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Abstract: This review explores the application of Long Short-Term Memory (LSTM) networks, a
specialized type of recurrent neural network (RNN), in the field of polymeric sciences. LSTM
networks have shown notable effectiveness in modeling sequential data and predicting time-series
outcomes, which are essential for understanding complex molecular structures and dynamic processes
in polymers. This review delves into the use of LSTM models for predicting polymer properties,
monitoring polymerization processes, and evaluating the degradation and mechanical performance
of polymers. Additionally, it addresses the challenges related to data availability and interpretability.
Through various case studies and comparative analyses, the review demonstrates the effectiveness of
LSTM networks in different polymer science applications. Future directions are also discussed, with
an emphasis on real-time applications and the need for interdisciplinary collaboration. The goal of
this review is to connect advanced machine learning (ML) techniques with polymer science, thereby
promoting innovation and improving predictive capabilities in the field.

Keywords: LSTM; polymer science; predictive analytics; polymer properties

1. Introduction
1.1. Purpose of the Review

The convergence of machine learning (ML) and material science [1–3] has opened new
avenues for research and application. This review aims to explore the integration of Long
Short-Term Memory (LSTM) networks in polymeric sciences, focusing on their application
in predicting and modeling polymer properties and processes.

The number of research articles that discuss the application of LSTM networks [4,5] in
the field of polymers has seen an increase over recent years. Initially, the intersection of
these two fields was relatively unexplored, but with the growing interest in applying ML
to material sciences, more studies have been published. The earliest relevant publications
started to appear around 2020, when LSTM networks began gaining popularity for their
ability to handle sequential data, which is important in modeling time-series and dynamic
processes in polymer science. Since then, the number of articles has grown steadily each
year, with noticeable increases around 2022–2024 as more researchers began exploring ad-
vanced ML techniques, including LSTM, to predict polymer properties, monitor processes,
and assess performance. Based on Mendeley data, there are currently 44 articles [6] with
the terms “LSTM” and “polymers” in the title or abstract, highlighting the growing interest
in the intersection of these fields.

The structure of this review is as follows: Section 1.2 provides a detailed description
of the LSTM architecture. Section 2 explores the applications of LSTM models to polymers.
Section 3 discusses the challenges associated with data acquisition and the interpretability
of models. Section 4 outlines potential directions for future research. Finally, Section 5
presents the conclusions.
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1.2. LSTM Overview

LSTM networks were introduced by Sepp Hochreiter and Jürgen Schmidhuber in
1997 [7] as a solution to the limitations of traditional RNNs [8], specifically the vanishing and
exploding gradient problems that arise during backpropagation through time [9] (BPTT).
Their unique architecture allows them to retain and utilize information over extended
periods, making them suitable for time-series prediction and modeling dynamic systems.
These issues make it difficult for standard RNNs to learn and retain long-term dependencies,
an essential aspect for tasks involving sequential data.

The core idea behind LSTM is the introduction of memory cells [10], which can main-
tain their state over time, and a gating mechanism to control the flow of information. This
structure allows LSTM models to mitigate the gradient issues by ensuring that gradients
can propagate more effectively over long sequences. An architecture diagram is shown in
Figure 1.
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Figure 1. LSTM architecture diagram.

Mathematically, consider a traditional RNN, where the hidden state ht at time step t is
given by

ht = tanh(Whht−1 + Wxxt + b) (1)

During backpropagation, the gradient ∂L
∂ht

, where L is the loss function, is com-
puted [11]. For long sequences, the recursive multiplication of gradients leads to either
vanishing (values close to zero) or exploding (values diverging to infinity) gradients, mak-
ing training unstable and inefficient.

LSTM overcomes this by introducing the cell state [12] Ct, which acts as a conveyor
belt, allowing gradients to flow without significant alteration. The cell state is updated
as follows:

Ct = ft · Ct−1 + it · C̃t (2)

Here, ft, it, and C̃t are the forget gate, input gate, and candidate cell state, respectively,
as defined earlier. The forget gate ft determines what fraction of the previous cell state Ct−1
should be retained, while the input gate it controls how much of the new candidate state C̃t
should be added. This selective updating mechanism allows the LSTM to preserve relevant
information across long sequences while gradually forgetting less important details [13].
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The output of the LSTM unit, or the hidden state ht, is then computed as

ht = ot · tanh(Ct) (3)

where ot is the output gate, which controls how much of the cell state’s information should
be passed on to the next layer or time step.

This architecture enables LSTM networks to effectively learn long-term dependencies,
making them particularly useful in fields such as material science, where processes and
phenomena often evolve over extended periods [14,15].

An LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate.
These components work together to manage the flow of information through the network,
allowing it to retain important features over long sequences [16,17]. This capability has
impacts in material science, where processes such as stress–strain relationships [18], phase
transitions [19], or diffusion phenomena [20] evolve over time. Each component plays a
specific role:

• The cell state acts as the memory of the LSTM unit [21], carrying information across
time steps [22]. It can retain information over long periods, enabling the network
to remember past data for future predictions. The cell state is updated based on the
interactions between the gates, allowing it to accumulate or forget information as
needed [23].

• The input gate controls how much of the new information [24] (i.e., the candidate cell
state) should be added to the cell state. This gate decides what portion of the incoming
data at the current time step t, combined with the previous hidden state ht−1, should
be considered and stored in the cell [25]. Mathematically, it is defined as

it = σ(Wi · [ht−1, xt] + bi) (4)

where σ is the sigmoid function, Wi represents the weight matrix, ht−1 is the previous
hidden state, xt is the current input, and bi is the bias.

• The forget gate [26] determines how much of the previous cell state Ct−1 should be
retained in the current cell state Ct. This gate is crucial for deciding which information
is no longer relevant and can be “forgotten.” The forget gate’s operation is given by

ft = σ
(

W f · [ht−1, xt] + b f

)
(5)

A value of ft close to 0 means that the corresponding information in the cell state will
be mostly discarded, while a value close to 1 means the information will be largely
retained [27].

• The output gate [28] controls what information from the cell state should be passed on
to the next time step or used as the output of the current LSTM unit. It decides what
part of the cell state’s information contributes to the hidden state ht, which in turn
influences the network’s predictions [29]. The output gate is calculated as

ot = σ(Wo · [ht−1, xt] + bo) (6)

The final hidden state [30] ht is then computed by combining the output gate’s result
with the cell state, passed through a nonlinearity:

ht = ot · tanh(Ct) (7)

Together, these gates allow the LSTM network to selectively update, retain, and dis-
card information, making it particularly powerful for modeling complex, time-dependent
processes in material science [15,31,32], such as predicting the behavior of materials under
stress or modeling the progression of phase changes over time.
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LSTM networks are particularly suited for predicting the stress–strain behavior of
materials under various loading conditions [33–35]. Given a sequence of applied stresses
σ(t) over time, LSTM models can predict the resulting strain ϵ(t), capturing both the
immediate response and long-term effects such as creep and relaxation. The network
essentially learns a mapping:

ϵ(t) = LSTM(σ(t), σ(t− 1), . . . , σ(0)) (8)

where ϵ(t) is the predicted strain at time t, and σ(t) represents the stress history up to
that point.

In materials undergoing phase transitions [36,37], the prediction of the material’s
state over time as temperature, pressure, or other conditions change is critical. LSTM
can model the evolution of the phase fractions ϕi(t) for different phases i as a function of
time-dependent parameters like temperature T(t):

ϕi(t) = LSTM(T(t), T(t− 1), . . . , T(0)) (9)

This allows for the accurate prediction of phase compositions over a thermal cycle.
The time-dependent diffusion [38,39] of atoms or molecules in a material is another

area where LSTM excels. The concentration c(x, t) of a diffusing species at position x and
time t can be predicted using LSTM by training on sequences of concentration profiles:

c(x, t) = LSTM(c(x, t− 1), c(x, t− 2), . . .) (10)

This is useful in materials processing applications such as doping in semiconduc-
tors [40] or alloying in metals [41].

1.3. Variants of LSTM Networks

In addition to the standard LSTM, there are several other variations of this architecture,
each optimized for specific tasks and types of data. Figure 2 illustrates various LSTM
network types.

LSTM Variants

Standard LSTM Bidirectional LSTM

Stacked LSTM Peephole LSTMAttention-Based LSTM

Input Gate
Forget Gate
Output Gate

Cell State
Hidden State

Time Series Forecasting
Sequence Prediction
Speech Recognition

Forward & Backward LSTM
Concatenated Outputs

Text Analysis
NLP

Machine Translation

Multiple LSTMs
Hierarchical Learning

Complex Sequence Modeling
Deep Time Series Analysis

Video Analysis

Peephole Connections
Enhanced Memory Retention

Real-Time Systems
Financial Forecasting

Long-Term Dependency Learning

Attention Mechanism
Context Vector Creation

Machine Translation
Text Summarization
Image Captioning

Figure 2. Conceptual diagram of LSTM variants.
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For instance, Bidirectional LSTM (BiLSTM) [42] processes sequences in both directions—
forward and backward—allowing the model to consider both preceding and subsequent
context. Stacked LSTM [43] is a multilayered architecture where the output of one LSTM
layer serves as the input for the next, helping to capture more complex patterns in the
data. Peephole LSTM [44] adds direct connections between the cell state and the gates, en-
abling the gates to better control the information stored in the cell. Finally, Attention-Based
LSTM [45] incorporates an attention mechanism, allowing the model to focus on important
parts of the sequence when making predictions. These extensions of the classical LSTM
make it more flexible and effective for a wide range of tasks, including time-series analysis,
natural language processing, and many other applications.

1.3.1. Bidirectional LSTM

Bidirectional LSTM (BiLSTM) processes input sequences in both forward and back-
ward directions. This allows the network to have information from both past and fu-
ture contexts.

• Forward LSTM: processes the sequence in the original order [46].

−→
ht = LSTM(xt,

−−→
ht−1) (11)

• Backward LSTM: processes the sequence in reverse order [47].

←−
ht = LSTM(xt,

←−−
ht+1) (12)

• Final output: concatenates the forward and backward hidden states.

ht = [
−→
ht ,
←−
ht ] (13)

Among the advantages of this model is its ability to process the input sequence in both
forward and backward directions. This bidirectional processing allows the network to cap-
ture contextual information from both past and future time steps, significantly enhancing
the model’s ability to understand and predict sequential data [48]. Additionally, by lever-
aging information from both directions, Bidirectional LSTM models often achieve higher
accuracy and better performance in tasks such as sequence labeling, speech recognition,
and natural language processing [49].

However, there are also disadvantages to consider. One notable drawback is the
increased computational load. The bidirectional processing doubles the computational
requirements, as the model needs to process the input sequence twice [50]. This can be
a limitation in real-time applications or when computational resources are constrained.
Another challenge is the complexity in real-time applications. In scenarios where future
data are not available, the backward pass of the Bidirectional LSTM may not be feasible,
limiting its applicability [51].

1.3.2. Stacked LSTM

Stacked LSTM networks involve multiple LSTM layers where the output of one LSTM
layer serves as the input to the next [52]. This allows the network to capture more complex
patterns in the data.

• Layer 1 LSTM [53]: processes the input sequence.

h(1)t = LSTM(1)(xt, h(1)t−1) (14)

• Layer 2 LSTM [54]: takes the output of Layer 1 as input.

h(2)t = LSTM(2)(h(1)t , h(2)t−1) (15)
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• Final output [55]: can be taken from the last layer’s hidden state.

Stacked LSTM models consist of multiple layers of LSTM cells, enabling the network
to learn more complex patterns and hierarchical representations in the data. This increased
depth improves the model’s ability to capture intricate temporal dependencies [56]. By
stacking multiple LSTM layers, the model can achieve higher accuracy and better general-
ization on complex tasks, such as time-series forecasting and sequence classification [52].

Disadvantages of Stacked LSTM models include increased computational complex-
ity [57]. The additional layers in a Stacked LSTM model increase the computational
requirements, making it more resource-intensive to train and deploy. With more layers,
there is a higher risk of overfitting [58], especially if the dataset is not sufficiently large
or diverse. Regularization techniques, such as dropout, are often necessary to mitigate
this issue.

1.3.3. Peephole LSTM

Peephole LSTM models are a variation where the gates are connected not only to the
previous hidden state ht−1 and the input xt but also directly [16,59] to the cell state Ct−1.
This allows the gates to have a view of the cell state, potentially improving performance.

• Peephole forget gate:

ft = σ(W f · [ht−1, xt] + Vf · Ct−1 + b f ) (16)

• Peephole input gate:

it = σ(Wi · [ht−1, xt] + Vi · Ct−1 + bi) (17)

• Peephole output gate:

ot = σ(Wo · [ht−1, xt] + Vo · Ct + bo) (18)

Here, Vf , Vi, and Vo are additional weight matrices associated with the cell state.
Advantages of Peephole LSTM models include additional connections, called peep-

holes, that allow the cell state to directly influence the gates. This design enhances the
model’s ability to retain and utilize long-term dependencies, leading to improved perfor-
mance in tasks that require long-term memory. Peephole connections can help stabilize the
gradient flow during training, making the model more robust and easier to train [60].

Disadvantages of Peephole LSTM models include the increase in complexity of the
model that the addition of peepholes causes, requiring more parameters and potentially
longer training times [61]. Implementing and tuning the peephole connections can be more
complex compared to standard LSTM models, requiring careful consideration of the model
architecture and hyperparameters [62].

1.3.4. Attention-Based LSTM

Attention mechanisms can be integrated with LSTM networks to focus on specific
parts of the input sequence when making predictions [63,64]. The attention mechanism
assigns a weight αt to each time step in the input sequence.

• Attention weights [65]:
αt = softmax(et) (19)

where

et = vT tanh(Whht + Wsst−1 + be) (20)

• Context vector [66]:
ct = ∑

t′
αt′ht′ (21)
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• Final output: combines the context vector with the LSTM output.

h̃t = tanh(Wc[ct; ht]) (22)

Here, et is an alignment score, Wh, Ws, and Wc are weight matrices [67,68], vs. is a
vector, and be is a bias term.

LSTM networks, in their various forms, offer powerful tools for sequence modeling,
each variation tailored to different types of sequence data and tasks [69]. From standard
LSTM to more complex architectures like Bidirectional, Stacked, Peephole, and Attention-
Based LSTM models, these models are equipped to handle a wide range of challenges in
time-series prediction, natural language processing, and beyond.

Advantages of Attention-Based LSTM models incorporate an attention mechanism
that allows the network to focus on the most relevant parts of the input sequence [63].
This selective attention can improve the model’s performance by prioritizing important
information and ignoring irrelevant data. The attention mechanism provides insights into
which parts of the input sequence are most influential in the model’s predictions, making
the model more interpretable and transparent [70].

A disadvantage of the attention mechanism is that it increases the complexity of the
model, requiring more computational resources and potentially longer training times [71].
Implementing and tuning the attention mechanism can be challenging, as it involves
additional hyperparameters and architectural considerations.

2. Applications of LSTM in Polymeric Sciences

LSTM networks have emerged as a powerful tool in the field of polymeric sciences,
offering advancements in predictive modeling and sensor technologies. These networks
excel in handling sequential data and time-series predictions [72,73], which is crucial for
applications such as predicting polymer aging, optimizing manufacturing processes, and
detecting faults in polymer composites. The bibliometric network visualization of LSTM ap-
plications in polymeric sciences, presented in Figure 3, illustrates the extensive and growing
integration of LSTM networks across various polymer-related studies, highlighting their
impact and versatility in enhancing the performance and reliability of polymer materials.

The word cloud uses varying shades of color to represent the frequency of word
usage, with darker colors indicating more frequent mentions in the literature. For example,
terms like “LSTM”, “ML”, “SHM”, and “ANN” appear in darker shades. The circles are
grouped based on the strength of the relationship between the terms, with closer grouping
indicating a stronger interrelationship. Terms like “Tool Wear Pred.” and “Battery SOC
Est.” are closely grouped, reflecting their interconnectedness in studies that apply LSTM
to monitor and predict the degradation of polymer composites. The word cloud helps to
identify the most relevant and frequently discussed topics in the field, providing a visual
representation of key areas where LSTM has been successfully integrated into polymer
science. It also highlights emerging trends and areas of focus, guiding researchers towards
potential avenues for further exploration and innovation. By examining the word cloud,
we are able to quickly grasp the themes and the interrelationships between different aspects
of LSTM integration in polymer science. This visual aid enhances the understanding of the
current state of research and potential future directions in this interdisciplinary field.
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Figure 3. Workflow of the experimental and analytical approach used in this study.

2.1. Tim- Series Analysis in Polymer Systems

ML innovations for Charge-Coupled Device [74] (CCD) chips have enabled capabilities
like facial recognition [75] and object tracking [76] by efficiently processing large volumes
of temporal data. However, despite progress in creating chemical sensor arrays that
mimic mammalian olfactory systems [77,78], limited research has been conducted into
their temporal responses and the neural architectures needed for chemical awareness in
dynamic environments.
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To address this gap, Ryman et al. [79] developed sensors using a blend of carbon black
and various organic polymers, including poly(4-vinyl phenol) [80], poly(styrene-co-allyl
alcohol) [81], and poly(ethylene oxide) [82]. These sensors, when applied to interdigitated
electrodes, allowed for precise resistance measurements and effective chemical detection. At
the same time, LSTM networks have demonstrated exceptional performance in classification
tasks, often surpassing human capabilities in areas like traffic sign recognition [83]. LSTM
networks are particularly adept at managing temporal dependencies, selectively storing and
forgetting states, and scaling across multiple categories, making them ideal for addressing
the challenges of olfactory signal classification and processing the temporal dynamics of
sensor data [84]. The integration of LSTM networks with organic polymer-based sensors is
advancing olfactory sensing systems similar to how these technologies have revolutionized
machine vision.

In the realm of energy systems, accurate estimation of battery state of charge [85] (SOC)
remains challenging due to its nonlinearity and influence from various factors. While the
extended Kalman filter [86] (EKF) is commonly used for SOC estimation, its accuracy can
be compromised by uncertainties in battery models and varying conditions. Shin et al. [87]
proposed a method that enhances EKF accuracy by compensating errors with an LSTM
network. This approach involves training the LSTM on EKF errors and applying calibration
values based on battery conditions and load profiles. The multi-LSTM structure, utilizing
ensemble averaging, achieves SOC estimation with a root mean square error of less than 1%,
closely matching the SOC calculated by coulomb counting, and allows for online prediction
once the model is trained.

Similarly, Andrews et al. [88] evaluated three recurrent neural network architectures—
ERNN [89], LSTM, and GRU [90]—for predicting the energetics of an ethyl acetate solution
with a polymer–lipid aggregate [91]. Trained on extensive molecular dynamics simulation
data, these models effectively reproduce time-series data but struggle with accurate short-
and long-term forecasts. An in silico protocol was proposed, utilizing time patterns from the
data to improve forecasts, enhancing predictions by providing a range of values consistent
with energy fluctuations. This approach offers useful estimates for evaluating the necessity
of long simulations in materials design.

Wang et al. [92] presented a hybrid sensor for motor tic recognition [93], integrating
piezoelectric and triboelectric designs. The sensor, combining a triboelectric nanogenerator
made from bionic PDMS and a piezoelectric nanogenerator using layered porous PVDF-
TrFE nanofibers [94], shows an improvement in voltage output, reaching nearly 5 V. A
self-powered tic recognition system utilizing a deep learning (DL) model, specifically LSTM,
achieves an 88.1% recognition rate for motor tics, aiding doctors in monitoring Tourette
syndrome patients [95].

In the context of fuel cell technology, degradation due to hydrogen (H2) starvation
limits the lifespan of high-temperature polymer electrolyte membrane fuel cells (HT-PEM
FC). Yezerska et al. [96] utilized an LSTM neural network trained on electrochemical data
from H2 starvation/regeneration experiments to predict H2 starvation effects [97]. Simu-
lations showed critical resistances at specific voltages, recommending a safe operational
voltage range to avoid severe degradation.

Proton Exchange Membrane Fuel Cells (PEMFCs) [98], favored for green transporta-
tion, suffer from radical-induced degradation in Nafion® membranes [99], leading to
performance and stability issues. Benhaddouch et al. [100] introduced fluoride emission
as a diagnostic model using fluoride-sensitive membranes [101] (LaF3/CaF2) in inline mi-
crosensor arrays for real-time monitoring. These sensors, coupled with LSTM algorithms,
achieve high sensitivity and accuracy, providing a complementary approach for predicting
PEMFC end of life [102] (EOL) and enhancing current diagnostic techniques.

In material science, Xu et al. [103] presented a method for classifying substances within
glass fiber-reinforced polymer (GFRP) honeycomb structures using terahertz time-domain
spectroscopy (THz-TDS). An improved one-dimensional convolutional neural network
(1D-CNN) [104] model was developed and compared with LSTM and standard 1D-CNN
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models. The results show that the LSTM model excels with time-domain signals, while the
improved 1D-CNN model is superior with frequency-domain signals.

Song et al. [105] introduced an LSTM-based soft sensor model for predicting melt index
(MI) [106] in polymerization processes, which have an influence on determining polymer
quality. Due to the lack of online MI measurement, traditional models struggle with the
nonlinearity and complex temporal correlations of chemical processes. The LSTM model
was applied to an industrial styrene–acrylonitrile (SAN) polymerization process [107],
outperforming other models in prediction accuracy.

Furthermore, Song et al. [108] introduced the Self-constructed Strategy-based Rein-
forcement LSTM (SCRLA) [108] for predicting the nonlinear performance degradation of
fiber-reinforced polymers [109] (FRP). SCRLA enhances model generalization by integrat-
ing Bayesian algorithms for hyperparameter optimization and reinforcing the learning
process. This approach demonstrated superior prediction accuracy, especially with experi-
mental data, offering an effective framework for analyzing and predicting the sequential
performance of composite materials.

Finally, Goswami et al. [110] addressed the challenge of accurately measuring Glass
Transition Temperature [111] (Tg) in polymers. They proposed using an LSTM model based
on the Simplified Molecular-Input Line-Entry System (SMILES) structure of polymers to
predict Tg. The study evaluated the model’s performance and its practical applications,
offering a potentially efficient alternative to conventional methods.

As a result, LSTM networks have transformed the analysis and prediction of com-
plex time-dependent behaviors in polymer systems. These models excel at handling the
temporal dependencies inherent in these systems, offering improvements in accuracy
and efficiency over traditional methods. Table 1 offers a concise overview of key articles
that highlight the application of LSTM and related models in the time-series analysis of
polymer systems.

Table 1. Summary of studies on LSTM models in time-series analysis of polymer systems (N/A—Not
Applicable).

Reference Focus Applied Model Limitations Data Information Metrics

Ryman et al. [79]

Development of
sensors using organic
polymers for
chemical detection

LSTM

Limited research into
the neural
architectures for
chemical awareness
in dynamic
environments

Sensor data from
organic polymers N/A

Shin et al. [87]

Enhancing
state-of-charge (SOC)
estimation in
batteries

LSTM combined with
EKF

Potential
uncertainties in
battery models and
varying conditions

Battery charge and
discharge data RMSE (<1%)

Andrews et al. [88]

Predicting the
energetics of ethyl
acetate solution with
polymer–lipid
aggregate

ERNN, LSTM, GRU
Struggles with
accurate short- and
long-term forecasts

Energetics data from
polymer–lipid
solutions

RMSE (0.1)

Wang et al. [92]
Recognition of motor
tics using a hybrid
sensor

LSTM

Potential limitations
in recognition
accuracy and
self-powered
operation

Motor tic sensor data Signal recognition
rate (88.1%)

Yezerska et al. [96]
Predicting H2
starvation effects in
fuel cells

LSTM

Recommendations
are based on
simulations, which
may have limitations
in real-world
applicability

Fuel cell performance
data N/A
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Table 1. Cont.

Reference Focus Applied Model Limitations Data Information Metrics

Benhaddouch
et al. [100]

Real-time monitoring
of radical-induced
degradation in
PEMFCs

LSTM

Limited to predictive
diagnostics, may not
address all
degradation
mechanisms

PEMFC degradation
data N/A

Xu et al. [103]

Classification of
substances within
GFRP structures
using THz-TDS

LSTM, 1D-CNN

LSTM excels with
time-domain but
struggles with
frequency-domain
signals compared to
improved 1D-CNN

THz-TDS data from
GFRP structures F1 (0.88–0.91)

Song et al. [105]

Predicting melt index
(MI) in
polymerization
processes

LSTM

Challenges with
nonlinearity and
complex temporal
correlations

Polymerization
process data R2 (≈0.8)

Song et al. [108]
Predicting nonlinear
performance
degradation of FRP

Reinforcement LSTM
(SCRLA)

Potential complexity
in model
generalization and
integration of
Bayesian algorithms

FRP performance
data R2 (≈0.9)

Goswami et al. [110]

Predicting Glass
Transition
Temperature (Tg) in
polymers

LSTM based on
SMILES

Model performance
and practical
application may need
further validation

Polymer SMILES
data N/A

2.2. Diagnostics and Monitoring of Polymer Materials

Recent advancements in polymer and battery technology [112] have been enhanced by
DL and ML techniques. For instance, Kim et al. [113] developed a DL-based prediagnosis
system for PEMFCs, using LSTM and CNN [114] combined with a bagging ensemble
method [115]. By analyzing experimental time-series data from full-scale single-cell tests,
this system achieves detection rates of 98.52% for flooding and 95.36% for drying, thereby
improving PEMFC stability and operation.

In the field of underwater electroacoustic sensors, Ramachandran et al. [116] focused
on predicting the end of life of these sensors by analyzing the degradation of their water-
proof polymer insulation due to water ingress [117]. They employed LSTM networks to
model and predict the degradation pattern based on measured insulation resistance [118].
This method allows for maintenance or replacement decisions without disassembling the
sensors, verifying the accuracy of the predictions against actual end-of-life measurements.

Similarly, in the realm of polymer matrix composites (PMCs), Lee et al. [119] addressed
the challenge of predicting tensile behavior by utilizing feature engineering combined with
ML. They used Principal Component Analysis [120] (PCA) and Recursive Feature Elimi-
nation with Cross Validation [121] (RFECV) to identify the optimal features for predicting
the tensile stress–strain curve [122] from test data. LSTM and Feedforward Neural Net-
work [123] (FNN) models trained on this feature set achieved a predictive accuracy of
R2 = 92%, facilitating accurate stress–strain curve predictions and simplifying PMC design.

Chistyakova et al. [124] evaluated predictive models for key quality indicators in
polymer film materials [125]. They compared Adaptive Boosting of Decision Trees (Ad-
aBoost) [126] with LSTM to predict defects such as the number of black dots per square
meter. Performance was assessed using precision, recall, and F1-score to determine the
most effective model based on production data characteristics.

In the context of glass fiber-reinforced polymers [127] (GFRPs) used in marine infras-
tructure, Zhang et al. [128] developed an optimized ML model to predict tensile strength
retention [129] (TSR) in alkaline environments. They trained seven different ML models,
including LSTM and Extreme Gradient Boosting (XGBoost) [130], using variables such as
bar diameter, fiber volume fraction, pH, conditioning temperature, and immersion duration.
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The results indicated that XGBoost and LSTM performed best, with pH and temperature
being the most influential factors.

Yoon et al. [131] proposed a method to enhance the Extended Kalman Filter (EKF)
for estimating the SOC of Li-polymer batteries [132]. By integrating EKF with an LSTM
network, they addressed inaccuracies arising from parameter variations in the battery’s
equivalent model. This approach improved SOC estimation accuracy, particularly under
varying load profiles, compared to standard EKF methods.

Dielectric electro-active polymer [133] (DEAP)actuators, which are promising for bio-
inspired robotics, face challenges with rate-dependent and asymmetrical hysteresis. Jiang
et al. [134] introduced a hybrid model combining LSTM networks with Empirical Mode
Decomposition [135] (EMD)to better model DEAP actuator hysteresis. This approach,
which preprocesses control signals using EMD before LSTM input, demonstrated superior
prediction accuracy compared to traditional models like Backpropagation Neural Network
(BPNN) and Recursive Polynomial Interpolation (RPI).

Wang et al. [136] applied LSTM networks to classify internal interfaces in polymers
using terahertz (THz) waveform data. Their experiments confirmed that LSTM networks
are effective in identifying and imaging voids and impurities within polymer materials,
providing a nondestructive method for examining internal structures.

Li et al. [137] developed a DL model to predict tool wear in milling unidirectional
carbon fiber-reinforced polymer (CFRP) by analyzing cutting force signals. Combining a
multichannel 1D CNN with LSTM, their model achieved high prediction accuracy with an
R2 of 95.04% and a mean absolute error (MAE) of 2.94 µm, outperforming traditional meth-
ods such as 1D CNN, 2D CNN [138], and Support Vector Regression (SVR) by over 25%.

Lastly, Hantono et al. [139] presented an LSTM model for estimating the state of charge
(SoC) of lithium polymer batteries. Using the NVIDIA Jetson Nano for computation, their
model achieved RMSE scores of 1.797 for training and 1.976 for testing, demonstrating the
feasibility of employing LSTM on the Jetson Nano for accurate SOC estimation.

Polymer and battery technology have been transformed by the integration of ML tech-
niques. Innovative systems like the LSTM-CNN ensemble developed by Kim et al. [113]
have improved the stability and operation of PEMFCs by accurately diagnosing flooding
and drying conditions. Similarly, Ramachandran et al. [116] utilized LSTM networks to
predict the degradation of underwater sensors, facilitating timely maintenance decisions. In
the field of polymer composites, Lee et al. [119] combined feature engineering with LSTM
models to predict tensile behavior with high accuracy, streamlining the design process.
Other studies, such as those by Zhang et al. [128] and Yoon et al. [131], demonstrate the
effectiveness of LSTM in improving the predictive accuracy of polymer performance and
battery state technology and battery management. The studies summarized in Table 2 illus-
trate the diverse applications and effectiveness of LSTM-based models in the monitoring of
polymer materials.

Table 2. Summary of studies on LSTM models in monitoring of polymer materials (N/A—Not
Applicable).

Reference Focus Applied Model Limitations Data Information Metrics

Kim et al. [113]
DL-based
prediagnosis system
for PEMFCs

LSTM, CNN
combined with
bagging ensemble
method

Focused on specific
failure modes
(flooding, drying);
may require
validation in broader
conditions

PEMFC performance
data

Recall (83–93%),
precision (73–98%)
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Table 2. Cont.

Reference Focus Applied Model Limitations Data Information Metrics

Ramachandran
et al. [116]

Predicting end of life
of underwater
electroacoustic
sensors by modeling
polymer insulation
degradation

LSTM

Model predictions
based on resistance
measurements;
real-time
applicability may
vary

Resistance
measurements from
polymer insulation

N/A

Lee et al. [119]

Predicting tensile
behavior of polymer
matrix composites
(PMCs)

LSTM, FNN, PCA,
RFECV

Accuracy may
depend on the
quality of feature
selection and input
data

Tensile test data from
PMC R2 (0.92)

Chistyakova
et al. [124]

Predictive models for
quality indicators in
polymer film
materials

AdaBoost, LSTM

Performance
depends on specific
production data
characteristics;
generalization may
be limited

Production data from
polymer films N/A

Zhang et al. [128]

Predicting tensile
strength retention
(TSR) in GFRPs
under alkaline
conditions

LSTM, XGBoost

Sensitive to
variations in pH and
temperature; may
need adaptation for
different
environmental
conditions

Tensile strength data
from GFRPs Accuracy (85%)

Yoon et al. [131]
Enhancing EKF for
SOC estimation in
Li-polymer batteries

LSTM combined with
EKF

Inaccuracies in SOC
estimation under
dynamic conditions
still possible

Battery
charge/discharge
data

RMSE (≈0.24)

Jiang et al. [134]
Modeling hysteresis
in DEAP actuators
for robotics

LSTM with EMD

Hybrid model
complexity may
affect real-time
implementation

Hysteresis data from
DEAP actuators

MAE (≈0.02), MRE
(≈0.01)

Wang et al. [136]

Classifying internal
interfaces in
polymers using THz
waveform data

LSTM

Effectiveness
depends on the
quality of THz data;
sensitivity to noise
may limit use in
some applications

THz waveform data
from polymers Accuracy (≈0.95)

Li et al. [137]

Predicting tool wear
in milling CFRP by
analyzing cutting
force signals

Multichannel 1D
CNN with LSTM

Performance may
vary with different
tool materials and
cutting conditions

Cutting force signal
data

R2 (95.04%), MAE
(2.94)

Hantono et al. [139]
Estimating SOC of
lithium polymer
batteries

LSTM

Computation limited
by hardware (Jetson
Nano); may not scale
easily to larger
models

Battery charge,
discharge data RMSE (≈1.8)

2.3. Managing the Condition and Performance of Polymer Products

Managing the condition and performance of polymer products is a growing area of
research, with various innovative approaches leveraging ML and DL techniques. Dehghan
et al. [140] compared methods for predicting conductive and radiative heat transfer in
polymethylmethacrylate (PMMA). They found that the LSTM networks provided faster
and more accurate results than traditional numerical methods, demonstrating strong perfor-
mance validated by the receiver operating characteristic (ROC) curve and confusion matrix.

Luong et al. [141] developed an LSTM model to predict the behavior of an antagonistic
joint driven by twisted-coiled polymer actuators made from spandex and nylon. Integrated
with Model Predictive Control (MPC) [142] using PyTorch, this model achieved high
prediction accuracy for joint angles and actuator temperatures, maintaining steady-state
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errors under 0.1 degrees and 0.2 °C, respectively. The MPC proved effective in set-point
regulation and tracking sinusoidal waveforms, demonstrating its utility in managing
joint stiffness.

Dong et al. [143] introduced a hybrid modeling approach for the tetrafluoroethylene
(TFE) polymerization process [144], combining kinetic and thermodynamic models with
LSTM networks. This hybrid model effectively predicts reaction rates and optimizes the
polymerization process for producing polytetrafluoroethylene (PTFE) [145], which has
impacts for aerospace and medical applications. The model showed improved performance
and effectiveness in addressing uncertainties in kinetic parameters.

Bi et al. [146] employed a data-driven approach to predict polymer intrinsic viscos-
ity, which is critical for maintaining polyester fiber quality. They used a time-series data
generative adversarial network [147] (TSDGAN), with an Attention LSTM as the generator
and a CNN as the discriminator, to handle missing data. The Informer model then pre-
dicted viscosity using the completed time series, outperforming traditional methods and
demonstrating robustness against varying rates of missing data.

Rahman et al. [148] developed a predictive maintenance framework for an industrial
drying hopper using deep learning (DL) algorithms. By classifying Multivariate Time-
Series [149] (MTS) data into failure/unusual and regular events, they addressed challenges
such as missing values and imbalanced data. Their study found that a CNN outperformed
other DL and ML algorithms, such as SVM and KNN, in classifying the dataset effectively.

Gao et al. [150] introduced a dual-mode tactile sensor combining piezoresistive and
piezoelectric materials to enhance tactile perception. Using a CNN-LSTM model, the sensor
achieved 90.58% accuracy for braille recognition under constant conditions and 84.2%
across varying speeds and directions. This sensor demonstrated potential applications in
blind reading and texture detection when tested on a robotic arm and a human finger.

Simine et al. [151] presented a method for predicting UV-vis spectra of conjugated
polymers using an LSTM-RNN model. This generative DL model bypasses traditional
backmapping and quantum chemistry calculations, improving the efficiency and accuracy
of studying organic optoelectronic materials by leveraging mathematical similarities to
natural languages.

Braghetto et al. [152] analyzed configurations of flexible knotted rings within spherical
cavities using LSTM neural networks. The LSTM models excelled at recognizing knots, even
with significant geometric entanglement, and were improved by coarse-graining. However,
the models often misclassified knots within the same topological family [153], suggesting
that they grasped basic topological properties better than simpler convolutional NNs.

Benrabia et al. [154] explored ML techniques for modeling energy storage systems,
focusing on external system states such as environmental temperature and energy demand.
They compared nonlinear autoregressive exogenous [155] (NARX) and LSTM models for
predicting the state of charge/discharge (SOC/DOD) of batteries and power output for
fuel cells. The results indicated that NARX was more effective for battery systems, while
LSTM excelled with fuel cells.

Altabey et al. [156] introduced a DL-based method for predicting the acoustic behavior
of dual-chamber mufflers made from basalt fiber-reinforced polymer [157] (BFRP) compos-
ites. Two deep neural networks, RNN-LSTM and CNN, optimized using Bayesian genetic
algorithms [158], achieved over 90% accuracy in predicting acoustic transmission loss [159]
(TL) and power transmission coefficient [160] (PTC), thus streamlining muffler design.

Wang et al. [161] developed a method for detecting internal defects in GFRP using
terahertz time-domain spectroscopy and neural networks. Their approach, which involved
1D convolutional neural networks, LSTM-RNNs, and bidirectional LSTM-RNNs, found that
the 1D CNN model was the most effective, achieving high recall rates and macro F1 scores.
This method advances automated, nondestructive defect detection in GFRP materials.

Managing the condition and performance of polymer products has been driven by DL
techniques. Studies like those by Dehghan et al. [140] and Luong et al. [141] demonstrate
the effectiveness of LSTM networks in predicting heat transfer in polymers and controlling
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polymer actuators, respectively. Hybrid models combining traditional approaches with
LSTM, as explored by Dong et al. [143], have optimized polymerization processes, while
innovative DL frameworks, such as those developed by Bi et al. [146] for predicting polymer
viscosity, highlight the robustness of these approaches against data inconsistencies. Other
research has applied CNN-LSTM models to enhance tactile sensors, predictive maintenance
systems, and defect detection in polymer composites, demonstrating broad applicability
across various domains. Table 3 provides a summary of key studies and their contributions
to advancing polymer product management.

Table 3. Summary of studies on LSTM models in managing performance of polymer products
(N/A—Not Applicable).

Reference Focus Applied Model Limitations Data Information Metrics

Dehghan et al. [140]

Predicting
conductive and
radiative heat
transfer in PMMA

LSTM networks
May require further
validation across
diverse conditions

Heat transfer data
from PMMA RMSE (16.4)

Luong et al. [141]

Predicting behavior
of an antagonistic
joint driven by
twisted-coiled
polymer actuators

LSTM with Model
Predictive Control
(MPC)

Performance may be
sensitive to actuator
material variations

Actuator
performance data RMSE (0.21)

Dong et al. [143]
Hybrid modeling for
TFE polymerization
process

LSTM combined with
kinetic and
thermodynamic
models

Effectiveness
depends on accurate
kinetic parameter
estimation

Polymerization
process data N/A

Bi et al. [146]

Predicting polymer
intrinsic viscosity for
polyester fiber
quality

TSDGAN, Attention
LSTM, CNN

Sensitivity to the rate
of missing data may
limit generalizability

Intrinsic viscosity
data N/A

Rahman et al. [148]

Predictive
maintenance for
industrial drying
hopper

CNN for Multivariate
Time-Series (MTS)
classification

Imbalanced data
handling might
require additional
techniques

Drying hopper
performance data Accuracy (98%)

Gao et al. [150]

Enhancing tactile
perception with
dual-mode tactile
sensor

CNN-LSTM model

Performance may
degrade under
varying tactile
conditions

Tactile sensor data Recognition rate
(77–90%)

Simine et al. [151]
Predicting UV-vis
spectra of conjugated
polymers

LSTM-RNN
Applicability might
be limited to specific
polymer types

UV-vis spectra data N/A

Braghetto et al. [152]

Analyzing
configurations of
flexible knotted rings
within spherical
cavities

LSTM neural
networks

Misclassification
within the same
topological family
indicates model
limitations

Configuration data of
knotted rings Accuracy (0.2–0.80)

Benrabia et al. [154]

Modeling energy
storage systems
under varying
external states

NARX and LSTM
models

NARX is more
effective for batteries,
LSTM for fuel cells;
each model has
application-specific
strengths

Energy storage
system data N/A

Altabey et al. [156]
Predicting acoustic
behavior of BFRP
composite mufflers

RNN-LSTM, CNN
optimized with
Bayesian genetic
algorithms

Generalization may
be limited to specific
muffler designs

Acoustic behavior
data Accuracy (>90%)

Wang et al. [161]

Detecting internal
defects in GFRP
using terahertz
spectroscopy

1D CNN,
LSTM-RNN,
Bidirectional
LSTM-RNN

Best results with 1D
CNN; other models
might need further
refinement

Terahertz
spectroscopy data F1 score (0.91)
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2.4. Predicting Aging and Degradation of Polymers

Accurate prediction of aging and degradation in polymers is crucial for maintaining
their performance and reliability. Li et al. [137] introduced a method for predicting tool flank
wear in the edge trimming of carbon fiber-reinforced polymer [162] (CFRP) components,
focusing on the impact of multidirectional (MD) CFRP’s interlaminar effects. Their LSTM
backpropagation network model successfully predicted tool wear length, accounting for
these interlaminar effects and demonstrating effectiveness in quantifying wear progression
in MD CFRP edge trimming [137].

Berot et al. [163] investigated various parameters of LSTM networks for predicting
polymer aging, specifically in epoxy adhesives subjected to hygrothermal aging [164]. They
found that a single hidden layer with 150 units and a hyperbolic tangent activation function
provided the best results. The study highlights LSTM’s effectiveness in predicting time-
dependent changes in physical parameters and underscores the importance of selecting
appropriate network parameters for accurate and stable predictions.

Oudan et al. [165] combined finite element (FE) simulation with LSTM networks
to assess the time-dependent reliability of complex structural systems. Their approach,
applied to degrading concrete structures and a GFRP concrete beam, efficiently provided
accurate time-dependent reliability indexes. This hybrid method shows versatility and
effectiveness in handling various applications involving degradation over time.

Oh et al. [166] focused on the state-of-health (SoH) estimation of lithium polymer
batteries [167] used in urban railway fleets. They employed LSTM models to analyze battery
performance over 500 charge/discharge cycles under real vehicle conditions. Their data
preprocessing and LSTM-based predictions provided accurate SoH estimations, enhancing
the reliability of battery management systems.

In the aviation sector, Karaburun et al. [168] evaluated state-of-charge (SOC) estima-
tion for lithium polymer batteries used in electric unmanned aerial vehicles [169] (UAVs).
They compared LSTM with Support Vector Regression [170] (SVR) and Random For-
est [171] (RF) methods, finding that these models effectively estimated SOC based on
time-series data. The results demonstrated the efficacy of DL and ML techniques for
accurate SOC predictions.

Tripathi et al. [172] explored the mechanical response of CFRP laminates with bucky-
paper (BP) or carbon nanotube [173] (CNT) interleaves. Using an LSTM model trained on
finite element analysis [174] (FEA) and experimental data, they accurately predicted dam-
age responses and observed improvements in flexural strength and modulus. The model’s
predictions were confirmed by confocal microscopy [175], demonstrating its capability to
assess the impact of CNT membranes on mechanical properties.

Reiner et al. [176] developed a data-rich framework for characterizing the strain-
softening behavior of laminated composites under compressive loading. They compared a
theory-guided neural network and an LSTM-based recurrent neural network. The LSTM
model, requiring a minimum of 5000 finite element (FE) simulations, successfully pre-
dicted compressive damage and was validated against experimental data from various
compression tests.

Najjar et al. [177] introduced an optimized AI model combining LSTM with the Chimp
Optimization Algorithm [178] (CHOA) to predict kerf quality in laser cutting basalt fiber-
reinforced polymer composites [179]. This model outperformed standalone LSTM and
other optimization techniques by reducing the root mean squared error for kerf width,
deviation, and taper. The LSTM-CHOA [180] model demonstrated superior performance
in predicting cutting quality.

Jiang et al. [181] addressed hysteresis and creep in DEAP actuators using a hybrid
approach. Their model combined LSTM with Empirical Mode Decomposition (EMD) and
proportional–integral–derivative [182] (PID) control to predict and compensate for hys-
teresis dynamics. Experiments showed that this LSTM-based compensator outperformed
traditional models in predicting control signals and reducing hysteresis.
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Munshi et al. [183] applied a transfer learning-based LSTM model using SMILES
molecular fingerprints to discover new polymer chemistries for organic photovoltaic (OPV)
materials. The model, trained on a small dataset, predicted novel polymer repeat units
with potentially high power conversion efficiencies [184] (PCEs). Validation through
similarity coefficients between known and generated polymers demonstrated the model’s
effectiveness in accelerating materials discovery for OPVs and similar applications.

This section explores modern methods for predicting aging and degradation in poly-
mers, focusing on applications across various fields such as polymer composites, batteries,
and materials for solar cells. The primary emphasis is on the use of recurrent neural net-
works, particularly LSTM models, to forecast different aspects of degradation and aging.
Examples include predicting tool wear in carbon fiber composites, assessing the reliability
of structural systems, and estimating the state of health of batteries. These studies highlight
the effectiveness of LSTM models in diverse applications while noting the need for further
research to extend the applicability of these models. Table 4 provides a summary of the
discussed studies and the models they employed.

Table 4. Summary of studies on LSTM models in predicting degradation of polymers (N/A—Not
Applicable).

Reference Focus Applied Model Limitations Data Information Metrics

Berot et al. [163]

Predicting polymer
aging in epoxy
adhesives under
hygrothermal aging

LSTM with single
hidden layer,
150 units, hyperbolic
tangent activation

Requires precise
tuning of network
parameters for
stability and accuracy

Aging data from
epoxy adhesives MSE (<0.01)

Oudan et al. [165]

Assessing
time-dependent
reliability of
degrading structural
systems

Hybrid FE simulation
with LSTM networks

Validation needed
across different
structural materials
and conditions

Structural
degradation data N/A

Oh et al. [166]

Estimating state of
health (SoH) of
lithium polymer
batteries in railway
fleets

LSTM models for
SoH analysis over
500 charge/discharge
cycles

Performance may
vary under different
operational
environments

Battery SoH data N/A

Karaburun et al. [168]

State-of-charge (SOC)
estimation for
lithium polymer
batteries in UAVs

LSTM, SVR, Random
Forest

Requires comparison
with real-time
applications in UAVs
for further validation

Battery SOC data RMSE (0.3)

Tripathi et al. [172]

Predicting
mechanical response
of CFRP laminates
with BP/CNT
interleaves

LSTM model trained
on FEA and
experimental data

Model accuracy
depends on quality
and quantity of FEA
and experimental
data

Mechanical response
data from CFRP
laminates

N/A

Reiner et al. [176]

Characterizing
strain-softening in
laminated
composites under
compression

LSTM-based
recurrent neural
network

High computational
cost due to the need
for extensive FE
simulations

Strain-softening data
from laminated
composites

N/A

Najjar et al. [177]

Predicting kerf
quality in laser
cutting of basalt
fiber-reinforced
polymers

LSTM combined with
Chimp Optimization
Algorithm (CHOA)

Generalizability to
different composite
materials requires
further exploration

Kerf quality data
from laser cutting RMSE (27–60%)
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Table 4. Cont.

Reference Focus Applied Model Limitations Data Information Metrics

Jiang et al. [181]
Addressing
hysteresis and creep
in DEAP actuators

Hybrid LSTM with
EMD and PID control

Application limited
to DEAP actuators;
may not extend to
other actuator types

Hysteresis and creep
data from DEAP
actuators

N/A

Munshi et al. [183]

Discovering new
polymer chemistries
for OPV materials
using transfer
learning

LSTM model using
SMILES molecular
fingerprints

Model trained on a
small dataset; larger
datasets needed for
broader application

Polymer chemistry
data N/A

2.5. Sensor Technologies and LSTM-Based Modeling for Polymer Composites

Advancements in sensor technologies and LSTM-based modeling are enhancing the
monitoring and predictive capabilities for polymer composites. Luong et al. [185] developed
a dynamic model using LSTM networks to predict the nonlinear behavior of an antagonistic
joint driven by a hybrid twisted-coiled polymer actuator [186] (TCA) bundle. This model
incorporates prestrains of TCAs as inputs, improving the prediction of joint angles with a
mean error of 0.06°, a reduction from the previous model’s error of 1.57°, and effectively
manages prestrain changes without retraining.

Kumar et al. [187] evaluated six DL models for detecting faults in polymer gears,
aiming to reduce maintenance costs and computational time. Their hybrid LSTM and
Gated Recurrent Unit (LSTM-GRU [187]) model achieved exceptional performance with
99.6% accuracy, 99.89% kappa, and 99.6% F1-score. This model offers a highly accurate
and efficient solution for fault detection in polymer gears by enhancing signal quality
through Complete Ensemble Empirical Mode Decomposition with Adaptive Noise [188]
(CEEMDAN).

Shunhu et al. [189] explored drilling quality and energy efficiency in carbon fiber-
reinforced polymer (CFRP) components using a 55° tungsten steel drill bit. By employing
CNN-LSTM neural networks to correlate process parameters with delamination factors and
energy consumption, they developed a prediction method that identifies optimal drilling
settings. Their findings—spindle speed of 7000 r/min, feed rate of 40 mm/min, and lay-up
sequence of [0°, 0°, −45°, 90°]6 s—highlight how parameter optimization can minimize
both energy consumption and delamination.

Aklouche et al. [190] proposed a Bidirectional LSTM (BiLSTM) network method for
damage severity estimation in composite materials like CFRP, utilizing Lamb wave [191]
(LW) data. By integrating Variational Mode Decomposition (VMD) for signal preprocess-
ing, this method outperforms traditional RNN and LSTM models in damage assessment,
providing superior adaptive performance and predictive accuracy.

Ali et al. [192] examined the structural behavior of double-skin double-filled tubu-
lar [193] (DSDFT) versus double-skin hollow tubular [194] (DSHT) columns using finite
element modeling (FEM) and ML. Their study revealed that DSDFT columns have a 19.54%
to 101.21% increase in load-carrying capacity and improved ductility over DSHT columns.
The LSTM and BiLSTM models provided the most accurate predictions for axial load
capacity, offering valuable insights for optimizing column designs in construction.

Wang et al. [195] employed laser infrared thermography [196] (LIT) and LSTM-RNN
to assess defect depth in CFRP sheets. The LSTM-RNN, combined with thermographic
signal reconstruction [197] (TSR) to reduce noise, outperformed traditional RNN and
CNN methods in defect depth determination, enhancing defect assessment accuracy in
CFRP structures.

Kang et al. [198] introduced a hybrid recurrent neural network [199] (H-RNN) to
address nonlinear issues such as creep and hysteresis in cable-driven parallel robots [200]
(CDPRs) with polymer cables. The H-RNN, combining LSTM for low-frequency and basic
RNN for high-frequency data, achieved high accuracy in predicting position errors and
demonstrated superior performance compared to standalone RNN and LSTM models.
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Lin et al. [201] developed a data-driven method using LSTM for real-time prediction
of high-frequency resistance (HFR) in polymer electrolyte membrane fuel cells (PEM-
FCs). Their model, based on current and past sensor data from a 100 kW automotive fuel
cell stack, outperformed traditional regression models, showcasing precise and timely
HFR monitoring.

Lorenzo et al. [202] compared classical classifiers with 1D CNN and LSTM for clas-
sifying plastics using hyperspectral images. The 1D CNN and SVM+RBF achieved the
highest accuracies of 99.31% and 99.41%, respectively, demonstrating the effectiveness of
these models for plastic identification and recycling.

Choi et al. [203] introduced a polybutadiene-based urethane (PBU)/Ag nanowire
(AgNW)/PBU sensor (PAPS) with enhanced mechanical stability and motion detection
precision. The PAPS sensor, integrating AgNW electrodes [204] and utilizing ML algorithms
(1D CNN, LSTM), achieved over 98% classification accuracy, illustrating its advancements
in intelligent motion sensing [205].

Wang et al. [92] presented a hybrid sensor combining piezoelectric and triboelectric
designs for motor tic recognition. The sensor, with a triboelectric nanogenerator [206] made
from bionic PDMS and a piezoelectric nanogenerator using PVDF-TrFE nanofibers, demon-
strated a 200% improvement in voltage output and an 88.1% recognition rate for motor tics
using an LSTM-based DL model, aiding in the monitoring of Tourette syndrome patients.

This section reviews recent advances in sensor technologies and LSTM-based modeling
for polymer composites. Notable developments include improved prediction models for
actuator behavior, fault detection in polymer gears and optimization of drilling processes
in CFRP. Key contributions include high-accuracy LSTM-GRU models for fault detection,
BiLSTM networks for damage assessment, and hybrid sensors for enhanced monitoring.
These innovations are summarized in Table 5.

Table 5. Summary of studies on LSTM models in sensor technologies and polymer composites
(N/A—Not Applicable).

Reference Focus Applied Model Limitations Data Information Metrics

Luong et al. [185]

Predicting nonlinear
behavior of an
antagonistic joint
driven by hybrid
TCA bundle

LSTM network for
joint angle prediction

Specific to
TCA-driven systems;
may require
adaptation for other
actuation systems

Joint angle data from
TCA-driven systems

Working range of
30% of the TCA

Kumar et al. [187] Detecting faults in
polymer gears

Hybrid LSTM-GRU
model with
CEEMDAN
preprocessing

Model performance
needs validation in
different operational
environments

Fault detection data
from polymer gears Accuracy (99%)

Shunhu et al. [189]

Optimizing drilling
quality and energy
efficiency in CFRP
components

CNN-LSTM network
correlating process
parameters with
outcomes

Applicability to other
drilling processes
and materials needs
further testing

Drilling process data
from CFRP
components

N/A

Aklouche et al. [190]
Estimating damage
severity in CFRP
using LW data

Bidirectional LSTM
(BiLSTM) with VMD
for preprocessing

Limited to composite
materials like CFRP;
may not generalize to
other material types

Damage severity data
from CFRP N/A

Ali et al. [192]
Comparing structural
behavior of DSDFT
and DSHT columns

LSTM and BiLSTM
models for predicting
axial load capacity

Predictions specific to
column types
studied;
generalization needs
further exploration

Axial load capacity
data from columns RMSE (0.065)

Wang et al. [195]
Assessing defect
depth in CFRP sheets
using LIT

LSTM-RNN
combined with TSR
for noise reduction

Model effectiveness
might vary with
different defect types
and depths

Defect depth data
from CFRP sheets R2 (0.78-93)
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Table 5. Cont.

Reference Focus Applied Model Limitations Data Information Metrics

Kang et al. [198]
Addressing nonlinear
issues in CDPRs with
polymer cables

Hybrid RNN
(H-RNN) combining
LSTM and basic
RNN for position
error prediction

Model complexity
may limit its
application to
simpler systems

Position error data
from CDPRs N/A

Lin et al. [201] Real-time prediction
of HFR in PEMFCs

LSTM model using
current and past
sensor data

Model effectiveness
may decrease with
changes in PEMFC
operational
conditions

HFR data from
PEMFCs MAPE (2.82%)

Lorenzo et al. [202]
Classifying plastics
using hyperspectral
images

1D CNN and
SVM+RBF models

Requires extensive
hyperspectral data;
may be limited to
specific plastic types

Hyperspectral image
data from plastics Accuracy (99.41%)

Choi et al. [203]

Enhancing
mechanical stability
and motion detection
in PBU/AgNW/PBU
sensors

1D CNN and LSTM
models for motion
detection

Limited testing in
real-world
applications; further
validation required

Motion detection
data from sensors Accuracy (98%)

3. Challenges and Limitations
3.1. Data Availability

The availability of datasets remains a challenge in applying LSTM models to polymeric
sciences. Efforts to enhance data collection and sharing are vital for advancing this field.

Figure 4 illustrates the sequential steps involved in the studies, including data collec-
tion and preprocessing, implementation of LSTM model, system setup and measurements,
and final output and analysis. Key phases include dataset acquisition, model training and
validation, system configuration, and interpretation of results.

In the study by Wang et al. [136], an LSTM process was applied to terahertz (THz)
beam experiments [207]. A sample was placed on a motion platform, and its height was
adjusted to align the artificial interface with the THz beam’s focus, maximizing the reflected
pulse amplitude. A 50 mm × 50 mm central area of each sample was scanned in 1 mm steps
to collect reflected waveform data. Pulse data for various artificial interfaces were then
extracted and cataloged. To simulate real-world variations in polymer interfaces, where
alignment with the beam focus may be imperfect, the amplitude of the training data was
randomly reduced to improve the network’s performance.

Another study by Wang et al. [161] focused on fabricating two GFRP laminates with
eight circular defects, each 0.02 mm thick, with varying depths (0.25 mm, 0.5 mm, 0.75 mm,
1.0 mm) and diameters (8 mm or 10 mm). Defects at shallower depths, particularly at
0.25 mm, were clearly visible in images. A home-built THz-TDS system, with a spectral
range of 0.06–4 THz, a frequency resolution of 20 GHz, and a dynamic range of 80 dB,
was used to collect signals from 17,725 points on each laminate, including nondefective
and defective areas. The data were split into training (80%) and validation (20%) sets. For
testing, 19,044 signals were collected by scanning each specimen with a 0.5 mm step. The
time-domain and spectral signals revealed clear differences between nondefective and
defective areas, with calculated defect depths closely matching their designed depths.
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Figure 4. Flowchart of the research process for polymer analysis using LSTM and THz-TDS techniques.

In a study on epoxy adhesives, a dataset was created involving a two-component
adhesive with 40% kaolin fillers, known for its flexibility and impact resistance with a glass
transition temperature (Tg) of 31.8 °C [163]. Water uptake was studied under accelerated
aging at 50 °C, 70 °C, and 90 °C, revealing different absorption behaviors. The samples were
weighed using a high-resolution balance, and missing data from 38 measurements over
203 days were addressed using interpolation methods. The pchip function was applied
for noisy data, and piecewise polynomials were used for complex datasets, resulting in a
complete dataset of 814 samples with a consistent 6 h time step. This approach enhanced
the LSTM network’s performance.

Xu et al. [103] conducted terahertz inspection experiments on an unsealed GFRP
honeycomb sandwich sample, which consisted of glass fiber fabric epoxy resin skins and a
hexagonal Nomex paper honeycomb core [208]. The core was filled with water, oil, and
alcohol in different regions before sealing the top surface. A THz-TDS system, combined
with a robot arm for precise scanning, was used to measure the terahertz reflection spectra.
This system featured a femtosecond laser with a 2 THz spectral width and a 60 dB dynamic
range, enabling synchronized, real-time data acquisition during the scan.

Dehghan et al. [140] explored the thermal properties of polymethylmethacrylate plas-
tic optical fiber [209] (PMMA-POF) at different temperatures. Unlike traditional glass
optical fibers (GOFs), which use silica glass for the core and cladding, PMMA-POF utilizes
a general-purpose resin for the core and a fluorinated polymer for the cladding. The study
involved heating tantalum wires [210] within the PMMA-POF to induce thermal conduc-
tivity and internal emission, leading to energy transfer between layers. The Wheatstone
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bridge method was employed to measure wire resistance, and combined conductive and
radiative heat transfer equations were used to analyze the thermal effects.

Finally, Shin et al. [87] used a first-order R-C circuit model to minimize complexity and
computational burden, with errors from model uncertainty being offset by an LSTM neural
network. The circuit comprises internal resistance R0, polarization resistance Rp, and
polarization capacitance Cp. Factors like discharge profiles, SOC state, temperature, and
aging can affect these parameters, but real-time monitoring was unnecessary as the LSTM
compensates for errors. Only one parameter identification was performed per experiment,
and the average values were used in the EKF. Step Response Analysis [211] (SRA) was
employed to estimate the internal parameters.

The research highlights the importance of precise experimental setups, such as ter-
ahertz inspection and thermal conductivity measurement, in generating high-quality
datasets that can effectively train neural networks. Additionally, the use of interpola-
tion methods and simplified circuit models underscores the potential for overcoming data
limitations and computational challenges.

3.2. Interpretability

The black-box nature of LSTM models [212] poses challenges in interpreting their
outputs. Developing methods to enhance model transparency and interpretability is
important for their broader acceptance and application.

Guo et al. [213] explore enhancing LSTM recurrent neural networks for time-series
data by making their predictions more interpretable. The study introduces a method to
learn variable-wise hidden states within the LSTM to capture individual variable dynamics
and their contributions to predictions [214]. A mixture attention mechanism is developed
to model the generative process of the target variable, allowing for joint learning of net-
work parameters, variable importance, and temporal importance. The approach improves
prediction performance and provides insights into variable contributions. The method
supports multistep predictions and evaluates results both qualitatively and quantitatively,
aiming to offer an end-to-end framework for forecasting and knowledge extraction in
multivariable contexts.

Liang et al. [215] introduce Structure-Evolving LSTM, a framework for learning in-
terpretable data representations using LSTM networks with hierarchical graph structures.
Unlike fixed-structure LSTM models, this approach dynamically learns intermediate graph
representations.

Framework overview:

• Initial graph [216]: Start with an element-level graph G(0) = ⟨V(0), E(0)⟩, where nodes

v(0)i are data elements represented by features f (0)i .
• Graph evolution [217]: In each LSTM layer, nodes are merged based on compatibility,

estimated using LSTM gate outputs, and guided by a Metropolis–Hastings algorithm
to avoid local optima.

For the t-th LSTM layer with graph G(t) = ⟨V(t), E(t)⟩, the updates are defined
as follows:

• Hidden and memory states:

h(t)i = tanh
(

g(t)o ⊙m(t)
i

)
(23)

m(t)
i =

1

|N(t)
G (i)|

∑
j∈N(t)

G (i)

(
1(qj = 1)⊙ ḡ(t)ij ⊙m(t)

j + 1(qj = 0)⊙ ḡ(t)ij ⊙m(t−1)
j

)
(24)

+ g(t)f ⊙m(t−1)
i + g(t)u ⊙ g(t)c (25)
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• Gates:

g(t)u = σ
(

Wu f (t)i + Uuh(t−1)
i + Uun h̄(t−1)

i + bu

)
(26)

g(t)f = σ
(

W f f (t)i + U f h(t−1)
i + b f

)
(27)

g(t)c = tanh
(

Wc f (t)i + Uch(t−1)
i + Ucn h̄(t−1)

i + bc

)
(28)

g(t)o = σ
(

Wo f (t)i + Uoh(t−1)
i + Uon h̄(t−1)

i + bo

)
(29)

ḡ(t)ij = σ
(

W f f (t)i + U f nh(t−1)
j + b f

)
(30)

The merging probability [218] p(t)ij is used to evaluate the likelihood of merging two
nodes i and j in the higher-level graph structure at time step t. It is calculated using the
sigmoid function applied to a linear combination of adaptive gate outputs.

p(t)ij = σ
(

We ḡ(t)ij

)
(31)

where

• σ is the sigmoid function.
• We are the weights for the merging probability.

• ḡ(t)ij are the adaptive gates that measure the influence of nodes i and j based on their
states.

The transition probability [219,220] α(G(t) → G(t+1)) is used in the Metropolis–
Hastings [221] algorithm to decide whether to accept the new graph G(t+1). It is given by

α(G(t) → G(t+1)) = min

(
1,

q(G(t+1) → G(t))

q(G(t) → G(t+1))
· P(G(t+1)|I; W, U)

P(G(t)|I; W, U)

)
(32)

where

• q(G(t+1) → G(t)) is the probability of transitioning from graph G(t+1) back to G(t).
• q(G(t) → G(t+1)) is the probability of transitioning from graph G(t) to G(t+1).
• P(G(t+1)|I; W, U) is the posterior probability of graph G(t+1) given the model parame-

ters and input data.
• P(G(t)|I; W, U) is the posterior probability of graph G(t) given the model parameters

and input data.

The acceptance probability ratio is used to determine the likelihood of accepting the
new graph G(t+1) in the Metropolis–Hastings algorithm. It is given by

q(G(t+1) → G(t))

q(G(t) → G(t+1))
∝ ∏

(i,j)∈E(t)\E(t+1)

p(t)ij (33)

where

• q(G(t+1) → G(t)) and q(G(t) → G(t+1)) are the transition probabilities between
graphs.

• ∏(i,j)∈E(t)\E(t+1) p(t)ij is the product of merging probabilities for all edges that are re-

moved in G(t+1).

A brief summary of utilized probabilities in this framework could be described
as follows:

• Merging probability (p(t)ij ) helps in deciding whether to merge two nodes based on
their mutual influence.

• Transition probability (α(G(t) → G(t+1))) is used to select the new graph, considering
structural improvements.
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• Acceptance probability determines the likelihood of accepting the new graph based
on changes in the graph structure and merging probabilities.

These probabilities evolve the graph structure and adapt the model to better represent
and process the data.

The Structure-Evolving LSTM is tested on semantic object parsing tasks, demonstrating
improved performance over traditional LSTM models by efficiently capturing multilevel
semantic abstractions.

4. Future Directions
4.1. Integration with Reinforcement Learning (RL)

The integration of LSTM networks with other advanced technologies, such as rein-
forcement learning [222] (RL) and hybrid models, holds promise for further enhancing
predictive capabilities in polymeric sciences. Figure 5 provides a conceptual overview of
how LSTM networks can be integrated with RL and their applications in dialog systems
and materials science

William et al. [223] introduces an end-to-end model for task-oriented dialog systems
using LSTM networks. The model’s core is an LSTM that maps raw dialog history directly
to a distribution over system actions. This design automates the feature engineering of the
dialog state, allowing developers to focus on implementing business rules and APIs for
real-world actions. The LSTM can be trained using supervised learning [224] (SL), where
it mimics example dialogs, or RL, where it learns through user interaction. Experiments
reveal that SL and RL are complementary: SL initializes a reasonable policy from a few
dialogs, and RL further refines this policy, accelerating learning.

SL trains the LSTM to replicate dialogs provided by developers. For large-scale
deployment, RL is employed, where the system receives a reward (1 for task completion,
0 otherwise) and aims to maximize the expected return. A discount factor of 0.95 encourages
faster dialog completion.

LSTM with Reinforcement Learning (RL)

LSTM Network

Supervised Learning (SL)

Reinforcement Learning (RL)

Dialog System Materials Science

Automated Feature Engineering
Dialog History Mapping

Predictive Capabilities
Data Analysis

Trains on Example Dialogs
Initial Policy Learning

Dialog System Training
Model Initialization

Refines Policy through Rewards
Optimizes Experimental Protocols

Learning through Interaction
Policy Improvement

Automates Dialog State
Action Distribution

Business Rule Implementation
Real-World Action Execution

Automates Data Interpretation
Optimizes Experimental Procedures

Material Property Prediction
Polymer Synthesis Optimization

Figure 5. Conceptual diagram of LSTM with RL integration.

The policy gradient approach updates weights w as follows:

w← w + α

(
∑

t
∇w log π(at | ht; w)(R− b)

)
(34)
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where α is the learning rate, at is the action at time t, ht is the dialog history, R is the dialog
return, b is a baseline, and π(a | h; w) is the policy distribution parameterized by w. The
baseline b estimates the average return from the last 100 dialogs.

To improve convergence, the following modifications are made:

• Action Mask [225]: A small constant is added to action probabilities to avoid undefined
logarithms.

• Momentum [226]: AdaDelta optimization accelerates convergence.
• Policy Reconstruction [227]: After each RL update, the policy is checked against the

training set, with SL applied if necessary to ensure it reconstructs the training dialogs.

The RL optimization is evaluated with and without initial SL. Results show that RL
alone may struggle without SL pretraining. Adding a few SL dialogs accelerates learning
and improves policy performance.

In materials science, especially with complex polymers, understanding and interpret-
ing experimental data can be challenging due to the high dimensionality and variability of
the data. The LSTM-based dialog system’s ability to automate the interpretation of dialog
history can be analogous to automating the analysis of experimental data [228]. By training
LSTM models to predict material properties or behaviors based on historical experimental
data, researchers can streamline the process of identifying patterns and insights [229].

The RL component of the model can be adapted to optimize experimental procedures.
Just as RL refines dialog policies based on user interactions, it can refine experimental
protocols by learning from past experiments [230]. For example, RL can be used to op-
timize polymer synthesis conditions, adjusting parameters like temperature, time, and
concentrations to maximize desired properties such as tensile strength or elasticity [231].

The combination of SL and RL can be leveraged to discover new materials [232]. SL
can provide an initial model based on known data, while RL can explore new experimental
conditions or material combinations to discover promising new polymers. For instance, SL
could be used to learn from existing polymer databases, and RL could be used to explore
new chemical formulations or processing conditions.

In the design of advanced polymers, dialog systems can be replaced by optimiza-
tion systems that suggest material formulations or processing conditions based on in-
put criteria [233]. By using LSTM networks to infer material design requirements and
RL to iteratively improve the design, researchers can develop polymers more efficiently
and effectively.

4.2. Integration with Heuristic Algorithms

The integration of heuristic algorithms, particularly genetic algorithms, with LSTM [234]
models can also enhance the performance of predictive models. This combination lever-
ages ability to capture complex temporal dependencies, leading to improved accuracy and
efficiency in predictions. Figure 6 provides a clear overview of how genetic algorithms
can enhance LSTM networks and their applications in various domains, such as predictive
maintenance, quality analysis, and optimization.

Understanding the remaining useful life [235] (RUL) of equipment is essential for
effective predictive maintenance (PdM), addressing issues such as equipment downtime
and unnecessary maintenance. Chui et al. [236] introduce a hybrid approach combining
CEEMD and Wavelet Packet Transform [237] (WPT) for feature extraction, and RNN with
LSTM for prediction.
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Integration of Genetic Algorithms (GA) with LSTM

Genetic Algorithms (GA) LSTM Network

Feature Extraction Hyperparameter Optimization

Material Lifespan Prediction Quality Analysis

Production Optimization Simulation Models

Hyperparameter Optimization
Efficient Search for Optimal Parameters

Temporal Dependency Capturing
Material Strength and Lifespan Prediction

CEEMD for Noise Reduction
WPT for Time-Frequency Analysis

GA for Fine-Tuning
Improves LSTM Accuracy

Predicts Remaining Useful Life
Proactive Maintenance

Optimizes Feature Selection
Accurate Material Quality Assessment

Controls Temperature and Pressure
Improves Efficiency

Optimizes Simulation Parameters
Better Real-World Predictions

Figure 6. Conceptual diagram of GA and LSTM integration in predictive models.

The CEEMD-WPT method improves feature extraction by reducing noise and captur-
ing both time and frequency information. The steps are as follows:

Decomposition with CEEMD:

x̄i(t) = x(t) + σwi(t) (35)

IMF1(t) = EMD(x̄i(t)) (36)

IMF1(t) =
1
L

L

∑
i=1

IMFi
1(t) (37)

r1(t) = x(t)− IMF1(t) (38)

Further decomposition with WPT:

CLj,k =
M−1

∑
l=0

IMFj,2k+l · hlow,l (39)

CHj,k =
M−1

∑
l=0

IMFj,2k+l · hhigh,l (40)

One of the key benefits of integrating GA with LSTM is in hyperparameter optimiza-
tion. Tuning the hyperparameters for LSTM models—such as the number of LSTM layers
and the sizes of hidden layers—can be both time-consuming and computationally intensive.
GA offers an efficient method to search for the optimal set of hyperparameters [238]. By
optimizing these parameters, GA can improve the performance and accuracy of LSTM
models used to analyze materials data, such as predicting material strength or lifespan.

Another application is in predicting material lifespan [239]. LSTM networks are
adept at capturing temporal dependencies in data for predicting the remaining useful
life of materials. When combined with GA, which can fine-tune model architecture and
parameters, LSTM models become more accurate in predicting material lifespan. This
integration helps in proactive maintenance and prevents material failures.
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In the realm of quality analysis, materials science often involves complex data analysis
to assess the quality of materials based on various tests and properties. GA can optimize
feature selection [240] and parameters for LSTM models, enabling more accurate analysis
of material quality. This assists in developing new materials with desired properties and
ensures quality control.

The integration also proves beneficial in optimizing production processes. Manag-
ing production processes, such as controlling temperature and pressure, requires precise
data analysis to ensure optimal conditions. By optimizing LSTM models with GA [241],
predictions and controls for production processes become more accurate. This results in
improved efficiency and reduced production costs.

Finally, in enhancing simulation models, materials science often relies on simula-
tions to understand material behavior under different conditions. GA can be employed
to optimize the parameters of LSTM-based simulation models, thereby improving the
accuracy of simulations. This leads to better predictions of material behavior in real-world
scenarios [242].

In summary, the combination of GA with LSTM models offers substantial improve-
ments in materials science by optimizing model accuracy, simplifying hyperparameter
tuning, and enhancing data analysis processes. This integration leads to more precise pre-
dictions of material properties and behaviors, improved quality control, and more efficient
production processes.

4.3. Real-Time Applications

Accurate and prompt damage detection in Structural Health Monitoring (SHM) is
crucial, especially under varying ambient temperatures. However, this approach can also
be highly beneficial in the field of polymer science, particularly for real-time applications. In
both domains, the material’s response to environmental conditions impacts its performance
and longevity. Figure 7 provides a visual overview of how LSTM networks can be applied
in real-time to both structural health monitoring and polymer science, highlighting their
roles in prediction, anomaly detection, and damage localization.

For example, Sharma et al. [243] introduce a real-time SHM approach using LSTM
network. The approach consists of two key components: an unsupervised LSTM prediction
network for anomaly detection and a supervised classifier network for damage localization.

The LSTM prediction network is trained on healthy (undamaged) structural response
data to predict one-step-ahead responses under varying operational conditions. The
prediction error ek at time k is calculated as

ek = yk − ŷk = yk − LSTM(yk−1) (41)

where yk is the actual response and ŷk is the predicted response. The prediction error ek
follows a Gaussian distribution:

ek ∼ N (µe, σ2
e ) (42)

The likelihood Lk of the prediction error is computed as

Lk =
1√

2πσ2
e

exp
(
− (ek − µe)2

2σ2
e

)
(43)

A significant drop in Lk indicates potential structural damage.
Upon detecting damage, a supervised classifier network is activated to localize the

damage. The classifier network is trained on simulated damaged responses generated from
a high-fidelity finite element model of the structure. The model is updated to match the
dynamic properties of the real structure, and damage is simulated by reducing elasticity,
generating the training data for localization. This approach was tested on a real bridge
subjected to significant thermal variations, demonstrating reliable and prompt damage
detection and localization across different operating conditions.
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Real-Time LSTM Applications
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Figure 7. Conceptual diagram of real-time LSTM applications in SHM and polymers.

Another case of a real-time LSTM application is presented by Gu et al. [244], where
they introduce a real-time dynamic prediction model for carbon content during the second-
blowing stage of steelmaking. The accurate prediction of endpoint carbon content may
control the converter steelmaking process. The approach integrates a Case-Based Reason-
ing [245] (CBR) algorithm to retrieve similar historical cases and their process parameters,
followed by training an LSTM model with these parameters to forecast the carbon content
for the next moment. The model’s predictions were validated using actual production data,
demonstrating improved accuracy.

Just as the SHM approach utilizes LSTM [246,247] for detecting and localizing struc-
tural damage under varying ambient temperatures in the example above, similar techniques
can be applied to predict and monitor the behavior of polymers in real time.

Polymers are often subjected to dynamic environments where factors such as tempera-
ture, humidity, and mechanical stress can affect their structural integrity [248]. Real-time
monitoring of these changes may help to predict failures and ensure material reliability.
An LSTM-based approach, akin to the one used in SHM, can be implemented to model
the time-dependent behavior of polymers, particularly their viscoelastic properties, under
different operational conditions [249,250]. An LSTM network would be trained on his-
torical data representing the polymer’s response to various stimuli, allowing it to predict
future behavior. For example, the network could predict the degradation of a polymer’s
mechanical properties over time, similar to how it predicts structural responses in SHM.

Just as in SHM, where a drop in the prediction likelihood Lk signals potential structural
damage, a similar approach can be used in polymers to detect anomalies such as the
onset of cracking [251], crazing [252], or other forms of material degradation [253]. By
setting a threshold for the prediction error or likelihood, the system can trigger an alert
when the polymer’s behavior deviates significantly from the expected norm, enabling
real-time intervention.

For damage localization in polymers [254], a supervised classifier network could be
employed to identify the specific type or location of damage within a polymeric structure.
This could involve training the network on simulated data, similar to how it is done in
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SHM with finite element models but tailored to the characteristics of polymers, such as
variations in molecular weight, cross-linking density, or filler distribution.

Consider the real-time monitoring of a polymer coating subjected to fluctuating tem-
peratures [255]. An LSTM network could be trained on data reflecting the coating’s response
to temperature changes. Over time, if the coating begins to deteriorate—manifesting as
microcracks [256] or changes in elasticity—the LSTM model would detect these anoma-
lies, and the classifier network could pinpoint the affected areas, allowing for targeted
maintenance before failure occurs.

Integrating the LSTM-based real-time monitoring and anomaly detection approach
from SHM into polymer science could be used to predict, detect, and localize damage
in polymeric materials [257] under dynamic conditions. This connection opens up new
possibilities for ensuring the reliability and safety of polymers in various applications, from
coatings and composites to biomedical devices and packaging materials.

5. Conclusions

This review explored the application of LSTM networks in the field of polymer sci-
ence. The integration of LSTM networks has transformed the performance and efficiency
of various applications in polymer science and engineering. LSTM models, with their
ability to capture temporal dependencies and long-term patterns in sequential data, have
proven to be highly effective in improving the accuracy and reliability of predictions and
classifications. This section discusses the specific improvements observed when LSTM was
integrated into different studies.

5.1. Improvement in Performance and Efficiency with LSTM Integration

One of the most notable improvements when LSTM was integrated is the increase in
predictive accuracy. For instance, in the study by Luong et al. [185], the LSTM network
was used to predict the nonlinear behavior of an antagonistic joint driven by a hybrid
TCA bundle. The model demonstrated a significant reduction in prediction errors, with an
RMSE of 0.05 and an MAE of 0.04. This improvement highlights the capability of LSTM to
handle complex, nonlinear relationships in time-series data.

Similarly, in the work by Kumar et al. [187], a hybrid LSTM-GRU model with CEEM-
DAN preprocessing was employed to detect faults in polymer gears. The model achieved
an accuracy of 85% and a precision of 80%, showcasing the effectiveness of LSTM in
fault detection applications. The integration of LSTM allowed for more accurate and reli-
able identification of faults, which is crucial for maintaining the operational integrity of
polymer gears.

LSTM models have also been instrumental in optimizing various industrial processes.
Shunhu et al. [189] utilized a CNN-LSTM network to correlate process parameters with
outcomes in the drilling of CFRP components. The model exhibited a mean squared error
(MSE) of 0.03 and an R-squared value of 0.92, indicating a high degree of correlation and
predictive power. This integration of LSTM led to more efficient drilling processes, with
improved quality and energy efficiency.

In another study by Aklouche et al. [190], a Bidirectional LSTM (BiLSTM) model
with VMD preprocessing was used to estimate damage severity in CFRP using LW data.
The model achieved an RMSE of 0.06 and an MAE of 0.05, demonstrating its ability to
accurately predict damage severity. This improvement in predictive capability can lead to
more efficient maintenance and repair strategies, thereby enhancing the overall efficiency
of the system.

LSTM models have also shown promise in real-time applications, where quick and
accurate predictions are essential. Lin et al. [201] developed an LSTM model for the
real-time prediction of hydrogen fuel rejection (HFR) in PEMFCs. The model achieved
an accuracy of 80% and a precision of 75%, highlighting its effectiveness in real-time
monitoring and control applications. The integration of LSTM allowed for the more
efficient operation of PEMFCs, with improved performance and reduced downtime.
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In the field of sensor technologies, LSTM models have been used to enhance classifica-
tion and detection capabilities. Lorenzo et al. [202] employed a 1D CNN and SVM+RBF
model to classify plastics using hyperspectral images. The model achieved an accuracy of
75% and an F1 score of 0.70, demonstrating its effectiveness in plastic classification. The
integration of LSTM in this context allowed for more accurate and reliable classification,
which is crucial for recycling and waste management applications.

Similarly, Choi et al. [203] used 1D CNN and LSTM models to enhance mechanical
stability and motion detection in PBU/AgNW/PBU sensors. The model achieved a preci-
sion of 82% and a recall of 78%, showcasing its ability to accurately detect motion. This
improvement in detection capability can lead to more efficient and reliable sensor systems,
with applications in various fields such as robotics and healthcare.

5.2. Elementary Data Components for Effective LSTM Analysis

The successful application of LSTM networks in delivering reliable new insights and
enhancing the understanding of known problems hinges on the quality and structure
of the input data. LSTM models are particularly effective in handling sequential data,
where temporal dependencies and long-term patterns are crucial. This section explores the
elementary parts in data that are essential for performing LSTM analyses effectively.

One of the fundamental requirements for LSTM models is the presence of sequential
data. These data should be structured in a way that captures the temporal dynamics of
the phenomenon being studied. For instance, time-series data, such as sensor readings,
financial market trends, or polymer degradation measurements over time, are ideal for
LSTM applications. The sequential nature of the data allows LSTM models to learn from
past observations and make predictions about future states [258].

Effective feature engineering impacts the performance of LSTM models. Features
should be carefully selected and engineered to capture the most relevant aspects of the data.
In the context of polymer science, features might include physical properties, chemical
compositions, environmental conditions, and operational parameters. For example, in
predicting the mechanical response of CFRP laminates, features such as fiber orientation,
matrix properties, and loading conditions are essential. Proper feature engineering ensures
that the LSTM model can learn meaningful patterns and relationships in the data.

Preprocessing the data includes normalization, scaling, and handling missing values.
Normalization ensures that all features are on a similar scale, which is important for the
stability and convergence of the LSTM model [259]. Scaling techniques, such as Min-Max
scaling or Z-score normalization, are commonly used. Additionally, handling missing
values through imputation or interpolation is necessary to maintain the integrity of the
sequential data [260].

LSTM models excel at capturing temporal dependencies in the data. Therefore, it is es-
sential to ensure that the data contain sufficient temporal information. This can be achieved
by including time-stamped records, ensuring consistent sampling intervals, and main-
taining the chronological order of the data. For instance, in predicting the state of health
(SoH) of lithium polymer batteries, the data should include time-stamped measurements
of charge/discharge cycles, voltage, and current.

Including contextual information can significantly enhance the performance of LSTM
models. Contextual information provides additional insights into the data, such as en-
vironmental conditions, operational settings, or external factors that may influence the
phenomenon being studied. For example, in predicting the degradation of polymer com-
posites, contextual information might include temperature, humidity, and mechanical
stress. This information helps the LSTM model to understand the underlying mechanisms
and make more accurate predictions.

For supervised learning tasks, labeled data provide the ground truth against which
the LSTM model can be trained and evaluated. In the context of polymer science, labels
might include classifications of material states, performance metrics, or degradation levels.
For instance, in classifying substances within GFRP structures using THz-TDS, the data
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should include labeled examples of different substances. Proper labeling ensures that the
LSTM model can learn to accurately classify and predict the desired outcomes.

5.3. Challenges in LSTM Application

However, several challenges remain that hinder the full potential of models in the
domain of LSTM networks in the field of polymer science. This section discusses these
challenges and provides suggestions on what polymer scientists can do to improve the
efficiency of LSTM models, including potential areas for further research and development.

The performance of LSTM models heavily relies on the quality and availability of
data. In polymer science, obtaining high-quality time-series data can be challenging
due to the complexity of experimental setups and the variability of material properties.
Polymer scientists should focus on developing standardized protocols for data collection
and preprocessing. Collaboration with data scientists can help in designing robust data
pipelines that ensure the integrity and consistency of the data.

5.3.1. Feature Engineering

Effective feature engineering influence for the performance of LSTM models. However,
identifying the most relevant features in polymer data can be complex due to the multi-
tude of influencing factors such as chemical composition, environmental conditions, and
mechanical properties. Researchers should explore automated feature selection techniques
and domain-specific feature engineering methods. Advanced ML algorithms, such as
genetic algorithms and feature importance analysis, can be employed to identify the most
impactful features.

5.3.2. Model Complexity and Computational Cost

LSTM models can be computationally intensive, especially when dealing with large
datasets and complex polymer systems. This can limit their practical application in real-
time monitoring and control systems. Investigating model simplification techniques and
efficient training algorithms can help reduce computational costs. Techniques such as
model pruning, quantization, and the use of lightweight LSTM variants can be explored to
make the models more computationally efficient.

LSTM models trained on specific datasets may not generalize well to other polymer
systems or conditions. This can limit their applicability in diverse and dynamic environ-
ments. Polymer scientists should focus on developing transfer learning approaches that
allow models to adapt to new datasets and conditions. Techniques such as domain adapta-
tion and meta-learning can be employed to improve the generalization and transferability
of LSTM models.

5.3.3. Interpretability and Explainability

The black-box nature of LSTM models can make it difficult to interpret their predictions
and understand the underlying mechanisms. This can be a barrier to their adoption in criti-
cal applications where transparency is essential. Researchers should explore interpretable
ML techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local Inter-
pretable Model-agnostic Explanations), to provide insights into models’ decision-making
processes. Additionally, developing hybrid models that combine LSTM with interpretable
models can enhance explainability. Combining LSTM models with other ML techniques,
such as reinforcement learning, can lead to more robust and adaptive systems. Hybrid
models can leverage the strengths of different approaches to improve predictive accuracy
and efficiency. Developing preprocessing techniques, such as data augmentation and noise
reduction, can enhance the quality of the input data and improve the performance of LSTM
models. Techniques like variational mode decomposition (VMD) and empirical mode
decomposition (EMD) can be particularly useful in this regard.
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5.3.4. Real-Time Monitoring and Control Systems

Further research is needed to develop real-time monitoring and control systems that
can effectively utilize LSTM models. This includes optimizing model inference times and
integrating LSTM models with sensor networks and control algorithms.

Integrating data from multiple modalities, such as sensor data, spectroscopic data,
and environmental data, can provide a more comprehensive view of polymer systems.
Multimodal LSTM models can be developed to leverage these diverse data and improve
predictive accuracy.

Collaborative research initiatives between polymer scientists, data scientists, and
engineers can drive innovation in the application of LSTM models. Interdisciplinary collab-
orations can lead to the development of novel approaches and the sharing of best practices.

5.4. Itemized Key Findings

LSTM models, known for their capability to capture complex temporal dependen-
cies and nonlinear relationships in data, have shown considerable promise in advancing
polymer research and applications. The key findings are summarized as follows:

• LSTM networks have been effectively utilized to predict various properties of poly-
mers, such as mechanical strength, degradation rates, and thermal behavior. Their
ability to analyze time-series data and discern historical trends enables accurate and
robust predictions, crucial for the design and optimization of polymer materials.

• LSTM models have demonstrated improvements in extracting meaningful features
from complex polymer datasets. This ability is essential for reducing dimensionality
and focusing on the most relevant variables, thereby enhancing the performance of
predictive models and facilitating better material characterization.

• The combination of LSTM models with other ML methods, such as genetic algorithms
(GAs) and ensemble techniques, has proven beneficial in optimizing hyperparameters
and improving prediction accuracy. These integrations help handle large and complex
datasets more effectively.

• Despite their advantages, the application of LSTM models in polymer science presents
challenges, including the need for extensive computational resources, the complexity
of model training, and the requirement for high-quality data. Addressing these issues
through advanced optimization techniques and improved data acquisition methods is
essential for further progress.

• There is a potential for future research in the application of LSTM to polymers. Further
studies could focus on enhancing model interpretability, integrating real-time data for
dynamic predictions, and exploring novel polymer applications. Advances in compu-
tational power and algorithm efficiency are expected to facilitate more widespread
adoption and refinement of LSTM-based models.
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Abbreviations
The following abbreviations are used in this manuscript:

Machine learning (ML) A field of artificial intelligence focused on developing algorithms that enable computers to
learn from data.

Long Short-Term Memory
(LSTM)

A type of recurrent neural network capable of remembering long-term dependencies in data.

Artificial neural network (ANN) A mathematical model inspired by the neural network of the brain, used for data processing
and decision making.

Charge-Coupled Device (CCD) An electronic device used for capturing images in digital cameras and telescopes.
Facial recognition (Facial Recog.) Technology for identifying or verifying a person’s identity based on their facial image.
Object tracking (Obj. Tracking) The process of following the movement of an object in a sequence of images or video.
Chemical sensor arrays (Chem.
Sensor Arrays)

A system of multiple sensors used for detecting and analyzing chemical substances.

Temperature response (Temp.
Resp.)

The change in system parameters in response to a change in temperature.

Neural architecture (Neural
Arch.)

The structure and organization of a neural network.

Chemical awareness (Chem.
Awareness)

The ability of a system to detect and identify chemical substances.

Dynamic environments (Dyn.
Envs.)

Changing or unstable conditions in which a system operates.

Carbon black A black carbon powder used as a filler in rubber and plastics.
Organic polymers (Org.
Polymers)

Polymers made of carbon compounds, widely used in various fields.

Poly(4-vinyl phenol) (P(4-vinyl
phenol))

A polymer used in electronics manufacturing and coatings.

Poly(styrene-co-allyl alcohol)
(P(styrene-co-allyl alcohol))

A copolymer used in plastics and coatings.

Poly(ethylene oxide) (P(ethylene
oxide))

A polymer used in medicine, cosmetics, and the textile industry.

Classification tasks (Class. Tasks) Tasks related to categorizing data into classes or groups.
Traffic sign recognition (Traffic
Sign Recog.)

Technology for recognizing traffic signs for use in automated driving systems.

Olfactory signal classification
(Olf. Signal Class.)

The process of classifying smells based on signals obtained from olfactory sensors.

Temperature dynamics (Temp.
Dyn.)

The study of temperature change in a system over time.

Olfactory sensing systems (Olf.
Sensing Sys.)

Systems that use sensors to detect and analyze odors.

Extended Kalman Filter (EKF) A filtering algorithm used for state estimation in nonlinear dynamic systems.
State-of-charge estimation (SOC
Est.)

The estimation of a battery’s charge level based on measured data.

Lithium polymer batteries
(Li-poly Batteries)

A type of battery with a polymer electrolyte, known for high energy density.

Battery management system
(BMS)

A system that monitors and optimizes battery performance.

Carbon fiber-reinforced polymer
(CFRP)

A composite material made from carbon fiber, known for high strength and low weight.

Laser infrared thermography
(Laser IR Thermography)

A diagnostic method using infrared laser for temperature measurement in materials.

Defect depth assessment (Def.
Depth Assess.)

Determining the depth of defects in materials or structures.

Traffic sign recognition (TSR) The process of automatically recognizing traffic signs.
Generative DL (Generative DL) A branch of DL focused on generating new data based on a trained model.
Ultraviolet–visible spectra
(UV-vis Spectra)

Absorption and reflection spectra in the ultraviolet and visible range, used for substance
analysis.

Coarse-grained models Models that simplify complex systems while retaining essential characteristics.
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Cable-driven robots Robots controlled by a system of cables or wires.
Nonlinear characteristics
(Nonlinear Char.)

Properties of a system or material that do not follow linear laws.

Real-time control The control of processes in real time.
Hierarchical recurrent neural
network (H-RNN)

A variant of recurrent neural network with a hierarchical structure.

Composite damage (Comp.
Damage)

Damage to composite materials under various factors.

Finite element model (FE Model) A numerical model used for solving problems in solid mechanics using the finite element
method.

Twisted-coiled actuators Actuators made of twisted and coiled fibers that change shape in response to temperature or
electrical current.

Model Predictive Control (Model
Predict. Control)

A control algorithm that uses predictive models to optimize system performance.

Organic photovoltaic materials
(OPV Materials)

Organic materials used for making solar cells.

Simplified Molecular Input Line
Entry System Fingerprints
(SMILES Fingerprints)

A string-based encoding of chemical structures used for molecular analysis and comparison.

Polymer repeat units The basic structural elements that make up polymers.
Glass fiber-reinforced polymer
(GFRP)

A composite material reinforced with glass fiber, used in construction and engineering.

Terahertz time-domain
spectroscopy (Terahertz
Time-Domain Spec.)

A method for studying materials using terahertz radiation.

Dielectric electroactive polymer
actuators (DEAP Actuators)

Actuators based on dielectric electroactive polymers that change shape when an electric field is
applied.

Hysteresis A phenomenon where the state of a system depends on its previous states despite identical
current conditions.

Empirical mode decomposition
(EMD)

A method for signal analysis that decomposes signals into component frequencies.

Battery state-of-charge
estimation (Battery SOC Est.)

Estimation of a battery’s state of charge.

Plastic recycling The process of recycling plastics for reuse.
Hyperspectral imaging A method of acquiring and analyzing images that include spectral information across a wide

range of wavelengths.
Polymer insulation resistance
(Polymer Ins. Resist.)

A polymer’s ability to resist electrical leakage.

Melt index A measure of the flow rate of a polymer when melted under specific conditions.
Polymerization processes Chemical processes in which monomers combine to form polymers.
Acoustic behavior The characteristics of a system related to the generation, transmission, and absorption of sound

waves.
Muffler design The design and construction of mufflers to reduce noise.
Soft sensor A software tool for estimating system parameters based on indirect measurements.
Dielectric electroactive polymer
actuation (DEAP Act.)

The actuation process of a device based on dielectric electroactive polymers.

Proportional–integral–derivative
controller (PID Controller)

A control algorithm using three components: proportional, integral, and derivative.

Ethyl acetate solution (Ethyl
Acetate Sol.)

A solution of ethyl acetate, used in various chemical processes.

Hybrid sensor A sensor that combines multiple technologies to enhance accuracy and functionality.
Motor tics recognition (Motor
Tics Recog.)

A system for recognizing motor tics in individuals based on movement analysis.

Polymethyl methacrylate
(PMMA)

A transparent thermoplastic widely used in construction and medicine.

Heat transfer The process of transferring heat from one object to another.
High-temperature proton
exchange membrane fuel cell
(High-Temp PEMFC)

A fuel cell with a proton exchange membrane operating at high temperatures.
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Hydrogen starvation (H2
Starvation)

A condition where a fuel cell receives insufficient hydrogen.

Nafion membranes Proton-conducting polymer membranes used in fuel cells.
Flooding and drying Phenomena occurring in fuel cells due to excess moisture or drying of the membrane.
Tool wear prediction (Tool Wear
Pred.)

Predicting tool wear using data analysis and modeling.

Polybutadiene-urethane A polymer used as an elastomer or coating.
Motion detection Technology for detecting movement in space using sensors or cameras.
Knot identification (Knot Ident.) The process of recognizing knots in a rope or cord.
Structural health monitoring
(SHM)

Monitoring the condition of structures to detect defects or damage.

Lamb wave A type of elastic wave that propagates in solid materials and is used for diagnostics.
Variational mode decomposition
(VMD)

A signal decomposition method for analyzing various modes of a signal.
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