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Abstract: The current study focuses on development of phospholipid complex-loaded films of etodolac
for enhanced transdermal permeation and anti-inflammatory effect. An etodolac–phospholipid complex
was developed using the solvent evaporation method and was characterized by DSC, XRD, FTIR, and
1H-NMR studies. The formation of the complex led to conversion of a crystalline drug to an amorphous
form. A stoichiometric ratio of 1:1 (drug–phospholipid) was selected as the optimized ratio. Further, the
developed complex was incorporated into films and systematic optimization using a central composite
design was carried out using a response surface methodological approach. The desirable design space
based on minimum contact angle and maximum tensile strength was selected, while the water vapour
transmission rate and swelling index were set within limits. The results for swelling index, contact angle,
tensile strength, and water vapour transmission rate were 60.14 ± 1.01%, 31.6 ± 0.03, 2.44 ± 0.39 kg/cm2,
and 15.38 g/hm2, respectively. These values exhibited a good correlation with the model-predicted
values. The optimized formulation exhibited improved diffusion and permeation across skin. In vivo
studies revealed enhanced anti-inflammatory potential of the developed films in comparison to the
un-complexed drug. Hence, the study demonstrated that etodolac–phospholipid complex-loaded films
improve the transdermal permeation and provided enhanced anti-inflammatory effect.

Keywords: QbD; phospholipid complex; transdermal; health; research; response surface methodology

1. Introduction

Osteoarthritis (OA) represents a complex and persistent degenerative disorder that
affects the joints and is characterized by the progressive degeneration of cartilage. The
condition can cause pain, stiffness, and limited mobility. It is highly prevalent in society
and is one of the leading causes of disability. According to the WHO, about 528 million
people are affected by OA worldwide, with 73% of individuals above the age of 55 [1].
This prevalence is expected to rise further due to increasing aging demography and the
obesity epidemic.

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most-commonly prescribed
category of drugs for symptomatic treatment of OA. Etodolac (ETO), a pyranocarboxylic
acid derivative, is an NSAID, FDA-approved since 1991. It is used in the management of
arthritis, exhibiting anti-inflammatory, analgesic, and antipyretic activities. However, it
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possesses limited solubility and has a half-life of about 7 h, which necessitates frequent
dosing. Also, prolonged use of ETO may result in severe GI disturbances such as intestinal
bleeding, ulcers, etc. This necessitates the use of alternative strategies like different routes of
administration. Transdermal drug delivery systems, especially films, are a convenient, non-
messy and patient-friendly avenue in this regard. In addition, they offer better adhesion
and permeation at the target site.

Various techniques have been explored to enhance the biopharmaceutical profile of
drugs. These include the hot melt extrusion approach, microemulsion systems, formulation
of niosomal gel [2], nanosuspension-based gel [3], cubosomes [4], and self-emulsifying drug
delivery system (SEDDS) or 3D-printed materials [5,6]. However, these techniques have
inherent limitations such as low payload, drug leakage upon storage, and poor stability.
One effective approach to address these challenges involves the interaction of drugs with
phospholipids and the development of a drug–phospholipid complex. The formation of
covalent or non-covalent bonds with phospholipids may enhance the permeation, entrap-
ment efficiency, and stability. Additionally, the phospholipids are biocompatible in nature
and can form a bilayer structure which mimics the biological cell membrane [7,8].

Systematic optimization of various active and inactive ingredients is imperative for
the development of a robust drug formulation in order to attain the intended product
quality. The traditional method of modifying a single variable at a time is laborious, prone
to errors, and time-consuming, and frequently results in solutions and products that are
only moderately effective and have limited robustness. On the other hand, the Quality
by Design (QbD) approach is a risk-based, scientific, and systematic approach utilizing
experimental designs that necessitate only minimal experimentation in order to produce
the most effective formulation. QbD provides exceptional advantages, including time,
effort, and financial savings, apart from providing clear comprehension of the involved
products and processes. Recent research has focused extensively on the application of
QbD for the development of consistent and robust drug delivery systems and therapeutic
efficacy [9].

In the present investigation, a phospholipid complex of etodolac was prepared with
the aim to enhance transdermal permeation. The complex was thoroughly characterized,
encompassing percentage yield, solubility, and surface morphology. Further, the complex
was loaded in films, and this formulation was comprehensively evaluated in vitro and
in vivo.

2. Materials and Methods
2.1. Materials

Etodolac (ETO) and carrageenan were obtained from Yarrow Pharma Pvt. Ltd., Mum-
bai, India. Soy lecithin phospholipid (PL) was purchased from Himedia laboratories, Thane,
India. Dichloromethane and methanol were purchased from Rankem Chemicals, Thane,
Maharashtra, India. Polyvinyl alcohol, PEG 400, and n-cctanol were purchased from Loba
Chemie Pvt. Ltd., Mumbai, India. Methyl cellulose was purchased from Thomas Baker
(Chemicals) Pvt. Ltd., Mumbai, India. All the chemicals were of analytical grade and were
used as procured.

2.2. Methods
2.2.1. Molecular Docking Studies

The computer-aided molecular docking studies were executed between Etodolac (ETO)
and the phosphatidylcholine transfer protein (i.e., nearby analog of PL in the humanoid
physique) to analyze the possible interaction of drug and phospholipid [10]. The CHARMm-
based docking program CDOCKER of the Discovery Studio Client v20.1.0.19295 software
was used to perform the molecular docking simulation [11]. Using the Discovery Studio
Client v20.1.0.19295 workspace, the test molecule was drawn and processed. Next, energy
was minimized using the “Prepare Ligands” tool at pH 7.4. The Protein Data Bank [12]
provided the X-ray crystallographic structure of the phosphatidylcholine transfer protein
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(PDB ID: 1LN1), which was subsequently optimized for docking analysis [13]. As part of
the optimization technique, hydrogen atoms were added, water molecules were removed,
bond orders were completed, and hydrogen bonds were assigned. With the use of the
CDOCKER program’s CHARMm-based docking tool, the test drug was docked into the
protein active site. The calculated binding energy of the protein hit was found to be a
negative value, suggesting its stable interaction energy [14].

2.2.2. Preparation of Etodolac–Phospholipid Complex (ETO–PLC)

Etodolac–phospholipid (ETO–PLC) complex was prepared by the solvent evapora-
tion method. Briefly, equimolar solutions of ETO and PL were separately prepared in
dichloromethane. The PL solution was then gradually added to the ETO solution at differ-
ent ratios under continuous stirring. The resultant solution was then refluxed at 30 ◦C for
4 h and the solvent was removed from the reaction mixture under reduced pressure using
a Rota evaporator (Perfit, India, model no. VP 1000) to get a solid product. The prepared
complex was kept in a desiccator until further use [7].

2.2.3. Determination of Optimum Stoichiometric Ratio for Complex Formation

A Job plot (method of continuous variation) was used to determine the optimum
complexation ratio for ETO and PL [15]. Equimolar solutions of ETO and PL were taken
in different ratios. Additionally, ETO dilutions in methanol served as a control. The
absorbance of ETO control and its corresponding complex was measured at 273 nm, using
a UV-Visible spectrophotometer (Systronics 2205, Gujarat, India), and the difference in the
absorbance (∆A) was determined. ∆A vs. the corresponding mole fraction of ETO was
plotted to obtain the Job plot. The ratio pertaining to maximum ∆A was selected as the
optimized ratio for the preparation of ETO–PLC [16].

2.2.4. Characterization of the Complex
Estimation of Gibbs Free Energy

A thermodynamic analysis of the interaction between PL and ETO with solvent at
the interface was carried out. The effect of the addition of PL on ETO solubilization was
analyzed using Gibbs free energy, employing Equation (1):

∆G = −2.303RT Log
S

SO
(1)

where ∆G is Gibbs free energy (kJ/mol), R is the universal gas constant (8.314 J/K mol), T
is the absolute temperature (Kelvin), and So and S is the solubility of ETO and ETO–PLC
(mg/mL), respectively [17]. The extent of increase in the solubility of the complex vis-à-vis
pure drug was deduced from the values of Gibbs free energy. Further, the equilibrium
solubility of the optimized complex was determined in different solvents, namely, distilled
water, phosphate buffer pH 7.4, and 0.1 N HCl using a previously reported method [18,19].

Percentage Yield (% Yield)

Percentage yield refers to the percent amount of actual yield to that of theoretical yield.
It was calculated using Equation (2):

% yield =
Actual yield

Theoretical yield
× 100 (2)

2.2.5. Fourier Transform Infrared Spectroscopy (FTIR) Studies

Samples of ETO, PL, and ETO–PLC were analyzed using FTIR in the range of 4000–400
per cm at a resolution of 2/cm. Different spectra were assessed for peaks related to different
functional groups and peak shifts of representative spectra were studied in comparison to
that of FTIR spectra of ETO.
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2.2.6. X-ray Diffraction Studies (XRD)

The XRD patterns of ETO and ETO–PLC were recorded using an X’Pert Pro® diffrac-
tometer, PAN analyticals, The Netherlands. The X-ray source consisted of a copper tube
(wavelength 1.54 Å). The operating conditions were 45 kV, 40 mA, and a scanning range of
5◦ to 50◦.

2.2.7. Differential Scanning Calorimetry (DSC)

The thermal behavior of ETO and ETO–PLC were recorded using SETRAM SETLINE
DSC+ Caluire, France at a heating rate of 0.01 to 100 (◦C/min).

2.2.8. Scanning Electron Microscopy (SEM) Studies

The surface morphology and shape of the ETO–PLC were visualized under a scanning
electron microscope (JSM-6510LV). Before visualization, the samples were mounted onto
slabs using double-sided carbon tape and vacuum-coated with gold–palladium film (thick-
ness 2 nm) using a sputter coater to render them electrically conductive. The microscope
was operated at an acceleration voltage of 5 kV and obtained micrographs were visualized
at a magnification of 1000× 10,000× and 15,000×.

2.2.9. 1H-NMR Studies
1H-NMR spectroscopy for ETO and optimized ETO–PLC was carried out using a

Bruker Avance Neo, Rheinstetten, Germany, 500 MHz NMR spectrometer in CDCl3. All
the respective spectra were analyzed for any chemical shifts of peaks to validate complex
formation [7].

2.2.10. Mathematical Modelling and Optimization of Blank Films Using the QbD Approach

Identifying the Quality Target Product Profile (QTPP)

A Quality by Design approach was used for the development of blank films. All the
quality targets were set so as to improve the overall performance of the formulation. The
QTPP considered included the type of formulation, route of administration, and stability.

Determination of Critical Quality Attributes (CQAs)

The prominent factors affecting the performance of film formulation were identified.
These included the swelling index, contact angle, tensile strength, and water vapour
transmission rate (WVTR). These factors affect the water uptake, contact with application
site, mechanical strength of the dosage form, and the moisture loss from the application
site, respectively.

Risk Assessment

Critical material attributes (CMAs) and critical process parameters (CPPs) were identi-
fied through a risk assessment matrix. An Ishikawa fishbone diagram was constructed to
identify various CPPs and CMAs that influence the quality of the formulation. After the
risk assessment, two factors i.e., polymer concentration and plasticizer concentration, were
identified as the important factors affecting the formulation development.

Experimental Design

JMP® student subscription 17.1.0 software was employed for mathematical modelling
and optimization. Systematic optimization of films was carried out through a response
surface methodological approach. A central composite design with two independent factors
(X) namely PVA (polymer) concentration (X1) and PEG400 (plasticizer) concentration
(X2), consisting of 10 runs with two replicate center points was employed (Table 1). The
independent factors were chosen to be studied at 3 levels (−1, 0, +1), namely, low (−1),
medium (0), and high (+1), as shown in Table 1. Response variables, included % swelling
index (Y1), contact angle (Y2), tensile strength (Y3), and water vapor transmission rate (Y4).
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Table 1. Design matrix for optimization of blank films.

Independent Variable Type Level
Low (−1) Medium (0) High (+1)

PVA concentration (X1) (% w/v) Continuous 2 3 4
PEG 400 concentration (X2) (% w/v) Continuous 5 6.5 8

Optimization Design matrix with 10 trials *

Trial X1 X2

F1 1 1
F2 −1 0
F3 0 0
F4 0 −1
F5 −1 −1
F6 0 0
F7 1 −1
F8 1 0
F9 −1 1

F10 0 1
* All formulations contained 2% w/v methylcellulose.

2.2.11. Preparation of Transdermal Films

The transdermal films were prepared by the solvent casting method. The weighed
quantities of polymers (methylcellulose, polyvinyl alcohol) were dissolved in distilled
water. Thereafter, PEG 400 was added to the polymer mixture under continuous stirring.
The prepared solution was then sonicated to remove any entrapped bubbles. The solution
was cast in the polypropylene petri plates and was dried in an oven at 60 ◦C. The dried
films were removed from the plates and stored in a desiccator. Drug-loaded films were
prepared in similar manner, where a complex analogous to 300 mg of ETO was added to a
polymeric solution.

2.2.12. Evaluation and Characterization of Transdermal Film
Thickness

The thickness of the films was measured in triplicate from randomly selected portions
of the film using vernier calipers. The mean thickness was determined.

Weight Variation

The films were cut to an area of 1 cm2 and weighed on digital balance (Citizen CY 220,
Mumbai, India). All measurements were carried out in triplicate.

Folding Endurance

The folding endurance test was performed by manually folding the films. The films
which could undergo folding more than 300 times without breaking were selected for
further studies.

Surface pH Determination

Films with a surface area 1 cm2 were cut and placed in glass petri plates containing
distilled water and were allowed to swell. After 1 h, the swollen film was removed, and its
pH was recorded using a pH meter [20].

Swelling Index (SI)

The SI was determined by placing the films in freshly prepared phosphate buffer pH
7.4 after recording their initial weights. The film weight was recorded at predetermined
time intervals [21]. The % SI of the film was calculated by the following formula.
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Swelling index (%) =
Final weight of film − Initital weight of film

Initial weight of film
× 100 (3)

Tensile Strength (TS)

Mechanical properties play an important role in the stability and drug release from
the film. Tensile strength was determined using a texture analyzer (TA.XT plus C, Stable
Microsystems, Surrey, UK). A 2 × 2 cm patch was placed between two grips of the texture
analyzer. The force required to break the film was used as a measure of tensile strength.
The tensile strength was calculated by the following formula [22].

Tensile strength
(

kg/cm2
)
=

Breaking force (kg)
Cross Sectional area of samle(cm2)

(4)

Contact Angle (CA)

The CA provides information about the wetting properties of the film. CA was
determined by gently placing a drop of phosphate buffer pH 7.4 on the surface of the film
with the help of a micropipette from a distance of 1 cm from the film surface. The distance
was fixed to ensure uniformity between measurements. ImageJ software (version 1.8.0)
was used to estimate the angle between the tangent line of the drop and the film surface.

Determination of Water Vapor Transmission Rate (WVTR)

The WVTR depicts the rate of moisture exchange through the films and indirectly
provides insight into hydrophilic character and barrier properties of the developed film.
For the estimation of WVTR, film was placed and sealed on the top of a 10 mL beaker which
was filled with 8.9 mL of distilled water, giving an air gap of 1.1 cm from the film underside.
The system was kept at room temperature (25 ± 2 ◦C, 40 ± 2% RH) for 2 h for equilibration,
followed by measurement of WVTR (g/hm2) using a VapoMeter (Delfin Technologies Ltd.,
Kuopio, Finland) [23]. The closed chamber design of the VapoMeter helped to nullify the
influence of external air flow so as to enable measurements under normal room conditions.

2.2.13. Selection of Optimized Film Using Point Prediction Method

A numerical optimization technique using a desirability approach was employed to
identify the desired design space. Numerical optimization was carried out after setting
different limits. These included the minimum contact angle and maximum TS. The WVTR
and SI were set with maximum limits of 16.5 g/hm2 and 70%, respectively. From the ob-
tained design space, one optimized composition was selected and experimentally validated.
The model was validated by correlating the observed and the model-predicted values.

2.2.14. In Vitro Diffusion Studies

In vitro dissolution studies were carried out using Franz diffusion cells. The samples
were placed over the diffusion membrane (6000−8000 Da) in the donor compartment. The
receptor chamber containing phosphate buffer pH 7.4 was stirred continuously using a
magnetic bead. The system was maintained at 37 ± 0.5 ◦C. Samples (2 mL) were withdrawn
from the sampling port at predetermined intervals and replenished with an equal volume
of fresh dissolution media. Drug content was determined by analyzing the samples using
a UV-visible spectrophotometer and measuring their absorbance at λmax 273 nm. The %
drug release calculated was plotted as a function of time. Further release data were fitted
into different kinetic equations to estimate the rate and mechanism of drug release from
film formulation.

2.2.15. Ex Vivo Permeation Studies

A Franz diffusion cell was used for this study. Hairless rat skin was taken and was
clamped (diffusion area 2.5 cm2) between the donor and receptor compartment. The
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receptor chamber was filled with phosphate buffer pH 7.4, maintained at a temperature of
37 ◦C ± 1 ◦C, and kept under a stirring condition (100 rpm). Film formulation was gently
placed on the skin. The samples were withdrawn at predetermined time intervals and
replenished with an equal volume of fresh media. The withdrawn samples were analyzed
using a UV spectrophotometer after filtration through a 0.45 µm membrane filter. The
cumulative drug permeated amount per unit area (µg/cm2) and flux were calculated [24].

2.2.16. In Vivo Animal Studies/Paw Edema Method

Inbred adult male Wistar rats weighing 220 ± 20 g and having free access to standard
feed and water ad libitum were employed in the present study after approval from the
institutional animal ethical committee. All animals were kept according to the Guide for the
Care and Use of Laboratory Animals. The animals were housed in the departmental animal
house and were exposed to a cycle of 12 h light and 12 h dark. Twenty-four Wistar rats were
randomly selected and divided into groups, namely, the control group (no treatment), the
disease control group (carrageenan-induced inflammation), treatment group I (carrageenan-
induced treated with ETO films), and treatment group II (carrageenan-induced treated with
ETO–PLC films). Carrageenan (1% w/v) was used to induce inflammation in the left paw of
the disease control and treatment groups. Films were applied to the induced inflammation
region after noting the initial paw volume. The paw volume was measured at regular time
intervals using a digital plethysmometer [25].

2.2.17. Statistical Analysis

All the experimental work was conducted in triplicate, and results are reported as
mean ± SD. A t-test was employed where applicable to judge the statistical significance at
a 95% confidence interval.

3. Results and Discussion
3.1. Molecular Docking Studies

Exploring the drug–ligand docking analysis, potential site(s) of interaction between
the drug and PL analog (i.e., phosphatidylcholine transfer protein) were identified. Mecha-
nistically, the research showed that the substance and protein formed weak intermolecular
hydrogen bonding connections. The drug’s docking patterns of hydrogen bonds between
the molecule’s free hydroxyl groups and the protein’s terminal quaternary amine group, as
well as aromatic contacts in the hydrophobic region of the protein, are depicted in Figure 1.
This is due to the drug’s slight decrease in activation energy following complexation with
proteins through the formation of H-bonds, which ultimately results in the minimization of
total free energy required to achieve thermodynamically stable confirmation. In general,
the molecular docking experiments supported the drug’s ability to form a complex with
the phosphatidylcholine transfer protein, most likely because the protein’s physiochemical
characteristics are structurally comparable to those of phospholipids [10].

3.2. Job Plot, Solubility, and Gibb’s Free Energy

The Job plot was constructed by plotting ∆A against the corresponding mole fraction.
The maximum value of ∆A was obtained at a stoichiometric ratio of 1:1 (ETO–PL). The
∆G value for all the stoichiometric ratios was negative, indicating the spontaneity of the
reaction. The negative values also indicate that the complexation process led to the release
of energy as a result of the development of Van der Waals forces of attraction and/or
electrostatic interaction between ETO and PL [26]. The value of ∆G decreased as the PL
content increased, indicating that the complex formation became more favorable at higher
concentrations of PL, and was maximum at a 1:1 ratio (−7.03 KJ/mol). Beyond this ratio,
∆G values showed an increase, signifying that the maximum solubility was attained at a
1:1 ratio. Hence, a 1:1 complex was selected as the optimized complex. The solubility of the
ETO and optimized ETO–PLC was also carried out in different solvents and is depicted in
Figure 2. Etodolac exhibits pH-dependent solubility, demonstrating minimum solubility in
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0.1 N HCL, and a significantly high solubility in water and PBS 7.4. This is because etodolac
is a weakly acidic drug with a pKa of 4.65. The solubility shows a marked increase when pH
rises above the pKa value [27]. The solubility of ETO demonstrated a significant increase
with complex formation in all the media. Furthermore, a pH-independent solubility was
observed after complex formation (Figure 2). Drug phospholipids have been reported
to withstand alterations in pH [8]. The enhancement in solubility could be ascribed to
the amorphous nature of the ETO–PLC, which overrides the lattice energy required for
solubilization of crystalline compounds. The amorphous nature of ETO–PLC was evident
in XRD studies (Figure 3). Additionally, PL has surface active properties and is amphiphilic.
This results in self-assembly in water to form micelles that facilitate the solubilization of
the drug [28,29].
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3.3. Percentage Yield

The percentage yield of the optimized ETO–PLC (1:1) was found to be 86.72 ± 1.21%
by Equation (2). This suggests that complexation was relatively efficient and that the
conditions under which the reaction was carried out were appropriate.
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3.4. FTIR Studies

Figure 3(I) illustrates the FTIR spectra of ETO, PL, and ETO–PLC at a ratio of 4:6 and
ETO–PLC at a 1:1 ratio. The FTIR spectra of ETO showed characteristic peaks at 3341 cm−1

(OH group of carboxylate mode), 2971 cm−1 (aromatic -CH), 1744 cm−1 (carbonyl stretch-
ing of carboxylate group), 1411 cm−1 (-CH3 asymmetric deformation), 1361 cm−1 (-CH2
scissoring deformation) 1033 cm−1 (-CO stretching), 748 cm−1 (NH wagging) [30]. FTIR
spectra of PL depicted characteristic peaks at 3428 cm−1 (O-H stretching), 2916 cm−1 (CH2
stretching), 2847 cm−1 (CH2 stretching), 1788 cm−1 (C = O vibration), 1214 cm−1 (PO2
stretching), 839 cm−1 (P-O stretching). The OH stretching vibration of ETO at 3341 cm−1

shows a decrease in intensity for the ETO–PLC 4:6 ratio Figure 3(IIIc), indicating the in-
volvement of this group in the complexation reaction. Furthermore, the OH peak shows a
significant broadening and a decrease in intensity, and shifts to 3369 cm−1 for the ETO–PLC
1:1 complex Figure 3(IIId). This signifies the involvement of the OH group in complex
formation [31]. The broadening of the OH peak in 1:1 ETO–PLC is more compared to that
of the 4:6 ratio, indicating more hydrogen bonding and better complexation at the 1:1 ratio.
The potential involvement of the OH group in complex formation also corroborates with
docking studies.

Further, the marked peak shift in 1:1 ETO–PLC spectra as compared to 4:6 ETO–PLC
validates the findings of the Job plot, confirming 1:1 as the optimum stoichiometric ratio
for the development of ETO–PLC.

3.5. XRD Studies

Figure 3(II) shows diffractograms of plain ETO (Figure 3(IIa)), ETO–PLC 4:6 ratio
(Figure 3(IIb)), ETO–PLC 1:1 ratio (Figure 3(IIc)). ETO shows characteristic sharp peaks
at 9.39◦ and 18.84◦ 2θ, showing its crystalline nature. These peaks are similar to those
reported in the literature [30].
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The 4:6 complex Figure 3(IIb) exhibited a trend towards amorphization, while the
diffractogram 1:1 complex Figure 3(IIc) revealed complete amorphization of the drug by
the absence of any discrete sharp peak. The conversion of crystalline drug to an amorphous
nature indicates complex formation [7]. The XRD studies corroborate with the results of
the Job plot, which predicted maximum complexation at a stoichiometric ratio of 1:1.

3.6. DSC Studies

Figure 3III shows the DSC thermogram of ETO and ETO–PLC 1:1 ratio. ETO exhibited
a sharp endothermic peak at 148 ◦C, corresponding to its melting point. These findings
are in agreement with the literature-reported value [32]. This peak broadens and shifts to
134 ◦C in the thermogram of the complex. This conversion indicates a shift from crystalline
to amorphous nature due to complex formation [33]. The results of XRD are in agreement
with the findings of DSC.

3.7. SEM Studies

Figure 4 depicts the surface morphology of ETO, ETO–PLC 4:6, and ETO–PLC 1:1.
SEM images of ETO showed a sharp-edged, flat surface, and a regular crystalline structure.
The SEM images of the ETO–PLC 4:6 ratio demonstrate a reduction in the sharp edges of the
drug, suggesting a reduction in crystallinity. The surface of the ETO–PLC 1:1 ratio shows
marked change concerning the surface texture, with smooth and round edges, indicating
complete amorphization of ETO by complex formation. The SEM results comply with XRD
findings, which had predicted the amorphous nature of the complex [7].
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3.8. 1H NMR Studies

Figure 5 shows the 1H NMR spectra of the plain drug (ETO) (Figure 5a) along that
of ETO PLC 1:1 (Figure 5b) (Supplementary Materials). ETO showed distinct signals at
δ values of 10.4725 ppm (bs, 1H, -COOH), 8.7704 ppm (s, 1H, -NH), 7.4306 ppm (d, 1H,
ArH, J = 7.5), 7.1309 ppm (t, 1H, ArH, J = 7.3), 7.0648 ppm (d, 1H, ArH, J = 6.5), 4.1949 ppm
(m, 2H, -CH2), 3.1689 ppm (m, 2H, -CH2), 2.9511 ppm (m, 4H, 2-CH2), 2.2301 ppm (m,
2H, -CH2), 1.3822 ppm (t, 3H, -CH3, J = 7.6), and 0.9510 ppm (t, 3H, -CH3, J = 7.3). The
spectrum corroborates well with that reported in the literature, which confirms the purity
of the ETO drug [34]. All the expected peaks for the ETO–PLC complex (1:1) are observed
in the spectra. A peak shift was observed for the COOH proton from 10.4725 ppm (ETO) to
13.9407 ppm in the spectrum of the ETO–PLC (1:1) (Figure 5b). This suggested a hydrogen
bonding between ETO and PL, thus confirming the desired formation of the phospholipid
complex. These 1H NMR results are consistent with the XRD and FTIR studies reported in
the study.
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3.9. QbD Approach
3.9.1. Risk Analysis

CQAs affecting the film formulation were identified for development of an effective
film formulation. The first criterion is that the film should be able to make good contact with
the skin. This property is defined by the CA; hence, CA was selected as one of the CQAs.
After making contact, the second critical factor is the uptake of moisture by the film, which
would aid in polymer relaxation and promote drug release. The water uptake is indicated
by SI. Furthermore, the water vapor transmission rate (WVTR) across the film influences
the barrier, hydration, and protective properties of the skin. Furthermore, the mechanical
strength of the film also affects film handling. Therefore SI, WVTR, and TS were selected
as the CQAs. Thereafter, risk assessment was carried out using a cause-effect diagram
(Ishikawa fishbone diagram) Figure 6(I). The selected CMAs and CPPs were associated with
the potential risk that they pose towards the attainment of the desired CQAs. The critical
factors were categorized as having a low, medium, or high risk (Figure 6(II)). From the risk
assessment matrix, it can be seen that drying time and temperature were categorized as
low-risk factors as these can be carefully controlled during preparation of films, and hence
were not considered as critical variables. Polymer and plasticizer concentration can affect
almost all the identified CQAs. A change in concentration of polymer or plasticizer can
lead to alteration in hydrophilicity of the films, which would in turn lead to changes in the
CQAs. Hence, these two factors were designated as the CMAs.
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3.9.2. Central Composite Design

Following the identification of CQAs and CMAs, a central composite consisting of
10 runs (with center point replicate) was applied. The design matrix is depicted in
Table 1. Preliminary evaluation of polymeric films revealed the weight of films to be
in the range of 5.55 ± 0.18 to 44.32 ± 0.04 mg and the thickness in the range of 0.13 ± 0.01
to 0.23 ± 0.07 mm. All films were folded >300 times, indicating good folding endurance
of the developed films. The pH of the film was in the range of 6.8 ± 0.03, suggesting the
non-irritant character to skin. The experimental results obtained for SI, CA, TS, and WVTR
were analyzed using JMP® student subscription 17.1.0 software. The data were fitted into
various mathematical models, and the model demonstrating the highest prediction power
and significant lack of fit (p < 0.05) was selected to be the best-fit model. Model parameters
indicating goodness of fit for the different responses are shown in Table 2.

Table 2. Model prediction parameters for various CQAs.

Response RMSE R2 p-Value

CA 3.556 0.96 0.0077
SI 3.0732 0.98489 0.0010

WVTR 0.9246 0.98519 0.0009
TS 0.0991 0.97 0.0041

The polynomial Equations (5)–(8) describing each response as a function of input
variables are as follows.

CA = 33.00 − 11.98X1 − 6.36X2 + 0.075X1X2 + 2.78X2
1 + 1.34X2

2 (5)

SI = 60.72 + 18.06X1 + 8.67X2 + 8.67X2 + 2.05X1X2 + 2.52X2
1 − 3.42X2

2 (6)

WVTR = 15.55 + 5.61X1 + 2.05 X2 + 1.49X1X2 + 1.23X2
1 + 0.18 X2

2 (7)

TS = 2.44 + 0.40X1 + 0.028X2 + 0.02X1X2 − 0.21X2
1 − 0.182X2

2 (8)

The model evaluation parameters for CA indicate a negative relationship between
CA and both polymer and plasticizer concentration, with X1 (PVA concentration) having
a profound effect on CA in comparison to X2 (PEG concentration). The same is reflected
in the Pareto plot showing the effect of factors on CA Figure 7a. This is due to the fact
that CA is also dependent on the hydrophilicity of the films. As the concentration of
hydrophilic polymer increases, the hydrophilicity increases and, consequently, the CA
decreases, leading to better contact and wetting of the film at the application site. The
response surface plot shows a curvilinear trend for CA (Figure 8(Ia)). From the model-fitting
parameters, it is clear that both X1 and X2 have a positive influence on SI. The response
surface plots (Figure 8(Ib)) show a sharp ascending trend in SI as the PVA concentration
increases. A rising trend is also observed with increased PEG 400 concentration, though it
is less pronounced than the effect of PVA. This is also evident in the Pareto plots (Figure 7b).
As the amount of hydrophilic polymer or plasticizer increases, the ability of the film to take
up water and swell also increases. At higher PEG 400 and PVA concentrations, excessive
swelling was observed.

The model evaluation parameters for TS and WVTR also indicate a positive effect of
X1 and X2 on both responses. The model estimates in terms of Pareto plots are depicted in
Figure 7, where the effect of X1 is more pronounced than that of X2, while the interaction
terms have less effect. The mechanical strength improves with an increase in the polymeric
structure of the film and hence, increased polymer concentration has a positive influence
on TS. The WVTR is also a function of increased chain relaxation and hydrophilicity, so
increased polymer and plasticizer content led to an increase in WVTR. The response surface
plots are shown in Figure 8.
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3.9.3. Model Validation

Numerical optimization was carried out to maximize desirability. Figure 8(II) shows
the obtained design space for developing an optimized formulation. From the obtained
design space, PEG400 and PVA, each at coded level 0, were selected as optimized for-
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mulations, as well as for predicting model validity. The observed values for SI, CA, TS,
and WVTR were 60.14 ± 1,01%. 31.6 ± 0.03. 2.44 ± 0.39 kg/cm2, and 15.38 g/hm2, re-
spectively. These values were close to the model-predicted values with good correlation,
proving the validity of the developed model. This selected film (F6) was then loaded with
drug–phospholipid complex (ETO–PLC-F6) and was subjected to further studies.

3.10. In Vitro Drug Diffusion Studies

In vitro diffusion of ETO, ETO–PLC 1:1, ETO–PLC 4:6, and optimized ETO–PLC-
loaded transdermal films is shown in Figure 9(I). The ETO-containing films and ETO–PLC
4:6 complex demonstrated incomplete release of 53% and 61%, respectively, at the end
of 8 h. The drug release improved with ETO–PLC 1:1 complex to 91.09 ± 0.92% over a
period of 8 h. The higher release can be attributed to the better dissolution and solubility
characteristics of the complex. However, 1:1 complex showed initial burst release while the
films showed a sustained release of 93.40 ± 0.99% over a period of 8 h. Furthermore, the
drug release data of optimized ETO–PLC F6 film were fitted into various rate equations to
estimate the rate of drug release. The R2 value obtained for data fitting into zero order, first
order, Hixon Crowell, and Higuchi were 0.9232, 0.9883, 0.9232, and 0.9821, respectively.
However, the data showed the best fit to the Korsmeyer–Peppas equation, with R2 of 0.993
(Figure 9(II)). Furthermore, the release exponent was calculated as 0.397, indicating that
ETO release from the film formulation is governed by fiction diffusion.
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3.11. Permeation Studies

Permeation studies were conducted on ETO–PLC film and ETO films. It was found that
the cumulative amount of ETO from ETO–PLC films was significantly (p < 0.05) higher than
the amount permeated from ETO samples. Furthermore, the former demonstrated a higher
flux (2.61 ± 0.001 mg/cm2/h) value as compared to the latter (1.94 ± 0.002 mg/cm2/h). It
was found that there was a direct relationship between steady-state flux and permeability
coefficients. The permeability coefficient of ETO–PLC film (0.008 ± 0.015 cm/h) was
also significantly (t-test; p < 0.05) higher as compared to ETO films (0.006 ± 0.025 cm/h).
This can be attributed to the improved solubility and permeability characteristics after
phospholipid complexation.

3.12. In Vivo Anti-Inflammatory Activity

The rats were subjected to a paw edema test to check the anti-inflammatory activity
using the carrageenan paw edema model. Carrageenan induces inflammation in two phases.
The initial phase involves inflammation by vasodilation accompanied by the release of
inflammatory markers like histamine, 5–HT, and bradykinin. The second phase involves
the release of TNF–α and infiltration of macrophages, eosinophils, and lymphocytes. The
diseased group showed significant augmentation (p < 0.05) in edema when compared
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to the control group. A significant attenuation (p < 0.05) in paw edema was obtained
for the treatment group II, in comparison to the disease group and treatment I group,
demonstrating the improved anti-inflammatory activity of the developed formulation.

4. Conclusions

In the present study, ETO–PLC was prepared by a solvent evaporation method. The
complex formation was confirmed by H NMR, DSC, XRD, and SEM studies. The prepared
complex was further incorporated in films using methyl cellulose and polyvinyl alcohol as
polymers and PEG 400 as plasticizers. Films were optimized using the QbD approach to
obtain the optimized design space using the desirability approach. Polymer and plasticizer
concentration were the independent variables, while CA, WVTR, TS, and SI were the
dependent variables. The optimized formulation exhibited sustained drug release and
improved permeation across the skin. In vivo anti-inflammatory studies also confirmed the
improved anti-inflammatory effect of the developed formulation. Overall, the development
of etodolac–phospholipid complex-loaded polymeric films is an effective strategy for
improving the biopharmaceutical profile of etodolac.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16172517/s1, Figure S1: Supplementary NMR spectra file.
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