This is the reason why
PBST is more difficult to melt-process.
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The inferior melt crystallization ability of PBST under rapid cooling can be attributed
to its weaker chain mobility due to its shorter aliphatic diacid moiety (2 CH2 in succinate vs.
4 CH2 in adipate). The weaker chain mobility of PBST has been demonstrated by a smaller
free volume fraction and a smaller gas diffusion coefficient in our previous study [26].
At a relatively slow cooling rate of 10 ◦C/min, the chain mobility of PBST48 is still high
enough to meet the need of the chain rearrangement during melt crystallization. However,
under rapid cooling conditions, PBST48 cannot provide enough chain mobility to rapidly
rearrange its chain into the lattice. As a result, it needs a higher supercooling degree to
start and a longer time to complete melt crystallization under rapid cooling. In comparison,
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PBAT has sufficient chain mobility to meet the demands of melt crystallization even under
rapid cooling.

3.2. Isothermal Crystallization and Melting Behavior

Li FX et al. studied the isothermal melt crystallization of PBST70 [39], but the isother-
mal melt crystallization of PBST44–48 has not been reported in the literature. Therefore,
the isothermal melt crystallization behavior of PBAT48, PBST48, and PBST44 was further
investigated in this study. The nonisothermal melt crystallization peak temperature at
10 ◦C/min cooling, namely, 78 ◦C, 78 ◦C, and 47 ◦C (see Table 2), was selected for the
isothermal melt crystallization. After erasing the heat history, the melt was quenched to
the isothermal temperature. As seen in Figure 4a, all of the three copolyesters displayed
distinctive isothermal melt crystallization behaviors. First, two exothermic peaks appeared,
and second, the peaks were very asymmetrical. Both peaks were attributed to the crystal-
lization of the BT sequence. The smaller peak may correspond to the crystallization of the
shorter BT sequences which could only crystallize more slowly to form immature crystals
after the longer BT sequences had crystallized to form more perfect crystals.
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crystallization for 30 min and then cooling at 10 ◦C/min to −80 ◦C.

From the thermal flow data in Figure 4a, the relative crystallinity (Xt) was calcu-
lated with Equation (1) and plotted in Figure 4b. From the Avrami equation shown in
Equation (2), the Avarami plots (Equation (3)) were made and shown in Figure 4c. The
linear part in the grey area corresponding to the isothermal time range 0.05–0.22 min
is used to calculate the crystallization rate constant K and the Avrami index n by linear
fitting. The half time of isothermal melt crystallization, t1/2, is calculated from n and K
with Equation (4). All the results are summarized in Table 3. The Avrami indexes n of all
of the three copolyesters are close to three. The K and t1/2 values of PBST48 are equal to
those of PBAT48, indicating that their isothermal melt crystallization rates are equal to each
other. The t1/2 value of PBST48 (36.6 s) is obviously longer than that (11 s) reported for
PBST70 at 80 ◦C [39], indicating much slower melt crystallization of PBST48 than PBST70.
The t1/2 value of PBST44 is longer than that of PBST48 (0.68 min vs. 0.61 min), indicating a
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slower crystallization rate. These results are similar to the crystallization performance of
non-isothermal melt crystallization at a cooling rate of 10 ◦C/min.

Xt =

∫ t
0 (∆Hc)dt∫ ∞

0 (∆Hc)dt
(1)

1 − Xt = exp(−Ktn) (2)

ln[− ln(1 − Xt)] = ln K + n ln t (3)

t1/2 =

(
ln 2
K

)1/n
(4)

Table 3. Isothermal melt crystallization kinetic constants BT sequence of PBAT48, PBST48 and PBST44 *.

Sample Tc (◦C) n K (min−n) t1/2 (min)

PBAT48 78 3.2 3.3 0.61
PBST48 78 3.2 3.3 0.61
PBST44 47 3.1 2.3 0.68

* K and n are calculated from the data in the time range from 0.05 to 0.22 min, as indicated by the grey area in
Figure 4a,c.

After 30 min of isothermal melt crystallization, the samples were cooled down further
to −80 ◦C at 10 ◦C/min. Neither further melt crystallization during the cooling nor cold
crystallization during the 2nd heating process were observed, indicating that they had
sufficiently crystallized during the isothermal crystallization process. During the 2nd
heating, they all displayed two melting peaks. The first smaller one represents the melting
of the immature crystals formed at the later stage of isothermal melt crystallization, and
the second/main peak represents the melting of the more perfect crystals formed at the
earlier stage of isothermal melt crystallization. Although it is reported that the BS sequence
in PBST50 can crystallize slowly at room temperature [35], the smaller peak in Figure 4d
can not be regarded as the melting of BS or BA crystals. As the first Tm (88 ◦C) of PBAT48 is
much higher than the equilibrium melting temperature of PBA (63 ◦C [40]), it is impossible
to attribute the first melting peak of PBAT48 to the melting of BA crystal. Therefore, in can
be deduced that the first peaks of PBST48 and PBST44 are not the melting of BS crystals.

The thermal transition properties during the 2nd heating are summarized in Table 4.
For PBAT48, it can be seen that, although the ∆Hm2 value (16.2 J/g) is lower, the total ∆Hm
value (∆Hm,sum = ∆Hm1 + ∆Hm1 = 18.8 J/g) is almost the same as the ∆Hm value (19.2 J/g)
after nonisothermal melt crystallization at 10 ◦C/min (see Table 2). This result supports the
conclusion that PBAT48 has strong melt crystallizability. In other words, the BT sequences
in PBAT48 crystallized sufficiently during 10 ◦C/min cooling; as a result, the ∆Hm,sum could
not be further increased by the annealing. But for PBST48 and PBST44, the ∆Hm,sum values
(21.9, 20.1 J/g) are clearly higher than those values (19.7, 18.8 J/g) after nonisothermal melt
crystallization at 10 ◦C/min (see Table 2), indicating that the two PBST samples did not
crystallize sufficiently during the 10 ◦C/min cooling, and therefore the melt enthalpies
were further increased after annealing. On the other hand, the two PBST samples displayed
higher ∆Hm,sum values after isothermal melt crystallization than PBAT48, regardless of
weaker nonisothermal melt crystallizability. In other words, they can have slightly higher
crystallinity than PBAT48.
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Table 4. Melting point (Tm) and melting enthalpies (∆Hm) of PBAT48, PBST48, and PBST44 during
2nd heating after isothermal crystallization.

Sample Tm1
(◦C)

∆Hm1
(J/g)

Tm2
(◦C)

∆Hm2
(J/g)

∆Hm,sum
a

(J/g)

PBAT48 88 2.6 123 16.2 18.8
PBST48 88 2.4 130 19.5 21.9
PBST44 59 1.9 115 18.2 20.1

a: Total enthalpy of melting, ∆Hm,sum = ∆Hm1 + ∆Hm2.

3.3. Light Transmittance Performance

PBAT film is often translucent. But we find PBST film always displays better light
transmittance performance than PBAT film. The light transmittance and haze of PBAT48,
PBST48, and PBST44 films with thickness of ca. 425 µm were measured and compared in
Table 5. It can be seen that all the films display almost the same haze but different transmit-
tance in such an order: PBAT48 < PBST48 < PBST44. The difference in light transmittance
might be related to their difference in crystallization and in the formed microscopic crystal
morphology. The films were melt-processed by heat press at 165 ◦C and then cooled with
cooling water. Due to the stronger chain mobility of PBAT48, it can be inferred that its
crystals probably grew faster to form crystals with a bigger size than PBST48 and PBST44.
For PBST48 and PBST44, it was difficult to finish the melt crystallization quickly under such
a rapid cooling process, so the crystallization occurred mostly at lower temperatures. As
lower temperature is known to favor nucleation over crystal growth, PBST48 and PBST44
crystals would have smaller size and consequently higher transmittance than PBAT48.
However, the authors failed to demonstrate this point using polarized light optical mi-
croscopy (POM). Although clear spherulites can be observed for commercial PBAT [41]
and PBST70 [39], there is in fact no report of the spherulite observation of PBST44–48 in the
literature. In Lee SH et al.’s report, they discuss how PBST10–20 can form clear spherulites
during a supercooling of 30 ◦C, but the spherulites structure of PBST30 is not clear and the
typical Maltese-cross is not clearly seen, and for PBST40, no spherulite can be observed at
all [18]. Zheng C et al. [35] demonstrated the existence of PBST50 spherulites with POM,
but the spherulite boundary was blurred. As the average length of BT sequences in the
PBST and PBAT copolyesters is very small (close to two, Table 1), the polymers lack enough
chain regularity, so there might be a lot of defects in the formed crystals. Possibly for this
reason, it is difficult to form a sufficiently ordered crystal structure with a big enough size.
In fact, it was reported that the spherulite size of PBST50 determined by light scattering
pattern is only 11.4 um in diameter [35].

Table 5. Haze, transmittance, and tensile properties of PBAT48, PBST48 and PBST44.

Sample Haze (%) Trans (%) E a (MPa) σy
b (MPa) σb

c (MPa) εy
d (%) εb

e (%)

PBAT48 98.4 45.0 107 ± 1 7.7 ± 0.1 55 ± 1 19.8 ± 0.1 1110 ± 10
PBST48 98.7 51.3 144 ± 5 9.9 ± 0.2 56 ± 2 19.3 ± 0.4 995 ± 12
PBST44 98.5 53.7 97 ± 1 7.5 ± 0.2 49 ± 3 22.4 ± 0.3 1040 ± 42
PBAT f / / 46 ± 6 / 29 ± 4 / 655 ± 65

a Tensile modulus; b stress at yielding; c stress at break; d strain at yielding; e strain at break; and f commercial
PBAT with Mn of 39,700 g/mol and melt flow index 3.5 g/10 min, reported in ref. [37].

3.4. Tensile Properties

The tensile properties of PBAT48, PBST48, and PBST44 were further investigated. Typi-
cal tensile curves are shown in Figure 5. As semi-crystalline polymers, they all exhibited
typical ductile-tensile behavior, displaying elastic deformation, yielding, high elastic defor-
mation, and strain hardening in sequence with increasing tensile strain. In comparison with
PBAT48, PBST48 displayed the same tensile stress at break but a clearly higher tensile mod-
ulus (E, 144 MPa vs. 107 MPa) and yield strength (σy, 9.9 MPa vs. 7.7 MPa) because of its
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lower chain flexibility and higher crystallinity, as demonstrated by the nonisothermal melt
crystallization results. PBST44 has less BT molar content but the same BT mass content and
similar crystallinity to PBAT48, so it exhibited E and σy comparable to PBAT48, and slightly
lower tensile stress at break (49 MPa vs. 55 MPa). As PBAT is too soft for many applications,
the higher modulus and yielding strength of the PBST copolyesters are very desirable
properties for practical applications. In addition, when compared with commercial PBAT
reported in the literature [37], the PBST copolyesters exhibited not only a much higher
modulus (107–144 MPa vs. 46 MPa [37]), but also a much higher strength (49–56 MPa vs.
29 MPa [37]). This result also supports the conclusion that the PBST copolyesters used in
this study have a sufficiently high molecular weight.
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4. Conclusions

In this study, the melt crystallization of PBST48 and PBST44 was investigated in
nonisothermal and isothermal manners and compared with PBAT48. PBST48 showed
a PBAT48-comparable melt crystallization performance at a conventional DSC cooling rate
of 10 ◦C/min or at isothermal conditions, but showed a clearly lower melt crystalliza-
tion temperature and enthalpy and a much longer crystallization time at a cooling rate
of 40 ◦C/min. PBST44, which has the same mass percentage of BT unit as PBAT48, not
only showed a much slower crystallization rate at a cooling rate of 10 ◦C/min, but it also
completely lost its melt crystallization ability at a cooling rate of 40 ◦C/min. The weaker
melt crystallization ability of PBSTs at the same copolymer composition is attributed to
the shorter aliphatic diacid moiety in PBST than in PBAT (succinate vs. adipate) and
the resultant weaker chain mobility. It is the main reason why PBST is more difficult to
pelletize and injection-mold. Due to the difference in melt crystallization at rapid cooling
and chain flexibility, the PBST films show higher light transmittance, and PBST48 showed
an obviously higher tensile modulus and yielding strength than PBAT48. Although PBST
crystallizes more slowly under rapid cooling, it has superior mechanical, optical, and gas
barrier properties to PBAT and therefore appears to be a more promising biodegradable
aliphatic-aromatic copolyester when it comes to more demanding applications, such as
food packaging. The promotion of the melt crystallization of PBST under rapid cooling will
be reported later.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16172445/s1, Figure S1: 1H NMR spectra (solvent: CDCl3) of
PBAT48, PBST48 and PBST44, Figure S2: (a) First heating DSC scan (10 oC/min) curves and (b) WAXD
patterns of PBAT48, PBST48 and PBST44.
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