The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects
Abstract
:1. Introduction
- ✓
- Thermoplastic matrix composites: contain thermoplastic polymers as the matrix, which can be repeatedly processed under heat.
- ✓
- Composites with thermoset matrix: contain thermosetting polymers that cannot be reprocessed after curing [8].
- ✓
- Improved mechanical strength: the addition of natural minerals improves the tensile, compressive and flexural strength of polymers [9].
- ✓
- Increased stiffness: natural minerals increase the stiffness of composites, which is particularly important in structural applications [9].
- ✓
- Thermal stability: natural minerals, such as talc or mica, improve the thermal stability of polymers, allowing them to be used at higher temperatures [10].
- ✓
- Flame retardancy: some natural minerals, such as calcium carbonate, can act as flame retardants, reducing the flammability of polymers [10].
- ✓
- Barrier properties: the addition of minerals can improve the barrier properties of polymers against gases and liquids, which is beneficial in packaging applications [11].
- ✓
- Cost-effectiveness: natural minerals are often cheaper than other types of reinforcements, reducing the cost of composite production [11].
- -
- To present the current status of research and development of mineral-reinforced polymers based on natural minerals;
- -
- To analyze the available minerals, their mechanical properties, and potential applications in various fields;
- -
- To discuss methods of production and characterization of these materials and the challenges associated with them;
- -
- To identify promising research directions that can contribute to the further development of more sustainable and environmentally friendly composite materials.
2. Thermoplastic Polymers
2.1. Polypropylene (PP)
2.1.1. Talc
2.1.2. Calcium Carbonate
2.1.3. Mica
2.1.4. Halloysite
2.2. Polyethylene (PE)
2.2.1. Calcium Carbonate
2.2.2. Mika
2.2.3. Talk
2.2.4. Kaolin Clay
2.2.5. Silica
2.2.6. Diabase Filler (AL2O3, ZrO2)
2.3. Polycarbonate (PC)
2.3.1. Bentonite
2.3.2. Silicon Carbide
2.3.3. Calcium Carbonate
2.3.4. Mika
2.3.5. Talc
2.3.6. Kaolin Clay
3. Thermosetting Polymers
3.1. Epoxy Resins
3.1.1. Talk
3.1.2. Mica
3.1.3. Calcium Carbonate
3.1.4. Silica
3.1.5. Kaolin
3.2. Phenolic Resins
3.2.1. Silica
3.2.2. Alumina
3.2.3. Calcium Carbonate
3.2.4. Talc
4. Elastomeric Polymers
4.1. Polyurethanes (PU)
4.1.1. Silica
4.1.2. Halloysite
4.1.3. Clay
4.1.4. Calcium Carbonate
4.1.5. Soot
4.1.6. Talc
4.2. Polyvinyl Chloride (PVC)
4.2.1. Calcium Carbonate
4.2.2. Talc
4.2.3. Clay
4.2.4. Carbon Black
4.2.5. Silica
4.2.6. Mica
4.2.7. Barium Sulfate
4.2.8. Zinc Oxide
5. Functional and Engineering Polymers
5.1. Polyamides (PAs)
5.1.1. Talc
5.1.2. Calcium Carbonate
5.1.3. Mica
5.2. Polyetheretherketone (PEEK)
5.2.1. Talc
5.2.2. Calcium Carbonate
5.2.3. Mica
6. Promising Research Directions for Mineral Fillers of Polymers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gajlewicz, I.; Lenartowicz, M. Nowe Kierunki Uniepalniania Tworzyw Polimerowych. Przetwórstwo Tworzyw 2014, 20, 216–223. [Google Scholar]
- Milewski, O. Legislacja Warunkuje Zmiany na Rynku Uniepalniaczy. Chem. I Bizn. 2012, 3, 216–223. [Google Scholar]
- Iwko, J. Zachowanie się Tworzyw Sztucznych w Warunkach Pożarowych. Część II—Pomiary Palności oraz Metody Uniepalniania Tworzyw Sztucznych. Tworzywa Sztuczne I Chem. 2009, 6, 24–29. [Google Scholar]
- Polok-Rubiniec, M.; Włodarczyk-Fligier, A.; Chmielnicki, B.; Jurczyk, S. Konstrukcyjne Kompozyty Polimerowe z Napełniaczami Węglowymi. Przetwórstwo Tworzyw 2018, 24, 5–14. [Google Scholar]
- Klepka, T. Nowoczesne Materiały Polimerowe i Ich Przetwórstwo; Politechnika Lubelska: Lublin, Poland, 2014; pp. 26–28. [Google Scholar]
- Olejnik, M. Nanokompozyty Polimerowe z Udziałem Montmorylonitu—Otrzymywanie, Metody Oceny, Właściwości i Zastosowanie. Tech. Wyr. Włókiennicze 2008, 5, 67–74. [Google Scholar]
- Jang, B.N.; Costache, M.; Wilkie, C.A. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 2005, 46, 10678–10687. [Google Scholar] [CrossRef]
- de Seixas, G.B.; de Queiroz, H.F.M.; Neto, J.S.S.; Banea, M.D. Effect of water on the mechanical and thermal properties of natural fibre reinforced hybrid composites. J. Compos. Mater. 2023, 57, 1941–1958. [Google Scholar] [CrossRef]
- Singha, A.S.; Thakur, V.K. Mechanical properties of natural fibre reinforced polymer composites. Bull. Mater. Sci. 2008, 31, 791–799. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Chen, M. Thermal stability and flame retardancy of mineral-filled polymers: A review. Polym. Degrad. Stab. 2024, 207, 111308. [Google Scholar] [CrossRef]
- Helanto, K. Pilot-Scale Filler-Reinforced Biodegradable Coatings for Paperboard Packaging. Ph.D. Thesis, Aalto University, Espoo, Finland, 2023. [Google Scholar]
- Mastura, M.T.; Noryani, M. Mineral-filled Composite: A Review on Characteristics, Applications, and Potential Materials Selection Process. In Mineral-Filled Polymer Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 25–43. ISBN 9781003221012. [Google Scholar]
- Ilyas, R.A.; Izzat, M.; Qusyairi, S.M.; Sapuan, S.M.; Atikah, M.S.N.; Aisyah, H.A.; Ismail, H. Mineral-Filled Polymer Composites: Reliability, Challenges, Opportunities and Future Perspectives. In Mineral-Filled Polymer Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 235–262. ISBN 9781003220947. [Google Scholar]
- Tripathy, P.; Biswas, S. Mechanical and thermal properties of mineral fiber based polymeric nanocomposites: A review. Polym.-Plast. Technol. Mater. 2022, 61, 1385–1410. [Google Scholar] [CrossRef]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Remanan, S.; Ghosh, S.; Das, T.K.; Das, N.C. Applications of Thermoplastic and Thermosetting Polymer Composites. In Lightweight Polymer Composite Structures; CRC Press: Boca Raton, FL, USA, 2020; pp. 331–358. [Google Scholar]
- Taj, S.; Munawar, M.A.; Khan, S. Natural fiber-reinforced polymer composites. Proc.-Pak. Acad. Sci. 2007, 44, 129. [Google Scholar]
- Bongarde, U.S.; Shinde, V.D. Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 431–436. [Google Scholar]
- Akinalan Balik, B.; Argin, S. Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. J. Appl. Polym. Sci. 2019, 137, 48294. [Google Scholar] [CrossRef]
- Elimat, Z.M.; Zihlif, A.M.; Ragosta, G. Optical and thermal properties of polycarbonate/kaolinite composites. J. Thermoplast. Compos. Mater. 2010, 23, 793–805. [Google Scholar] [CrossRef]
- Jang, K.S. Mineral filler effect on the mechanics and flame retardancy of polycarbonate composites: Talc and kaolin. e-Polymers 2016, 16, 379–386. [Google Scholar] [CrossRef]
- Gonçalves, F.A.M.M.; Santos, M.; Cernadas, T.; Alves, P.; Ferreira, P. Influence of fillers on epoxy resins properties: A review. J. Mater. Sci. 2022, 57, 15183–15212. [Google Scholar] [CrossRef]
- Carrasco, F.; Pagès, P. Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 2008, 93, 1000–1007. [Google Scholar] [CrossRef]
- Huang, F. The Influence of Additives on the Heat-Resistant High Voltage-Resistant Insulation Material. Adv. Mater. Res. 2011, 391–392, 336–339. [Google Scholar] [CrossRef]
- Basavaraj Pattanashetty, B.; Bheemappa, S.; Rajashekaraiah, H. Effect of Filler-Filler Interactions on Mechanical Properties of Phenol Formaldehyde Based Hybrid Composites. Int. J. Eng. Technol. 2017, 13, 24–38. [Google Scholar] [CrossRef]
- Mamiński, M.Ł.; Więcław-Midor, A.M.; Parzuchowski, P.G. The Effect of Silica-Filler on Polyurethane Adhesives Based on Renewable Resource for Wood Bonding. Polymers 2020, 12, 2177. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.T.; Tirkes, S.; Tayfun, U. Hybrid Nanocomposites of Elastomeric Polyurethane Containing Halloysite Nanotubes and POSS Nanoparticles: Tensile, Hardness, Damping and Abrasion Performance. Clay Miner. 2020, 55, 281–292. [Google Scholar] [CrossRef]
- Esmaeili, M.H.; Norouzi, H.; Niazi, F. Evaluation of mechanical and performance characteristics of a new composite railway sleeper made from recycled plastics, mineral fillers and industrial wastes. Compos. B 2023, 254, 110581. [Google Scholar] [CrossRef]
- Hawley, G. Plastics. In Industrial Minerals and Their Uses; William Andrew Publishing: Norwich, NY, USA, 1996; pp. 353–400. [Google Scholar]
- Yeob, J.; Hong, S.W.; Koh, W.-G.; Park, I. Enhanced Mechanical and Thermal Properties of Polyimide Films Using Hydrophobic Fumed Silica Fillers. Polymers 2024, 16, 297. [Google Scholar] [CrossRef] [PubMed]
- Meliksetyan, N.G.; Karapetyan, A.N.; Hovhannisyan, K.V.; Saroyan, W.V.; Agbalyan, S.G.; Meliksetyan, G.N. Research and Prediction of Wear Resistance of Polymer Composites with Mineral Additives. J. Frict. Wear 2023, 44, 234–240. [Google Scholar] [CrossRef]
- Leong, Y.W.; Ishak, Z.A.M.; Ariffin, A. Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. J. Appl. Polym. Sci. 2004, 91, 3327–3336. [Google Scholar] [CrossRef]
- Parvaiz, M.R.; Mohanty, S.; Nayak, S.K.; Mahanwar, P.A. Polyetheretherketone composites reinforced with surface modified mica. Polym. Compos. 2010, 31, 2121–2128. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Kosmela, P.; Barczewski, M.; Hejna, A. Mechanical, Thermal and Rheological Properties of Polyethylene-Based Composites Filled with Micrometric Aluminum Powder. Materials 2020, 13, 1242. [Google Scholar] [CrossRef]
- Chemical resistance: Thermoplastics, rubbers, thermosets, thermoplastic elastomers. Choice Rev. Online 2002, 40, 305. [CrossRef]
- Manikantan, M.R.; Varadharaju, N. Preparation and properties of polypropylene-based nanocomposite films for food packaging. Packag. Technol. Sci. 2011, 24, 191–209. [Google Scholar] [CrossRef]
- Sionkowski, G.; Kaczmarek, H. Polymers with silver nanoparticles–selected systems, preparation, properties and applications. Polimery 2010, 55, 545–551. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Mavinkere Rangappa, S.; Puttegowda, M.; Suyambulingam, I.; Siengchin, S. Thermal analysis of sustainable and micro-filler Basalt reinforced polymer biocomposites for lightweight applications. J. Build. Eng. 2023, 79, 107869. [Google Scholar] [CrossRef]
- da Silveira, P.H.P.M.; da Conceição, M.d.N.; de Pina, D.N.; de Moraes Paes, P.A.; Monteiro, S.N.; Tapanes, N.d.L.C.O.; da Conceição Ribeiro, R.C.; Bastos, D.C. Impact of Different Mineral Reinforcements on HDPE Composites: Effects of Melt Flow Index and Particle Size on Physical and Mechanical Properties. Polymers 2024, 16, 2063. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, P.G.; Mani, S. Life cycle assessment of manufacturing cellulose nanofibril-reinforced chitosan composite films for packaging applications. Int. J. Life Cycle Assess. 2022, 27, 380–394. [Google Scholar] [CrossRef]
- Guo, Q. Polymer Morphology: Principles, Characterization, and Processing; Wiley: Hoboken, NJ, USA, 2016; ISBN 978-0-470-14602-3. [Google Scholar]
- Utracki, L.A.; Wilkie, C.A. Polymer Blends Handbook; Springer: Dordrecht, The Netherlands, 2002; ISBN 978-1-4020-1244-4. [Google Scholar]
- de Oliveira, C.I.R.; Rocha, M.C.G.; de Assis, J.T.; da Silva, A.L.N. Morphological, mechanical, and thermal properties of PP/SEBS/talc composites. J. Thermoplast. Compos. Mater. 2019, 35, 089270571987667. [Google Scholar] [CrossRef]
- Stamhuis, J.E. Mechanical properties and morphology of polypropylene composites II. Effect of polar components in talc-filled polypropylene. Polym. Compos. 1988, 9, 72–77. [Google Scholar] [CrossRef]
- Castillo, L.A.; Barbosa, S.E.; Capiati, N.J. Surface-modified talc particles by acetoxy groups grafting: Effects on mechanical properties of polypropylene/talc composites. Polym. Eng. Sci. 2012, 53, 89–95. [Google Scholar] [CrossRef]
- Zihlif, A.M.; Ragosta, G. Mechanical properties of talc-polypropylene composites. Mater. Lett. 1991, 11, 368–372. [Google Scholar] [CrossRef]
- Velasco, J.I.; De Saja, J.A.; Martinez, A.B. Crystallization behavior of polypropylene filled with surface-modified talc. J. Appl. Polym. Sci. 1996, 61, 125–132. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Leontiadis, K.; Ntampou, X.; Tsivintzelis, I. Modification of Talc and Mechanical Properties of Polypropylene-Modified Talc Composite Drawn Fibers. J. Compos. Sci. 2024, 8, 91. [Google Scholar] [CrossRef]
- Lapcik, L., Jr.; Jindrova, P.; Lapcikova, B.; Tamblyn, R.; Greenwood, R.; Rowson, N. Effect of the talc filler content on the mechanical properties of polypropylene composites. J. Appl. Polym. Sci. 2008, 110, 2742–2747. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, M.; Ge, L.; Chen, T.; Li, H.; Ye, Y.; Zheng, H. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers Polym. 2014, 15, 1278–1287. [Google Scholar] [CrossRef]
- Kloziński, A.; Szczepańska, M.; Jakubowska, P.; Samujło, B.; Barczewski, M.; Lota, G. The influence of calcium carbonate and its modifications on the extrusion process and selected functional properties of polypropylene cast films. Polimery 2022, 67, 509–521. [Google Scholar] [CrossRef]
- Dai Lam, T.; Hoang, T.V.; Quang, D.T.; Kim, J.S. Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater. Sci. Eng. A 2009, 501, 87–93. [Google Scholar] [CrossRef]
- Meng, M.R.; Dou, Q. Effect of Filler Treatment on Crystallization, Morphology and Mechanical Properties of Polypropylene/Calcium Carbonate Composites. J. Macromol. Sci. Part. B 2009, 48, 213–225. [Google Scholar] [CrossRef]
- Altay, L.; Sarikanat, M.; Sağlam, M.; Uysalman, T.; Seki, Y. The effect of various mineral fillers on thermal, mechanical, and rheological properties of polypropylene. Res. Eng. Struct. Mater. 2021, 7, 361–373. [Google Scholar] [CrossRef]
- Zilles, J.U. Feldspar and Syenites 12. In Fillers for Polymer Applications; Springer International Publishing: Cham, Switzerland, 2017; p. 231. [Google Scholar]
- Mittal, P.; Naresh, S.; Luthra, P.; Singh, A.; Dhaliwal, J.S.; Kapur, G.S. Polypropylene composites reinforced with hybrid inorganic fillers. J. Thermoplast. Compos. Mater. 2018, 32, 848–864. [Google Scholar] [CrossRef]
- Aldosari, S.M.; AlOtaibi, B.M.; Alblalaihid, K.S.; Aldoihi, S.A.; AlOgab, K.A.; Alsaleh, S.S.; Alshamary, D.O.; Alanazi, T.H.; Aldrees, S.D.; Alshammari, B.A. Mechanical Recycling of Carbon Fiber-Reinforced Polymer in a Circular Economy. Polymers 2024, 16, 1363. [Google Scholar] [CrossRef]
- Mihelčič, M.; Oseli, A.; Huskić, M.; Slemenik Perše, L. Influence of Stabilization Additive on Rheological, Thermal and Mechanical Properties of Recycled Polypropylene. Polymers 2022, 14, 5438. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Sun, P.; Yu, F.; Li, B.; Dun, L. Study on the performance and mechanism of modified mica for improving polypropylene composites. Int. J. Low-Carbon Technol. 2022, 17, 176–184. [Google Scholar] [CrossRef]
- Seshweni, M.H.E.; Makhatha, M.E.; Botlhoko, O.J.; Obadele, B.A.; Vijayan, V.; Chiniwar, D.S.; Kumar, P.; HM, V. Evaluation of Mechanical and Thermal Properties of Polypropylene-Based Nanocomposites Reinforced with Silica Nanofillers via Melt Processing Followed by Injection Molding. J. Compos. Sci. 2023, 7, 520. [Google Scholar] [CrossRef]
- Sherif, G.; Chukov, D.I.; Tcherdyntsev, V.V.; Stepashkin, A.A.; Zadorozhnyy, M.Y.; Shulga, Y.M.; Kabachkov, E.N. Surface Treatment Effect on the Mechanical and Thermal Behavior of the Glass Fabric Reinforced Polysulfone. Polymers 2024, 16, 864. [Google Scholar] [CrossRef] [PubMed]
- Teodorescu, G.M.; Vuluga, Z.; Ion, R.M.; Fistoș, T.; Ioniță, A.; Slămnoiu-Teodorescu, S.; Paceagiu, J.; Nicolae, C.A.; Gabor, A.R.; Ghiurea, M. The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers. Polymers 2024, 16, 1238. [Google Scholar] [CrossRef]
- Lee, C.L.; Chin, K.L.; H’ng, P.S.; Khoo, P.S.; Hafizuddin, M.S. Characterisation of Polypropylene Composite Reinforced with Chemi-Thermomechanical Pulp from Oil Palm Trunk via Injection Moulding Process. Polymers 2023, 15, 1338. [Google Scholar] [CrossRef] [PubMed]
- Szczygielska, A.; Kijeński, J. Zastosowanie Haloizytu jako Napełniacza do Modyfikacji Polipropylenu. Część, I. Charakterystyka Haloizytu jako Napełniacza. Kompozyty 2010, 10, 181–185. [Google Scholar]
- Wong, S.; Shanks, R. Biocomposites of Natural Fibers and Poly(3-Hydroxybutyrate) and Copolymers: Improved Mechanical Properties Through Compatibilization at the Interface. In Biodegradable Polymer Blends and Composites from Renewable Resources; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 303–347. [Google Scholar] [CrossRef]
- Huang, X.; Su, S.; Xu, Z.; Miao, Q.; Li, W.; Wang, L. Advanced Composite Materials for Structure Strengthening and Resilience Improvement. Buildings 2023, 13, 2406. [Google Scholar] [CrossRef]
- Koo, J.H. Polymer Nanocomposites: Processing, Characterization, and Applications, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2019; Available online: https://www.accessengineeringlibrary.com/content/book/9781260132311 (accessed on 2 July 2024).
- Knuuttila, H.; Lehtinen, A.; Nummila-Pakarinen, A. Advanced Polyethylene Technologies—Controlled Material Properties. In Long Term Properties of Polyolefins; Springer: Berlin/Heidelberg, Germany, 2004; pp. 13–28. [Google Scholar]
- Franciszczak, P.; Taraghi, I.; Paszkiewicz, S.; Burzyński, M.; Meljon, A.; Piesowicz, E. Effect of Halloysite Nanotube on Mechanical Properties, Thermal Stability and Morphology of Polypropylene and Polypropylene/Short Kenaf Fibers Hybrid Biocomposites. Materials 2020, 13, 4459. [Google Scholar] [CrossRef]
- Prashantha, K.; Lacrampe, M.F.; Krawczak, P. Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: Effect of halloysites treatment on structural and mechanical properties. Express Polym. Lett. 2011, 5, 295–307. [Google Scholar] [CrossRef]
- Yin, X.; Wang, L.; Li, S.; He, G.; Yang, Z. Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. J. Polym. Eng. 2018, 38, 119–127. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Al-Amiery, A.A.; Nassir, M.H.; Jaaz, A.H. The Impact of Halloysite on the Thermo-Mechanical Properties of Polymer Composites. Molecules 2017, 22, 838. [Google Scholar] [CrossRef]
- Liu, L.; Wan, Y.; Xie, Y.; Zhai, R.; Zhang, B.; Liu, J. The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem. Eng. J. 2012, 187, 210–216. [Google Scholar] [CrossRef]
- Zain, A.H.M.; Wahab, M.K.A.; Ismail, H. Effect of Calcium Carbonate Incorporation on the Properties of Low Linear Density Polyethylene/Thermoplastic Starch Blends. J. Eng. Sci. 2019, 15, 97–108. [Google Scholar] [CrossRef]
- Ngothai, Y.; Putra, H.; Ozbakkaloglu, T.; Seracino, R. Effect of CaCO3 Size on the Mechanical Properties of Recycled HDPE; The University of Adelaide: Adelaide, Australia, 2009. [Google Scholar]
- Kiran, M.; Govindaraju, H.; Jayaraju, T.; Kumar, N. Review-Effect of Fillers on Mechanical Properties of Polymer Matrix Composites. Mater. Today Proc. 2018, 5, 22421–22424. [Google Scholar] [CrossRef]
- Mamunya, Y.; Misiura, A.; Godzierz, M.; Pusz, S.; Szeluga, U.; Olszowska, K.; Wróbel, P.S.; Hercog, A.; Kobyliukh, A.; Pylypenko, A. Polymer Composites with Carbon Fillers Based on Coal Pitch and Petroleum Pitch Cokes: Structure, Electrical, Thermal, and Mechanical Properties. Polymers 2024, 16, 741. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.-H.; Li, J.; Fang, K.-Y.; Zhu, Q.-L. Synergistic Effect between a Novel Hyperbranched Charring Agent and Ammonium Polyphosphate on the Flame Retardant and Anti-Dripping Properties of Polylactide. Polym. Degrad. Stab. 2010, 95, 763–770. [Google Scholar] [CrossRef]
- Liang, J.-Z.; Yang, Q. Mechanical, Thermal, and Flow Properties of HDPE-Mica Composites. J. Thermoplast. Compos. Mater. 2007, 20, 225–236. [Google Scholar] [CrossRef]
- Gerardo, C.F.; França, S.C.A.; Santos, S.F.; Bastos, D.C. A Study of Recycled High-Density Polyethylene with Mica Addition: Influence of Mica Particle Size on Wetting Behavior, Morphological, Physical, and Chemical Properties. Int. J. Dev. Res. 2020, 10, 19110. [Google Scholar]
- Yu, F.; Liu, T.; Zhao, X.; Yu, X. Effects of Talc on the Mechanical and Thermal Properties of Polylactide. J. Appl. Polym. Sci. 2012, 125, E99–E109. [Google Scholar] [CrossRef]
- Nga, P.T.H.; Loc, P.B.P.; Tuan, V.V. Effect of Talc on Mechanical Properties of Polypropylene. J. Tech. Educ. Sci. 2018, 47, 1–10. [Google Scholar]
- Liu, K.; Stadlbauer, W.; Zitzenbacher, G.; Paulik, C.; Burgstaller, C. Effects of surface modification of talc on mechanical properties of polypropylene/talc composites. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar]
- Banasiak, A.; Sterczyński, T. Właściwości kompozytów polimerowych PE+ talk. Kompoz. (Compos.) 2002, 3, 126–130. [Google Scholar]
- Hemanth, R.; Sekar, M.; Suresha, B. Effects of fibers and fillers on mechanical properties of thermoplastic composites. Indian J. Adv. Chem. Sci. 2014, 2, 28–35. [Google Scholar]
- Adkina, Y.V.; Nikolaev, A.I.; Petrov, V.B.; Putintsev, N.M. Alloying elements in mineral and synthetic components of welding materials. Russ. J. Appl. Chem. 2010, 83, 2088–2093. [Google Scholar] [CrossRef]
- Shebani, A.; Elhrari, W.; Klash, A.; Aswei, A.; Omran, K.; Rhab, A. Effects of Libyan kaolin clay on the impact strength properties of high density polyethylene/clay nanocomposites. Int. J. Compos. Mater. 2016, 6, 152–158. [Google Scholar]
- Krásný, I.; Lapčík, L.; Lapčíková, B.; Greenwood, R.W.; Šafářová, K.; Rowson, N.A. The effect of low temperature air plasma treatment on physico-chemical properties of kaolinite/polyethylene composites. Compos. Part. B Eng. 2014, 59, 293–299. [Google Scholar] [CrossRef]
- Zilles, J.U. Antiblock Additives 21. In Fillers for Polymer Applications; Springer: Berlin/Heidelberg, Germany, 2017; p. 425. [Google Scholar]
- Malik, O.; Joshi, T.; Goel, V.; Kapur, G.S.; Nebhani, L. Silica derived from variety of sources and its functionalized forms as an antiblock additive in polypropylene. J. Thermoplast. Compos. Mater. 2023, 36, 1382–1400. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Antiblocking, Release, and Slip Additives; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Agustina, L.A.; Lestari, Y.D.; Adhinanda, A.A.; Ariesta, M.N.; Choi, J.; Prananto, Y.P.; Febriani, R. Study of inorganic based anti-blocks as migration control of slip additive on surface polyethylene monolayer film. Acta Chim. Asiana 2024, 7, 366–376. [Google Scholar] [CrossRef]
- Siraj, S.; Al Marzouqi, A.; Lqbal, M. Mechanical and Wettability Performance of Sand/HDPE Composite Sheets. Mater. Sci. Forum 2020, 1015, 9–14. [Google Scholar] [CrossRef]
- Tadmor, Z.; Gogos, C.G. Principles of Polymer Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sreekanth, M.S.; Bambole, V.A.; Mhaske, S.; Mahanwar, P. Effect of Concentration of Mica on Properties of Polyester Thermoplastic Elastomer Composites. J. Miner. Mater. Charact. Eng. 2009, 8, 271–282. [Google Scholar] [CrossRef]
- Al-Mazrouei, N.; Ismail, A.; Ahmed, W.; Al-Marzouqi, A.H. ABS/Silicon Dioxide Micro Particulate Composite from 3D Printing Polymeric Waste. Polymers 2022, 14, 509. [Google Scholar] [CrossRef]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef]
- Abdul Samad, M. Recent Advances in UHMWPE/UHMWPE Nanocomposite/UHMWPE Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review. Polymers 2021, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Skakov, M.; Zhilkashinova, A.; Zhilkashinova, A.; Abilev, M.; Prokhorenkova, N.; Agelmenev, M.; Ismailova, A. Effect of Heat Treatment on the Structural-Phase State and Properties of a Multilayer Co-Cr-Al-Y Coating. Crystals 2022, 12, 1056. [Google Scholar] [CrossRef]
- Lu, T.; Zhou, M.; Ren, L.; Fan, L.; Guo, Y.; Qu, X.; Zhang, H.; Lu, X.; Quan, G. Effect of Graphene Nanoplatelets Content on the Mechanical and Wear Properties of AZ31 Alloy. Metals 2020, 10, 1265. [Google Scholar] [CrossRef]
- Sagdoldina, Z.; Amanzholov, S.; Rakhadilov, B.; Akatan, K.; Kowalewski, P. The Impact of Non-Vacuum Electron Beam Treatment on the Structure and Properties of Ultra-High Molecular Weight Polyethylene. Bull. Karaganda Univ. Phys. Ser. 2020, 1, 35–41. [Google Scholar] [CrossRef]
- Panin, S.V.; Kornienko, L.A.; Huang, Q.; Buslovich, D.G.; Bochkareva, S.A.; Alexenko, V.O.; Panov, I.L.; Berto, F. Effect of Adhesion on Mechanical and Tribological Properties of Glass Fiber Composites, Based on Ultra-High Molecular Weight Polyethylene Powders with Various Initial Particle Sizes. Materials 2020, 13, 1602. [Google Scholar] [CrossRef]
- Nabhan, A.; Ameer, A.K.; Rashed, A. Tribological and mechanical properties of HDPE reinforced by Al2O3 nanoparticles for bearing materials. Int. J. Adv. Sci. Technol. 2019, 28, 481–489. [Google Scholar]
- Danilova, S.N.; Yarusova, S.B.; Kulchin, Y.N.; Zhevtun, I.G.; Buravlev, I.Y.; Okhlopkova, A.A.; Gordienko, P.S.; Subbotin, E.P. UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties. Polymers 2021, 13, 570. [Google Scholar] [CrossRef]
- Gogoleva, O.V.; Petrova, P.N.; Popov, S.N.; Okhlopkova, A.A. Wear-resistant composite materials based on ultrahigh molecular weight polyethylene and basalt fibers. J. Frict. Wear 2015, 36, 301–305. [Google Scholar] [CrossRef]
- Chang, B.P.; Akil, H.M.; Nasir, R.B.M. Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear 2013, 297, 1120–1127. [Google Scholar] [CrossRef]
- Abdel Baki, Z.; Dib, H.; Sahin, T. Overview: Polycarbonates via Ring-Opening Polymerization, Differences between Six- and Five-Membered Cyclic Carbonates: Inspiration for Green Alternatives. Polymers 2022, 14, 2031. [Google Scholar] [CrossRef]
- Rajpurohit, S.; Dave, H. Effect of Process Parameters on Tensile Strength of FDM Printed PLA Part. Rapid Prototyp. J. 2018, 24, 1317–1324. [Google Scholar] [CrossRef]
- Górski, F.; Kuczko, W.; Wichniarek, R.; Hamrol, A. Mechanical Properties of Composite Parts Manufactured in FDM Technology. Rapid Prototyp. J. 2018, 24, 1281–1287. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Law, T.T.; Phua, Y.J.; Senawi, R.; Hassan, A.; Mohd Ishak, Z.A. Experimental analysis and theoretical modeling of the mechanical behavior of short glass fiber and short carbon fiber reinforced polycarbonate hybrid composites. Polym. Compos. 2016, 37, 1238–1248. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, B.; Wang, F.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. J. Reinf. Plast. Compos. 2014, 33, 911–922. [Google Scholar] [CrossRef]
- Mergler, Y.J.; Van Kampen, R.J.; Nauta, W.J.; Schaake, R.P.; Raas, B.; Van Griensven, J.G.H.; Meesters, C.J.M. Influence of yield strength and toughness on friction and wear of polycarbonate. Wear 2005, 258, 915–923. [Google Scholar] [CrossRef]
- Yoonessi, M.; Gaier, J.R. Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 2010, 4, 7211–7220. [Google Scholar] [CrossRef]
- Sharma, R.; Kar, K.K.; Das, M.K.; Gupta, G.K.; Kumar, S. Short carbon fiber-reinforced polycarbonate composites. In Composite Materials: Processing, Applications, Characterizations; Springer: Berlin/Heidelberg, Germany, 2017; pp. 199–221. [Google Scholar]
- Chen, K.; Yu, L.; Cui, Y.; Jia, M.; Pan, K. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites. Thin-Walled Struct. 2021, 164, 107717. [Google Scholar] [CrossRef]
- Bulanda, K.; Oleksy, M.; Oliwa, R.; Budzik, G.; Przeszłowski, Ł.; Fal, J.; Jesionowski, T. Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology. Polymers 2021, 13, 2455. [Google Scholar] [CrossRef]
- Hongzhen, C.; Yang, K.; Weiming, Y. Effects of Calcium Carbonate on Preparation and Mechanical Properties of Wood/Plastic Composite. Int. J. Agric. Biol. Eng. 2017, 10, 184–190. [Google Scholar] [CrossRef]
- Latinwo, G.K.; Aribike, D.S.; Oyekunle, L.O.; Susu, A.A.; Kareem, S.A. Effects of calcium carbonate of different compositions and particle size distributions on the mechanical properties of flexible polyurethane foam. Nat. Sci. 2010, 8, 92–101. [Google Scholar]
- Senthooran, V.; Weng, Z.; Wu, L. Enhancing Mechanical and Thermal Properties of 3D-Printed Samples Using Mica-Epoxy Acrylate Resin Composites—Via Digital Light Processing (DLP). Polymers 2024, 16, 1148. [Google Scholar] [CrossRef]
- Asyadi, F.; Jawaid, M.; Hassan, A.; Wahit, M.U. Mechanical properties of mica-filled polycarbonate/poly (acrylonitrile-butadiene-styrene) composites. Polym.-Plast. Technol. Eng. 2013, 52, 727–736. [Google Scholar] [CrossRef]
- Sung, Y.T.; Fasulo, P.D.; Rodgers, W.R.; Yoo, Y.T.; Yoo, Y.; Paul, D.R. Properties of polycarbonate/acrylonitrile-butadiene-styrene/talc composites. J. Appl. Polym. Sci. 2012, 124, 1020–1030. [Google Scholar] [CrossRef]
- DePolo, W.S.; Baird, D.G. Particulate reinforced PC/PBT composites. I. Effect of particle size (nanotalc versus fine talc particles) on dimensional stability and properties. Polym. Compos. 2009, 30, 188–199. [Google Scholar] [CrossRef]
- Al-Ramadin, Y.; Zihlif, A.M.; Elimat, Z.M.; Ragosta, G. Dielectric and AC electrical conductivity of polycarbonate kaolinite composites. J. Thermoplast. Compos. Mater. 2009, 22, 617–632. [Google Scholar] [CrossRef]
- Chen, F.; Bao, Y.; Zhang, J.; Yang, M.; Ruan, M.; Feng, W.; Chen, Y. Comparative study on the mechanical and thermal properties of polycarbonate composites reinforced by KH570/SA/SDBS modified wollastonite fibers. Polym. Compos. 2022, 43, 8125–8135. [Google Scholar] [CrossRef]
- Ratna, D. Recent Advances and Applications of Thermoset Resins; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Susan George, J.; Uthaman, A.; Reghunadhan, A.; Mayookh Lal, H.; Thomas, S.; Vijayan, P. Bioderived thermosetting polymers and their nanocomposites: Current trends and future outlook. Emergent Mater. 2022, 5, 3–27. [Google Scholar] [CrossRef]
- Morici, E.; Dintcheva, N.T. Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Polymers 2022, 14, 4153. [Google Scholar] [CrossRef]
- Sienkiewicz, N.; Dominic, M.; Parameswaranpillai, J. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers 2022, 14, 265. [Google Scholar] [CrossRef]
- Shnawa, H.A. Studies on thermal properties and curing kinetics of talc-filled epoxy resin composite using differential scanning calorimetry. Polym. Bull. 2022, 79, 11461–11478. [Google Scholar] [CrossRef]
- Zhu, S.; Dong, P.; Zhang, X.; Li, C.; Hu, X.; Fu, A.; Wang, Z. Corrosion resistance mechanism of mica/epoxy coatings with different mica contents in a CO2-Cl-system. Int. J. Electrochem. Sci. 2022, 17, 22043. [Google Scholar] [CrossRef]
- Matykiewicz, D.; Barczewski, M.; Mousa, M.S.; Sanjay, M.R.; Siengchin, S. Impact strength of hybrid epoxy–basalt composites modified with mineral and natural fillers. ChemEngineering 2021, 5, 56. [Google Scholar] [CrossRef]
- Podkościelna, B.; Klepka, T.; Podkościelny, P.; Bocho-Janiszewska, A.; Wasilewski, T.; Klapiszewski, Ł. Structural, Mechanical and Flammability Characterization of Crosslinked Talc Composites with Different Particle Sizes. Materials 2022, 15, 4492. [Google Scholar] [CrossRef]
- Cai, Y.; Meng, F.; Liu, L.; Liu, R.; Cui, Y.; Zheng, H.; Wang, F. The Effect of the Modification of Mica by High-Temperature Mechanochemistry on the Anticorrosion Performance of Epoxy Coatings. Polymers 2021, 13, 378. [Google Scholar] [CrossRef]
- Ongaro, G.; Pontefisso, A.; Zeni, E.; Lanero, F.; Famengo, A.; Zorzi, F.; Zaccariotto, M.; Galvanetto, U.; Fiorentin, P.; Gobbo, R.; et al. Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy-Nanomica Composites—New Model Insights for Mechanical Properties. Polymers 2023, 15, 1456. [Google Scholar] [CrossRef]
- Andraschek, N.; Wanner, A.J.; Ebner, C.; Riess, G. Mica/Epoxy-Composites in the Electrical Industry: Applications, Composites for Insulation, and Investigations on Failure Mechanisms for Prospective Optimizations. Polymers 2016, 8, 201. [Google Scholar] [CrossRef]
- Zhou, M.-H.; Yin, G.-Z.; Prolongo, S.G.; Wang, D.-Y. Recent Progress on Multifunctional Thermally Conductive Epoxy Composite. Polymers 2023, 15, 2818. [Google Scholar] [CrossRef]
- Tasdemir, M.; Ersoy, S. Mechanical, Morphological and Thermal Properties of HDPE Polymer Composites Filled with Talc, Calcium Carbonate and Glass Spheres. Rev. Rom. Mater. 2015, 45, 147–154. [Google Scholar]
- Stabik, J.; Chomiak (Szczepanik), M. Wear Resistance of Epoxy-Hard Coal Composites. Arch. Mater. Sci. Eng. 2013, 64, 168–174. [Google Scholar]
- Zulfli, N.M.; Bakar, A.A.; Chow, W.S. Mechanical and thermal properties improvement of nano calcium carbonate-filled epoxy/glass fiber composite laminates. High Perform. Polym. 2014, 26, 223–229. [Google Scholar] [CrossRef]
- Vahtrus, M.; Oras, S.; Antsov, M.; Reedo, V. Mechanical and Thermal Properties of Epoxy Composite Thermal Insulators Filled with Silica Aerogel and Hollow Glass Microspheres. Proc. Est. Acad. Sci. 2017, 66, 339. [Google Scholar] [CrossRef]
- Friedrich, K.; Fakirov, S.; Zhang, Z.; Sreekala, M.S.; Eger, C. Property improvements of an epoxy resin by nanosilica particle reinforcement. In Polymer Composites: From Nano-to Macro-Scale; Springer: Boston, MA, USA, 2005; pp. 91–105. [Google Scholar]
- Teh, P.L.; Jaafar, M.; Akil, H.M.; Seetharamu, K.N.; Wagiman, A.N.R.; Beh, K.S. Thermal and mechanical properties of particulate fillers filled epoxy composites for electronic packaging application. Polym. Adv. Technol. 2008, 19, 308–315. [Google Scholar] [CrossRef]
- Imai, T.; Sawa, F.; Nakano, T.; Ozaki, T.; Shimizu, T.; Kozako, M.; Tanaka, T. Effects of nano-and micro-filler mixture on electrical insulation properties of epoxy based composites. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 319–326. [Google Scholar] [CrossRef]
- Dittanet, P.; Pearson, R.A.; Kongkachuichay, P. Thermo-mechanical behaviors and moisture absorption of silica nanoparticle reinforcement in epoxy resins. Int. J. Adhes. Adhes. 2017, 78, 74–82. [Google Scholar] [CrossRef]
- Kim, D.; Chung, I.; Kim, G. Study on mechanical and thermal properties of fiber-reinforced Epoxy/Hybrid-silica composite. Fibers Polym. 2013, 14, 2141–2147. [Google Scholar] [CrossRef]
- Ariffin, A.; Mansor, A.S.; Jikan, S.S.; Mohd. Ishak, Z.A. Mechanical, morphological, and thermal properties of polypropylene/kaolin composite. Part I. The effects of surface-treated kaolin and processing enhancement. J. Appl. Polym. Sci. 2008, 108, 3901–3916. [Google Scholar] [CrossRef]
- Abbas, M.I.; Alahmadi, A.H.; Elsafi, M.; Alqahtani, S.A.; Yasmin, S.; Sayyed, M.I.; Gouda, M.M.; El-Khatib, A.M. Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites. Polymers 2022, 14, 4801. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Zhang, M.; Liu, Y.; Yu, Y.; Yu, H. Electrical and mechanical properties of epoxy composites reinforced with kaolin-coated basalt fibers. Fibers Polym. 2023, 24, 95–108. [Google Scholar] [CrossRef]
- Fellahi, S.; Chikhi, N.; Bakar, M. Modification of epoxy resin with kaolin as a toughening agent. J. Appl. Polym. Sci. 2001, 82, 861–878. [Google Scholar] [CrossRef]
- Astruc, A.; Joliff, E.; Chailan, J.F.; Aragon, E.; Petter, C.O.; Sampaio, C.H. Incorporation of kaolin fillers into an epoxy/polyamidoamine matrix for coatings. Prog. Org. Coat. 2009, 65, 158–168. [Google Scholar] [CrossRef]
- Ravindran, L.; MS, S.; Kumar, S.A.; Thomas, S. A comprehensive review on phenol-formaldehyde resin-based composites and foams. Polym. Compos. 2022, 43, 8602–8621. [Google Scholar] [CrossRef]
- Gao, D.; Nie, J.; Cai, M.; Ju, M.; Liang, Y.; Zhang, X. Silica sol modified phenolic resin and its effect on mechanical properties of Al2O3-SiC-C bricks. J. Eur. Ceram. Soc. 2023, 43, 7189–7195. [Google Scholar] [CrossRef]
- Li, S.; Chen, F.; Zhang, B.; Luo, Z.; Li, H.; Zhao, T. Structure and improved thermal stability of phenolic resin containing silicon and boron elements. Polym. Degrad. Stab. 2016, 133, 321–329. [Google Scholar] [CrossRef]
- Chiang, C.L.; Ma, C.C.M. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym. Degrad. Stab. 2004, 83, 207–214. [Google Scholar] [CrossRef]
- Asaro, L.; Manfredi, L.B.; Pellice, S.; Procaccini, R.; Rodriguez, E.S. Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles. Polym. Degrad. Stab. 2017, 144, 7–16. [Google Scholar] [CrossRef]
- Zhou, R.; Li, W.; Mu, J.; Ding, Y.; Jiang, J. Synergistic Effects of Aluminum Diethylphosphinate and Melamine on Improving the Flame Retardancy of Phenolic Resin. Materials 2020, 13, 158. [Google Scholar] [CrossRef]
- Etemadi, H.; Shojaei, A. Characterization of reinforcing effect of alumina nanoparticles on the novolac phenolic resin. Polym. Compos. 2014, 35, 1285–1293. [Google Scholar] [CrossRef]
- Shi, S.; Wang, Y.; Jiang, T.; Wu, X.; Tang, B.; Gao, Y.; Zhong, N.; Sun, K.; Zhao, Y.; Li, W.; et al. Carbon Fiber/Phenolic Composites with High Thermal Conductivity Reinforced by a Three-Dimensional Carbon Fiber Felt Network Structure. ACS Omega 2022, 7, 29433–29442. [Google Scholar] [CrossRef]
- Satapathy, B.K.; Bijwe, J. Analysis of simultaneous influence of operating variables on abrasive wear of phenolic composites. Wear 2002, 253, 787–794. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Z.; Qin, Y.; Li, Y. Thermal behavior of phenolic-based ceramizable composites modified by nano-aluminum oxide. High Perform. Polym. 2016, 28, 1096–1101. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Siva, I.; Karthikeyan, S.; Pulikkalparambil, H.; Parameswaranpillai, J.; Sanjay, M.R.; Siengchin, S. Mechanical, structural, thermal and tribological properties of nanoclay based phenolic composites. In Phenolic Polymers Based Composite Materials. Composites Science and Technology; Springer: Singapore, 2021; pp. 123–138. [Google Scholar]
- Zhao, D.; Hu, J.; Wang, D.; Yang, J.; Zhang, H.; Wang, B. Reinforcement of mica on phthalonitrile resin and composites: Curing, thermal, mechanical and dielectric properties. Compos. Sci. Technol. 2023, 244, 110289. [Google Scholar] [CrossRef]
- Sharma, A.M. Mechanical Behaviour, Water Absorption and Morphology of Wheat Straw, Talc, Mica and Wollastonite Filled Polypropylene Composites. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2012. [Google Scholar]
- Mo, H.; Wang, G.; Liu, F.; Jiang, P. The influence of the interface between mica and epoxy matrix on properties of epoxy-based dielectric materials with high thermal conductivity and low dielectric loss. RSC Adv. 2016, 6, 83163–83174. [Google Scholar] [CrossRef]
- Yang, G.; Heo, Y.-J.; Park, S.-J. Effect of Morphology of Calcium Carbonate on Toughness Behavior and Thermal Stability of Epoxy-Based Composites. Processes 2019, 7, 178. [Google Scholar] [CrossRef]
- Tao, Y.; Li, P.; Cai, L.; Shi, S.Q. Flammability and mechanical properties of composites fabricated with CaCO3-filled pine flakes and Phenol Formaldehyde resin. Compos. Part B Eng. 2019, 167, 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, W.; Yang, L.; Chen, P.; Yan, C.; Cai, C.; Li, H.; Li, L.; Shi, Y. Glass Fiber-Reinforced Phenol Formaldehyde Resin-Based Electrical Insulating Composites Fabricated by Selective Laser Sintering. Polymers 2019, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Noparvar-Qarebagh, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: High carbon yields by resin modification and its incorporation into aerogel network. Polym. Degrad. Stab. 2016, 124, 1–14. [Google Scholar] [CrossRef]
- Zhu, B.; Jiang, X.; Li, S.; Zhu, M. An Overview of Recycling Phenolic Resin. Polymers 2024, 16, 1255. [Google Scholar] [CrossRef] [PubMed]
- Fotohi, H.; Khezrian, I. Experimental Investigation of Talc Microparticles Effect on the Mechanical and Thermal Properties of Silica-Phenolic Composite Multilayers. Modares Mech. Eng. 2020, 20, 259–266. [Google Scholar]
- Bernardeau, F.; Perrin, D.; Caro, A.S.; Benezet, J.C.; Ienny, P. Valorization of waste thermoset material as a filler in thermoplastic: Mechanical properties of phenolic molding compound waste-filled PP composites. J. Appl. Polym. Sci. 2018, 135, 45849. [Google Scholar] [CrossRef]
- Wang, H.; Dong, C.; Hu, W.; Dang, H.; Du, C.; Ou, Y.; Zhang, C. Time-dependent high-temperature compressive failure behavior of high-silica/boron-phenolic composites modified with boron carbide and talc. Compos. Sci. Technol. 2022, 221, 109226. [Google Scholar] [CrossRef]
- Mark, J.E.; Erman, B. Science and Technology of Rubber; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Merillas, B.; Lamy-Mendes, A.; Villafañe, F.; Durães, L.; Rodríguez-Pérez, M.Á. Silica-based aerogel composites reinforced with reticulated polyurethane foams: Thermal and mechanical properties. Gels 2022, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Petrović, Z.S.; Javni, I.; Waddon, A.; Bánhegyi, G. Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci. 2000, 76, 133–151. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Moaref, P.; Shirkavand, B. Thermal stability and flame retardancy of polyurethanes. J. Stud. Color World 2014, 4, 13–31. [Google Scholar]
- ASTM D3801-19; Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E831-14; Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2014.
- Szczygielska, A.; Kijeński, J. Zastosowanie Haloizytu jako Napełniacza do Modyfikacji Polipropylenu. Część II. Badania Właściwości Otrzymanych Kompozytów PP z HNT. Kompozyty 2010, 10, 186–191. [Google Scholar]
- Kumar, V.; Singh, A. Polypropylene Clay Nanocomposites. Rev. Chem. Eng. 2013, 29, 439–448. [Google Scholar] [CrossRef]
- Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T. Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem. 2006, 16, 2800–2808. [Google Scholar] [CrossRef]
- Seo, W.J.; Jung, H.C.; Hyun, J.C.; Kim, W.N.; Lee, Y.B.; Choe, K.H.; Kim, S.B. Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water. J. Appl. Polym. Sci. 2003, 90, 12–21. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, G.; Xu, W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polym. Degrad. Stab. 2014, 101, 32–39. [Google Scholar] [CrossRef]
- Beverte, I.; Cabulis, U.; Andersons, J.; Kirpluks, M.; Skruls, V.; Cabulis, P. Anisotropy and Mechanical Properties of Nanoclay Filled, Medium-Density Rigid Polyurethane Foams Produced in a Sealed Mold, from Renewable Resources. Polymers 2023, 15, 2582. [Google Scholar] [CrossRef] [PubMed]
- Sarier, N.; Onder, E. Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams. Thermochim. Acta 2010, 510, 113–121. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, Q.; Alvarez-Borges, F.; Yuan, G.; Van Duijneveldt, J.; Briscoe, W.H.; Scarpa, F. Composite sepiolite/chitosan layer-by-layer coated flexible polyurethane foams with superior mechanical properties and energy absorption. Compos. Struct. 2023, 322, 117419. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Hejna, A.; Formela, K.; Danowska, M.; Strankowski, M. Morphology, mechanical and thermal properties of flexible polyurethane foams modified with layered aluminosilicates. Polimery 2014, 59, 783–791. [Google Scholar] [CrossRef]
- Goda, E.S.; Yoon, K.R.; El-sayed, S.H.; Hong, S.E. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochim. Acta 2018, 669, 173–184. [Google Scholar] [CrossRef]
- Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste. Polym. Test. 2019, 81, 106190. [Google Scholar] [CrossRef]
- Usman, M.A.; Adeosun, S.O.; Osifeso, G.O. Optimum calcium carbonate filler concentration for flexible polyurethane foam composite. J. Miner. Mater. Charact. Eng. 2012, 11, 311–320. [Google Scholar] [CrossRef]
- Damircheli, M.; MajidiRad, A. The Influence of the Dispersion Method on the Morphological, Curing, and Mechanical Properties of NR/SBR Reinforced with Nano-Calcium Carbonate. Polymers 2023, 15, 2963. [Google Scholar] [CrossRef]
- Pinto, R.C.; Pereira, P.H.; Maia, L.S.; Silva, T.L.; Faria, M.I.S.; Rosa, D.S.; Mulinari, D.R. A promising use of Kimberlite clay on sustainable polyurethane foams. Appl. Clay Sci. 2024, 258, 107472. [Google Scholar] [CrossRef]
- Ozimek, J.; Pielichowski, K. Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications. Molecules 2022, 27, 40. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Hejna, A.; Formela, K.; Danowska, M.; Strankowski, M. Effect of ground tire rubber on structural, mechanical and thermal properties of flexible polyurethane foams. Iran. Polym. J. 2015, 24, 75–84. [Google Scholar] [CrossRef]
- Li, F.; Qi, L.; Yang, J.; Xu, M.; Luo, X.; Ma, D. Polyurethane/conducting carbon black composites: Structure, electric conductivity, strain recovery behavior, and their relationships. J. Appl. Polym. Sci. 2000, 75, 68–77. [Google Scholar] [CrossRef]
- Tayfun, Ü.; Doğan, M.; Bayramlı, E. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites. Anadolu Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2017, 18, 682–694. [Google Scholar] [CrossRef]
- Wang, W.; Pan, H.; Yu, B.; Pan, Y.; Song, L.; Liew, K.M.; Hu, Y. Fabrication of carbon black coated flexible polyurethane foam for significantly improved fire safety. RSC Adv. 2015, 5, 55870–55878. [Google Scholar] [CrossRef]
- Ghasemi-Kahrizsangi, A.; Neshati, J.; Shariatpanahi, H.; Akbarinezhad, E. Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 2015, 85, 199–207. [Google Scholar] [CrossRef]
- Aydoğan, B.; Yurtseven, R.; Usta, N. Investigation of the combustion, thermal and mechanical characteristics of rigid polyurethane foam added with talc and intumescent flame retardant. J. Thermoplast. Compos. Mater. 2023, 36, 2789–2814. [Google Scholar] [CrossRef]
- Buzarovska, A.; Bogoeva-Gaceva, G.; Fajgar, R. Effect of the talc filler on structural, water vapor barrier and mechanical properties of poly (lactic acid) composites. J. Polym. Eng. 2016, 36, 181–188. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Mikicka, M.; Danowska, M.; Piszczyk, Ł. Modification of microporous polyurethane elastomers with different types of ash—Morphological, mechanical, and thermal studies. Polym. Compos. 2016, 37, 881–889. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, T.; Wang, Q. Studies on wettability, mechanical and tribological properties of the polyurethane composites filled with talc. Appl. Surf. Sci. 2012, 258, 3557–3564. [Google Scholar] [CrossRef]
- Marano, S.; Laudadio, E.; Minnelli, C.; Stipa, P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers 2022, 14, 1626. [Google Scholar] [CrossRef]
- Tuen, B.S.; Hassan, A.; Abu Bakar, A. Mechanical properties of talc-and (calcium carbonate)-filled poly (vinyl chloride) hybrid composites. J. Vinyl Addit. Technol. 2012, 18, 76–86. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Zhang, L.; Du, H.L.; Burnell-Gray, J.S. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polym. Int. 2006, 55, 158–164. [Google Scholar] [CrossRef]
- Baek, C.S.; Cho, K.H.; Ahn, J.W. Effect of grain size and replacement ratio on the plastic properties of precipitated calcium carbonate using limestone as raw material. J. Korean Ceram. Soc. 2014, 51, 127–131. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, J.; Ge, R.; Wu, C. The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC. Polym. Bull. 2018, 75, 1123–1139. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, M.; Jinshan, G. Thermal Stabilities of Poly(Vinyl Chloride)/Calcium Carbonate (PVC/CaCO3) Composites. J. Macromol. Sci. B Phys. 2006, 45, 1135–1140. [Google Scholar] [CrossRef]
- Hassan, A.Z.M.A.N.; Bakar, A.A.; Wahit, M.U.; Tueen, B.S. Structure-Properties Relationship of Hybrid talc/Calcium Carbonate Filled Impact Modified pvc Composites. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2009. [Google Scholar]
- Hassan, A.; Yusoff, N.I.S.M.; Abu Bakar, A. Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites. J. Polym. Eng. 2012, 32, 275–282. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Li, N.; Tang, T.; Xie, X.; Zhang, C.; Zuo, Y. The Flame Retardancy and Smoke Suppression Performance of Polyvinyl Chloride Composites with an Efficient Flame Retardant System. Coatings 2023, 13, 1814. [Google Scholar] [CrossRef]
- Nga, P.T.H.; Nguyen, V.T. Experimental study on mechanical behavior of polypropylene-based blends with talc fillers. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 571–576. [Google Scholar] [CrossRef]
- Wan, C.; Qiao, X.; Zhang, Y.; Zhang, Y. Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym. Test. 2003, 22, 453–461. [Google Scholar] [CrossRef]
- Abu-Zahra, N.H.; Alian, A.M.; Perez, R.; Chang, H. Extrusion of rigid PVC foam with nanoclay: Synthesis and characterization. J. Reinf. Plast. Compos. 2010, 29, 1153–1165. [Google Scholar] [CrossRef]
- Beyer, G. Flame retardancy of thermoplastic polyurethane and polyvinyl chloride by organoclays. J. Fire Sci. 2007, 25, 65–78. [Google Scholar] [CrossRef]
- Sadak, E.; El-Komy, D.; Motawie, A.M.; Darwish, M.S.; Ahmed, S.M.; Mokhtar, S.M. PVC-clay nanocomposites: Preparation, mechanical and thermal properties. J. Sci. Res. Sci. 2019, 36, 453–468. [Google Scholar] [CrossRef]
- Selim, M.S.; Zaki, E.G.; Elsaeed, S.M.; El-Ghazawy, R.A. Carbon Fiber and Carbon Black Reinforced PVC Composites and Nanocomposites. In Poly (Vinyl Chloride) Based Composites and Nanocomposites; Springer International Publishing: Cham, Switzerland, 2023; pp. 129–153. [Google Scholar]
- Islam, I.; Sultana, S.; Kumer Ray, S.; Parvin Nur, H.; Hossain, M.T.; Md. Ajmotgir, W. Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. C 2018, 4, 15. [Google Scholar] [CrossRef]
- Nirvana, A.A.A.; Walla, W.J.; Nagham, S.H. Studying the Electrical Conductivity of Different Carbon Fillers Reinforced Polyvinyl Chloride Composite Materials. NUCEJ 2014, 16, 260–268. [Google Scholar]
- Hao, X.; Gai, G.; Yang, Y.; Zhang, Y.; Nan, C. Development of the conductive polymer matrix composite with lowconcentration of the conductive filler. Mater. Chem. Phys. 2008, 109, 15–19. [Google Scholar] [CrossRef]
- Tomaszewska, J.; Sterzyński, T.; Walczak, D. Thermal Stability of Nanosilica-Modified Poly(vinyl chloride). Polymers 2021, 13, 2057. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Pawlak, F.; Tomaszewska, J.; Jesionowski, T. Preparation and Characterization of Novel PVC/Silica–Lignin Composites. Polymers 2015, 7, 1767–1788. [Google Scholar] [CrossRef]
- Janićijević, A.; Filipović, S.; Sknepnek, A.; Salević-Jelić, A.; Jančić-Heinemann, R.; Petrović, M.; Petronijević, I.; Stamenović, M.; Živković, P.; Potkonjak, N.; et al. Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. Polymers 2024, 16, 1033. [Google Scholar] [CrossRef]
- Purcar, V.; Rădițoiu, V.; Rădițoiu, A.; Raduly, F.M.; Ispas, G.C.; Căprărescu, S.; Frone, A.N.; Trică, B.; Nicolae, C.-A.; Anastasescu, M.; et al. Effect of Modified Silica Materials on Polyvinyl Chloride (PVC) Substrates to Obtain Transparent and Hydrophobic Hybrid Coatings. Appl. Sci. 2021, 11, 11044. [Google Scholar] [CrossRef]
- KJ, A. Application of PVC–A superior material in the fields of Science and Technology. Polym.-Plast. Technol. Mater. 2024, 1–19. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Rao, A.C.; Gaval, V.R.; Joseph, S.; Mahanwar, P.A. Effect of particle size and concentration on mechanical and electrical properties of the mica filled PVC. J. Miner. Mater. Charact. Eng. 2010, 9, 831. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. Mica and Glass Fiber-Filled PVC Composites. In Poly (Vinyl Chloride) Based Composites and Nanocomposites; Springer International Publishing: Cham, Switzerland, 2023; pp. 155–172. [Google Scholar]
- Jamel, M.M.; Khoshnoud, P.; Gunashekar, S.; Abu-Zahra, N. Effect of e-glass fibers and phlogopite mica on the mechanical properties and dimensional stability of rigid PVC foams. Polym.-Plast. Technol. Eng. 2015, 54, 1560–1570. [Google Scholar] [CrossRef]
- Ghani, S.A.; Din, S.H.M.; Tan, S.J. Characterizations and electrical conductivity of (poly [vinyl chloride])/(poly [ethylene oxide]) conductive films: The effect of carbon black loading and poly (ethylene glycol) diglycidyl ether. J. Vinyl Addit. Technol. 2018, 24, 139–146. [Google Scholar] [CrossRef]
- Senthilvel, K.; Prabu, B. Novel carbon black-halloysite nanotube reinforced NBR-PVC hybrid oil seals for automotive applications. Recent Pat. Mater. Sci. 2018, 11, 83–90. [Google Scholar] [CrossRef]
- Jin, D.; Xu, S. The effects of polybenzimidazole and polyacrylic acid modified carbon black on the anti-UV-weathering and thermal properties of polyvinyl chloride composites. Compos. Sci. Technol. 2018, 167, 388–395. [Google Scholar] [CrossRef]
- Rasouli, D.; Dintcheva, N.T.; Faezipour, M.; La Mantia, F.P.; Farahani, M.R.M.; Tajvidi, M. Effect of nano zinc oxide as UV stabilizer on the weathering performance of wood-polyethylene composite. Polym. Degrad. Stab. 2016, 133, 85–91. [Google Scholar] [CrossRef]
- Mendes, A.R.; Granadeiro, C.M.; Leite, A.; Pereira, E.; Teixeira, P.; Poças, F. Optimizing Antimicrobial Efficacy: Investigating the Impact of Zinc Oxide Nanoparticle Shape and Size. Nanomaterials 2024, 14, 638. [Google Scholar] [CrossRef]
- Qiu, F.; He, G.; Hao, M.; Zhang, G. Enhancing the Mechanical and Electrical Properties of Poly(Vinyl Chloride)-Based Conductive Nanocomposites by Zinc Oxide Nanorods. Materials 2018, 11, 2139. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Yousfi, M.; Livi, S.; Dumas, A.; Crépin-Leblond, J.; Greenhill-Hooper, M.; Duchet-Rumeau, J. Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: Morphology, thermal, and mechanical properties. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Kadam, P.G.; Mhaske, S.T. Effect of extrusion reprocessing on the mechanical, thermal, rheological and morphological properties of nylon 6/talc nanocomposites. J. Thermoplast. Compos. Mater. 2016, 29, 960–978. [Google Scholar] [CrossRef]
- Beuguel, Q.; Ville, J.; Crépin-Leblond, J.; Médéric, P.; Aubry, T. Elaboration and relationships between structure and rheological properties of microtalc or nanotalc/polyamide composites. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Ippolito, F.; Hübner, G.; Claypole, T.; Gane, P. Calcium carbonate as functional filler in polyamide 12-manipulation of the thermal and mechanical properties. Processes 2021, 9, 937. [Google Scholar] [CrossRef]
- Augusto, T.A.; Carastan, D.J.; Santos, A.N.B.; Bonse, B.C. Effect of injection molding conditions on the properties of polyamide 6/calcium carbonate nanocomposite. J. Appl. Polym. Sci. 2023, 140, e54087. [Google Scholar] [CrossRef]
- Jones, P.G. On Improving the Cost-Effective Dispersion of Calcium Carbonate in Polypropylene for Impact Resistance. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2011. [Google Scholar]
- Jamel, M.M.; Khoshnoud, P.; Gunashekar, S.; Abu-Zahra, N. Mechanical properties and dimensional stability of rigid PVC foam composites filled with high aspect ratio phlogopite mica. J. Miner. Mater. Charact. Eng. 2015, 3, 237. [Google Scholar] [CrossRef]
- Bose, S.; Mahanwar, P.A. Effects of titanate coupling agent on the properties of mica-reinforced nylon-6 composites. Polym. Eng. Sci. 2005, 45, 1479–1486. [Google Scholar] [CrossRef]
- Qiu, F.; Wang, M.; Hao, Y.; Guo, S. The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc composites. Compos. Part A Appl. Sci. Manuf. 2014, 58, 7–15. [Google Scholar] [CrossRef]
- Tomasi, J.M. Investigation of Mechanical, Electrical, and Thermal Properties of Particulate/Fiber/Polymer Composites. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2018. [Google Scholar]
- Jaziri, M.; Mnif, N.; Massardier-Nageotte, V.; Perier-Camby, H. Rheological, thermal, and morphological properties of blends based on poly (propylene), ethylene propylene rubber, and ethylene-1-octene copolymer that could result from end of life vehicles: Effect of maleic anhydride grafted poly (propylene). Polym. Eng. Sci. 2007, 47, 1009–1015. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, R.; Jiang, J.; Dang, J.; Luan, J.; Wang, G.; Zhang, M. PEEK composite resin with enhanced intumescent flame retardancy loaded with Octaphenylsilsesquioxane and nano calcium carbonate and its application in fibers. Polym. Degrad. Stab. 2022, 202, 110042. [Google Scholar] [CrossRef]
- Ippolito, F.; Hübner, G.; Claypole, T.; Gane, P. Influence of the Surface Modification of Calcium Carbonate on Polyamide 12 Composites. Polymers 2020, 12, 1295. [Google Scholar] [CrossRef]
- Pidhatika, B.; Widyaya, V.T.; Nalam, P.C.; Swasono, Y.A.; Ardhani, R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers 2022, 14, 5526. [Google Scholar] [CrossRef] [PubMed]
- Molazemhosseini, A.; Tourani, H.; Khavandi, A.; Yekta, B.E. Tribological performance of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica. Wear 2013, 303, 397–404. [Google Scholar] [CrossRef]
- Xue, P.J.; Liu, S.L.; Bian, J.J. Effects of polymorphic form and particle size of SiO2 fillers on the properties of SiO2–PEEK composites. J. Adv. Dielectr. 2021, 11, 2150021. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Tam, W.Y.; Cheung, T.Y.H.; Li, R.K.Y. Impact properties of glass fibre/impact modifier/polypropylene hybrid composites. J. Mater. Sci. 2000, 35, 1525–1533. [Google Scholar] [CrossRef]
- Menbari, S.; Ghasemi, F.A.; Ghasemi, I. Simultaneous improvement in the strength and toughness of polypropylene by incorporating hybrid graphene/CaCO3 reinforcement. Polym. Test. 2016, 54, 281–287. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753. [Google Scholar] [CrossRef]
- Masłowski, M.; Miedzianowska, J.; Strzelec, K. Natural rubber composites filled with crop residues as an alternative to vulcanizates with common fillers. Polymers 2019, 11, 972. [Google Scholar] [CrossRef]
- Ghani, H.; Abd Karim, S.F.; Ramli, R.O.S.L.I.M.; Musa, M.; Jaapar, J.E.F.R.I. Effect of bio fillers on mechanical properties of natural rubber latex films. Key Eng. Mater. 2019, 797, 249–254. [Google Scholar] [CrossRef]
- Ren, X.; Barrera, C.S.; Tardiff, J.L.; Gil, A.; Cornish, K. Liquid guayule natural rubber, a renewable and crosslinkable processing aid in natural and synthetic rubber compounds. J. Clean. Prod. 2020, 276, 122933. [Google Scholar] [CrossRef]
- Saba, N.; Md Tahir, P.; Jawaid, M. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Thyavihalli Girijappa, Y.G.; Rangappa, S.M.; Siengchin, S. Effect of natural filler materials on fiber reinforced hybrid polymer composites: An Overview. J. Nat. Fibers 2022, 19, 4132–4147. [Google Scholar] [CrossRef]
- Rowell, R.M.; Sanadi, A.R.; Caulfield, D.F.; Jacobson, R.E. Utilization of natural fibers in plastic composites: Problems and opportunities. Lignocellul.-Plast. Compos. 1997, 13, 23–51. [Google Scholar]
Halloysite Fraction Name | Halloysite Composition, wt% | Additional Operations | ||
---|---|---|---|---|
Al | Si | Fe | ||
FLD | 14 ÷ 16 | 16 ÷ 18 | 1 ÷ 3 | Wet separation |
FLB | 12.5 ÷ 14.5 | 14 ÷ 16 | 5 ÷ 7 | Wet separation |
FLS | Composition identical to FLB fraction | Wet separation, followed by drying and grinding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajdek-Bieda, A.; Wróblewska, A. The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects. Polymers 2024, 16, 2505. https://doi.org/10.3390/polym16172505
Fajdek-Bieda A, Wróblewska A. The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects. Polymers. 2024; 16(17):2505. https://doi.org/10.3390/polym16172505
Chicago/Turabian StyleFajdek-Bieda, Anna, and Agnieszka Wróblewska. 2024. "The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects" Polymers 16, no. 17: 2505. https://doi.org/10.3390/polym16172505
APA StyleFajdek-Bieda, A., & Wróblewska, A. (2024). The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects. Polymers, 16(17), 2505. https://doi.org/10.3390/polym16172505