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Abstract: Polymer materials have garnered significant attention due to their exceptional mechanical
properties and diverse industrial applications. Understanding the glass transition temperature
(Tg) of polymers is critical to prevent operational failures at specific temperatures. Traditional
methods for measuring Tg, such as differential scanning calorimetry (DSC) and dynamic mechanical
analysis, while accurate, are often time-consuming, costly, and susceptible to inaccuracies due to
random and uncertain factors. To address these limitations, the aim of the present study is to
investigate the potential of Simplified Molecular Input Line Entry System (SMILES) as descriptors
in simple machine learning models to predict Tg efficiently and reliably. Five models were utilized:
k-nearest neighbors (KNNs), support vector regression (SVR), extreme gradient boosting (XGBoost),
artificial neural network (ANN), and recurrent neural network (RNN). SMILES descriptors were
converted into numerical data using either One Hot Encoding (OHE) or Natural Language Processing
(NLP). The study found that SMILES inputs with fewer than 200 characters were inadequate for
accurately describing compound structures, while inputs exceeding 200 characters diminished model
performance due to the curse of dimensionality. The ANN model achieved the highest R2 value of 0.79;
however, the XGB model, with an R2 value of 0.774, exhibited the highest stability and shorter training
times compared to other models, making it the preferred choice for Tg prediction. The efficiency of
the OHE method over NLP was demonstrated by faster training times across the KNN, SVR, XGB,
and ANN models. Validation of new polymer data showed the XGB model’s robustness, with an
average prediction deviation of 9.76 from actual Tg values. These findings underscore the importance
of optimizing SMILES conversion methods and model parameters to enhance prediction reliability.
Future research should focus on improving model accuracy and generalizability by incorporating
additional features and advanced techniques. This study contributes to the development of efficient
and reliable predictive models for polymer properties, facilitating the design and application of new
polymer materials.

Keywords: polymer; glass transition temperature; SMILES; machine learning; deep learning

1. Introduction

Polymer materials have long been a focus of research due to their superior mechan-
ical properties and wide range of applications across various industries. Polymers offer
numerous advantages, including resistance to corrosion, ease of molding, low density, and
specific gravity, making them efficient for installation and transportation [1–3]. In their
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applications, a deep understanding of polymer properties, particularly the glass transition
temperature (Tg), is crucial to avoid operational failures at certain temperatures [4,5].

Traditionally, Tg testing is conducted using methods such as trial and error, dilatometry,
differential scanning calorimetry (DSC), and dynamic mechanical analysis [6–8]. Although
these methods can provide reasonably accurate results, they tend to be time-consuming and
costly, and often exhibit unstable accuracy [9]. Conventional testing also faces challenges
in managing random and uncertain factors affecting polymer properties, which can lead
to erroneous data [9]. Therefore, there is a need for more efficient and reliable methods to
predict polymer Tg.

In response to these challenges, simulation methods emerged as a significant step
forward [10,11]. Simulations, such as molecular dynamics (MD) and Monte Carlo (MC)
simulations, provided a way to predict polymer behavior and properties by modeling the
interactions at the molecular level. These approaches have been valuable in understanding
polymer physics and predicting Tg with greater control over experimental variables. How-
ever, they also come with limitations, such as high computational costs and the need for
extensive expertise to interpret the results accurately.

In the ongoing quest for efficiency and accuracy, the advent of machine learning
has introduced a transformative approach to polymer research. One emerging paradigm
for addressing the limitations of conventional testing and simulations is machine learn-
ing. Previous research has attempted to leverage machine learning and deep learning to
predict polymer properties. Zhang et al. [12] used deep learning models to predict the
mechanical properties of polymers, while Liu et al. [10] employed artificial neural net-
works (ANN) to predict Tg based on density functional theory and quantitative structure-
property relationships (QSPRs). However, these studies still face limitations in terms of
limited data and complex model interpretation. Other research, such as that conducted by
Guang Chen et al. [13] using recurrent neural networks (RNNs) and Chan et al. [14] using
convolutional neural networks (CNNs), also showed limitations in data representation and
the influence of molecular structure.

This study offers a solution by using simple machine learning, represented by k-nearest
neighbors (KNNs), support vector regression (SVR), extreme gradient boosting (XGBoost),
and deep learning, represented by ANN and RNN, to predict the Tg more accurately and
efficiently. By utilizing the Simplified Molecular Input Line Entry System (SMILES) to
represent molecular structures, this study aims to develop a better Tg prediction system.
These two approaches were compared to determine the method that provides prediction
performance, with the hope of making a significant contribution to the efficiency of polymer
material research and applications.

2. Materials and Methods
2.1. Data Collection and Preparation

This study collected Tg data, and monomer structures represented SMILES from the
PolyInfo database available on the MatNavi NIMS website. The polymers used in this
study are homopolymers with simple molecular structures consisting of only one type
of monomer. After the collection and cleaning process, 1437 data points were obtained
and prepared as the dataset. Before being used to train the model, the SMILES descriptors
needed to be converted into numerical data using either Natural Language Processing
(NLP) or One Hot Encoding (OHE) methods. The NLP method employs char embedding,
which transforms characters in SMILES into numerical forms based on their positions in the
character lexicon. In contrast, the One Hot Encoding process uses molecular fingerprints
generated with the RDKit library to produce binary vectors. Descriptive statistics of the
number of SMILES characters and Tg can be seen in Table 1.
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Table 1. Descriptive statistics of polymer dataset.

Data Min Max Average Std. Dev.

Character length 3 170 48.22 27.8
Tg value −139 420 85.40 88.82

2.2. Machine Learning Modeling

This study utilized three simple machine learning models and two deep machine
learning models built using the programming language Python version 3.11.3 and the
Visual Studio Code platform version 1.92.0 to predict the Tg of polymers; these models
consist of k-nearest neighbors (KNNs), support vector regression (SVR), extreme gradient
boosting (XGB), which represents simple machine learning and artificial neural network
(ANN), and recurrent neural network (RNN), which represents deep machine learning.
The RNN model used SMILES converted into numerical data via the Natural Language
Processing (NLP) method as input for predicting the Tg. Meanwhile, the KNN, SVR,
XGBoost, and ANN models were trained using the OHE method to transform the SMILES
into binary vectors as input.

The KNN, SVR, and XGBoost models are representations of simple machine learning
methods. KNN is a non-parametric supervised learning technique that uses the k-nearest
training samples in a dataset as input to predict the property value for a given object. The
given value represents the average of the k-nearest neighbors’ values. If k equals 1, the
nearest neighbor receives the output directly. KNN has numerous key advantages, such
as simplicity, efficacy, intuitiveness, and strong classification performance across several
domains, and it exhibits resilience to noisy training data and demonstrates effectiveness
when the training data is extensive. The k-nearest neighbor (KNN) algorithm may exhibit
suboptimal computational efficiency when dealing with a sizable training dataset. The
model is very responsive to extraneous or repetitive characteristics, as all characteristics
contribute to the similarity and hence to the categorization [15]. The KNN model utilizes
the parameter n_neighbors, which represents the number of nearest data points used to
predict the output value of an input sample.

Support vector regression (SVR) is a regression technique that uses support vectors
to identify a hyperplane that minimizes error within a certain margin. This approach is
very effective at handling outliers, making it robust. However, if the relationship between
input and output becomes complex, overfitting may occur. The SVR model employs the
parameters kernel, C, and gamma [16]. The kernel parameter is a function used to map
data from the original input space to a higher-dimensional feature space, allowing data
that is not linearly separable in the original input space to become linearly separable in the
feature space. The gamma parameter determines the curvature of the decision boundary
the model creates, while the C parameter adjusts the trade-off between margin size and the
error it generates [17].

The XGBoost model is an ensemble learning-based machine learning algorithm com-
posed of multiple decision trees. XGBoost provides the capability to effectively manage
extensive datasets, achieve optimal performance in tasks like regression and classification,
and effectively handle missing values in real-time data with both rapidity and precision.
However, XGBoost, as a tree-based model, has the potential to excessively fit the data,
particularly when the trees are excessively deep and the data contains noise. The training
process for the decision trees in this model is sequential, where the outcome of the current
tree influences the construction of the next tree [18]. XGBoost is recognized as one of the
best-performing decision-tree-based models due to its ability to fine-tune numerous hyper-
parameters to enhance performance. Key hyperparameters include n_estimators, which
represents the number of decision trees, and max_depth, which defines the maximum
depth of a decision tree [19]. Additionally, L1 and L2 regularization parameters apply
penalties to feature weights to prevent overfitting, among other parameters.
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Meanwhile, the ANN and RNN models are two deep learning models developed
in this study. These models can learn more complex data relationships compared to the
previous three models because they have parameters that can be adjusted to increase their
complexity, such as the number of hidden layers, the number of nodes per layer, activation
functions for each layer, learning rate, optimizer, epochs, and batch size [3]. The main
difference between the ANN and RNN models lies in the RNN’s superior ability to learn
from sequential input [20]. This is due to each node in an RNN acting as a memory cell,
which also increases the complexity of the RNN model. In addition to setting parameters
for each model, this study also varied the character length to determine the optimal number
of SMILES characters for predicting the Tg of polymers. However, the main disadvantage
of these neural networks models is that they could not perform well if the dataset number
was small.

2.3. Model Performance Evaluation

In this study, the prediction performance of the model is evaluated using the R2

score. The R2 score measures how well the model fits the data by assessing the proportion
of variance in the dependent variable that is explained by the independent variables.
This metric ranges from −∞ to 1, where the model’s accuracy improves as the R2 score
approaches 1. In general, the quality of prediction by machine learning is said to be good if
the R2 score is equal to or more than 0.8 [21]. Equation (1) shows the calculation of the R2

score, where n represents the number of data points, y is the actual output value, y is the
mean output value, and ŷ is the model’s predicted value [22].

R2 score = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (1)

In addition to using the R2 score, model prediction performance evaluation was also
conducted by examining the stability of the model using k-fold validation and the training
time required by each model.

3. Results
3.1. Machine Learning Model Prediction Performance

In this study, the fine-tuning method was used to determine the optimal combination
of hyperparameters for each model, where variations in hyperparameter values were
established before the model training process. Additionally, the effect of SMILES character
length used as input in training was evaluated. Figure 1 shows the impact of SMILES
character length on the performance of the five machine learning models, represented by
the R2 score. Based on the graph, the optimal SMILES character length for use as input in
training the machine learning models is 200.
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Table 2 summarizes the optimized hyperparameter values to obtain the highest pre-
diction performance for the five machine learning models employed. Figure 2 shows the
prediction performance (R2 scores) and actual-predicted data distribution of the KNN, SVR,
XGBoost, ANN, and RNN models trained using the optimized hyperparameter. The results
indicated that the ANN model has the best prediction performance, with an R2 score of
0.790, while the model with the lowest performance is the SVR, with an R2 score of 0.689.

Table 2. Optimized hyperparameters for ML models based on fine-tuning results.

Model Parameter Optimal Value

KNN
Character length 200

n_neighbors 8

SVR

Character length 200
Kernel RBF

C 1
gamma 0.01

XGB

Character length 200
max_depth 10

learning_rate 0.1509741801833367
n_estimators 2.095

min_child_weight 20
gamma 0.010500376855063191

reg_lambda 0.007188240690305372
reg_alpha 2.4700851023872214 × 10−6

ANN

Character length 200
Number of hidden layers 3

Number of nodes per hidden layer 512, 256, 128
Activation function for input layer ReLU

Activation function for hidden layer ReLU
Activation function for output layer Linear

Optimizer Adam
Loss function MSE

Epoch 100
Batch size 479

Learning rate 0.0001

RNN

Input dim 45
Input len 200

Activation function for input layer ReLU
Activation function for hidden layer ReLU
Activation function for output layer Linear

Optimizer Adam
Loss function MSE

Epoch 500
Batch size 479
Patience 50

The k-fold method was used to measure the stability of each model’s performance.
This method partitions the dataset into k segments, enabling the use of each segment as
testing data. Figure 3 illustrates the k-fold method’s performance stability for the five
models using a k value of 10. Based on the graph, the XGBoost model has the highest
performance stability compared to the other four models.
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In addition, the time needed to train the model could be an issue. For example, it is
known that deep neural network methods require more time to train the model than simple
machine learning because of the neural network nature of stochastics methods [23]. Table 3
shows that RNN requires much time in comparison to KNN, SVR, XGBoost, and ANN.

Table 3. Training time for each model using optimal parameters.

Model Training Time

KNN 4 s
SVR 18 s
XGB 7 s
ANN 30 s
RNN 14 h 12 min

Furthermore, the Diebold–Mariano (DM) test was used to determine the significance
of the difference in prediction performance. The DM test calculates a test statistic, known
as the DM statistic, which quantifies the standardized difference in loss between the
two models. A statistically significant deviation from zero in the DM statistic indicates
that one model outperforms the other [24]. Table 4 displays the outcomes of the DM test
comparing XGBoost, ANN, and RNN. We excluded the KNN and SVR models due to their
significantly lower prediction performance compared to the other three models.

Table 4. The Diebold–Mariano test comparison for XGBoost, ANN, and RNN.

Model Diebold–Mariano Test Statistic Value p-Value

XGBoost-ANN 1.12 0.78
XGBoost-RNN 1.56 0.27

ANN-RNN 0.48 0.45

3.2. Model Validation for Predicting the Tg of Polymers Using SMILES Descriptors

The XGBoost model is selected as the primary model for predicting the Tg values of
five new polymer compounds outside of the dataset used in model development based
on the description of the model performance provided above. This is because of its stable
performance and significantly lower training time than other models. Table 5 displays
the predicted Tg values for these five novel polymer compounds. The SMILES character
* represents the polymerization site.

Table 5. Predicted Tg results for polymer compounds outside the dataset.

Polymer Compounds SMILES Tg Actual Tg Predicted Delta

poly(ethyl 2-fluoroacrylate) CCOC(=O)C(C*)(F)* 94 97.3 3.3
poly[(phenylarsandiyl)(1-
phenylethene-1,2-diyl)] *C=C([As](c1ccccc1)*)c1ccccc1 92.9 97 4.1

poly{1-[(2,2-difluoroethane-1,1,2-
triyl-1-oxy)methoxy]-2,2-

difluoroethylene}
*C(C(F)(F)*)OCOC(C(F)(F)*)* 122 122.7 0.7

poly(2-phenylacetate) *CC(C(=O)c1ccc(cc1)C)* 71 69.5 1.5
poly[(4,4′-methylenedianiline)-alt-

(terephthaloyl dichloride)] *Nc1ccc(cc1)Cc1ccc(cc1)NC(=O)c1ccc(cc1)C(=O)* 300 260.8 39.2

4. Discussion

The results of this study provide valuable insights into the prediction of the glass
transition temperature (Tg) of polymers using various machine learning models. The fine-
tuning method used to determine optimal parameters highlights the necessity of meticulous
parameter optimization to enhance model performance. The evaluation of the SMILES
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character length reveals that an input length of 200 characters is optimal for model training.
This is because SMILES character lengths below 200 do not adequately describe the polymer
structure, while lengths greater than 200 result in the curse of dimensionality, which
degrades model performance. This finding aligns with previous studies that emphasize the
importance of input representation in machine learning models for predicting Tg properties
of polymers.

Among the models tested, the ANN model achieved the highest R2 score of 0.790,
demonstrating its superior ability to capture the complex relationships between SMILES
descriptors and Tg values. The prediction performance stability of the model should be
taken into account since, for a neural network, given a small number of data points, the
results can be fluctuating. It should be noted that even though the R2 scores of all models are
well below 0.8 and even though it cannot be a good fit, if the purpose is to screen and predict
from thousands of polymers, R2 scores above 0.75 can be used with care. The XGB model’s
nearly equivalent performance (R2 score of 0.774), combined with its shorter training
time and higher stability, makes it a more practical choice for large-scale applications. In
contrast, the lower performance of the SVR model indicates that it is less suitable for this
prediction task due to its sensitivity to parameter settings and the characteristics of SMILES
data. It is unsurprising that XGBoost demonstrated the best prediction performance in
terms of stability, despite ANN providing the maximum prediction performance; however,
the prediction performance fluctuates, as shown in Figure 3. According to the ten-time
rule, the number of data points should be ten times more than the number of variables
in predictive regression [25]. Therefore, with only 1437 data points in this paper, we can
classify our data set as small. XGBoost and other simple machine learning models, such
as KNN and SVR, are known as preferred models for small datasets. However, simple
machine learning models sometimes cannot capture the complexity relation between input
and output features. However, XGBoost could outperform ANN in cases with high data
dimensions [26], such as our case with 200 features encoded as SMILES binary numbers.

The significant difference in training times between models using the OHE method
(KNN, SVR, XGB, ANN) and the NLP method (RNN) highlights the efficiency of the
OHE approach for converting SMILES descriptors into numerical data. The reason may
be due to the complexity of the architecture, which causes the descriptor to take a long
time to process. This efficiency is crucial for practical applications where computational
resources and time are limited. Meanwhile, the stability analysis using the k-fold method
(k = 10) shows that the XGB model has the highest performance stability among the five
models tested. This stability is essential for ensuring reliable predictions across different
subsets of data, enhancing the model’s robustness and generalizability. From the results of
Diebold–Mariano (DM) test, it can be concluded that XGBoost, ANN, and RNN prediction
performance is different enough.

The XGBoost model is excellent at predicting Tg values of polymers, especially those
with Tg < 200 ◦C. However, when Tg exceeds 200 ◦C, the prediction loses accuracy and
requires caution. Figure 4 illustrates the division of the dataset. The number of polymers
that have Tg > 200 ◦C is considerably low in comparison to those with Tg < 200 ◦C and thus
affects prediction performance. The relatively low deviation also highlights the model’s
potential to reduce experimental costs and time associated with determining Tg values in a
laboratory setting.
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5. Conclusions

This study effectively applied simple machine learning and deep learning models to
predict the Tg of polymers using SMILES descriptors. Key findings include the importance
of SMILES character length, with less than 200 characters failing to describe compound
structures accurately and more than 200 characters reducing performance due to the curse
of dimensionality. Among the models tested, the ANN model achieved the highest R2

score of 0.79, but its performance was still considered relatively low. The XGB model
demonstrated the highest stability and reasonable accuracy, with an R2 score of 0.774,
making it the preferred model due to its shorter training time and robust performance. The
OHE method for SMILES conversion proved more efficient than NLP, as shown by faster
training times in the KNN, SVR, XGB, and ANN models compared to the RNN model.
Validation of new polymer data confirmed the XGB model’s robustness, which can be
used for predicting Tg < 200 ◦C, and beyond that value it should be used carefully. These
results underscore the importance of optimizing SMILES descriptor conversion and model
parameters to achieve reliable predictions. Future research should focus on improving
model accuracy and generalizability by incorporating additional features and advanced
techniques. This study also contributes to the development of reliable predictive models
for polymer properties, aiding in the design and application of new polymer materials.
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