Functional UV Blocking and Superhydrophobic Coatings Based on Functionalized CeO2 and Al2O3 Nanoparticles in a Polyurethane Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Functionalization
2.1.1. Al2O3 Nanoparticles Functionalized with ODPA
2.1.2. CeO2 Nanoparticles Functionalized with ODPA
2.1.3. Al2O3-CeO2 Nanoparticles Functionalized with ODPA
2.1.4. Preparation of Al2O3-CeO2-ODPA/Polyurethane Nanocomposite
2.1.5. Spin Coating of Nanocomposite Coatings
2.2. Characterization
3. Results and Discussion
3.1. Al2O3, CeO2, and Al2O3-CeO2 Nanoparticle Functionalization
3.2. Nanoparticles and Nanocomposite Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedraza, F.; Mahadik, S.A.; Bouchaud, B. Synthesis of ceria based superhydrophobic coating on Ni20Cr substrate via cathodic electrodeposition. Phys. Chem. Chem. Phys. 2015, 17, 31750–31757. [Google Scholar] [CrossRef] [PubMed]
- Betke, A.; Kickelbick, G. Long alkyl chain organophosphorus coupling agents for in situ surface functionalization by reactive milling. Inorganics 2014, 2, 410–423. [Google Scholar] [CrossRef]
- Lv, D.; Ou, J.; Hu, W.; Luo, X.; Wang, F. Superhydrophobic surface on copper via a one-step solvent-free process and its application in oil spill collection. RSC Adv. 2015, 5, 49459–49465. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Wong, C.-P. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir 2010, 26, 16110–16114. [Google Scholar] [CrossRef]
- Thissen, P.; Valtiner, M.; Grundmeier, G. Stability of phosphonic acid self-assembled monolayers on amorphous and single-crystalline aluminum oxide surfaces in aqueous solution. Langmuir 2010, 26, 156–164. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, Y.; Yan, X. Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating. Polymers 2024, 16, 2308. [Google Scholar] [CrossRef]
- Guerrero, G.; Alauzun, J.G.; Granier, M.; Laurencin, D.; Mutin, P.H. Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials. Dalton Trans. 2013, 42, 12569–12585. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Hu, M.; Zheng, Z.; Wang, K.; Li, X. Preparation of Ni/graphene hydrophobic composite coating with micro-nano binary structure by poly-dopamine modification. Surf. Coat. Technol. 2018, 353, 1–7. [Google Scholar] [CrossRef]
- Woo, K.; Hong, J. Surface modification of hydrophobic iron oxide nanoparticles for clinical applications. IEEE Trans. Magn. 2005, 41, 4137–4139. [Google Scholar]
- Konda, S.; Mohammadi, M.M.; Buchner, R.D.; Lin, H.; Swihart, M.T. Flame-based synthesis and in situ functionalization of palladium alloy nanoparticles. AIChE J. 2018, 64, 3826–3834. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hu, Y.; Li, C. In situ surface functionalization of hydrophilic silica nanoparticles via flame spray process. J. Mater. Sci. Technol. 2015, 31, 901–906. [Google Scholar] [CrossRef]
- Sharma, H.; Bhardwaj, M.; Kour, M.; Paul, S. Highly efficient magnetic Pd(0) nanoparticles stabilized by amine functionalized starch for organic transformations under mild conditions. Mol. Catal. 2017, 435, 58–68. [Google Scholar] [CrossRef]
- Vázquez-Velázquez, A.R.; Velasco-Soto, M.A.; Pérez-García, S.A.; Licea-Jiménez, L. Functionalization effect on polymer nanocomposite coatings based on TiO2–SiO2 nanoparticles with superhydrophilic properties. Nanomaterials 2018, 8, 369. [Google Scholar] [CrossRef]
- Sutar, R.S.; Nagappan, S.; Bhosale, A.K.; Sadasivuni, K.K.; Park, K.-H.; Ha, C.-S.; Latthe, S.S. Superhydrophobic Al2O3–polymer composite coating for self-cleaning applications. Coatings 2021, 11, 1162. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, L.; Li, W.; Jiang, G.; Liu, H.; Chen, H. Anchoring CeO2 nanoparticles on monodispersed SiO2 spheres to construct hydrophobic polymer coating with enhanced UV absorption ability. Chem. Eng. J. 2017, 321, 268–276. [Google Scholar] [CrossRef]
- Alheshibri, M.; Albetran, H.; Abdelrahman, B.; Al-Yaseri, A.; Yekeen, N.; Low, I. Wettability of Nanostructured Transition-Metal Oxide (Al2O3, CeO2, and AlCeO3) Powder Surfaces. Materials 2022, 15, 5485. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, W.; Zhu, Q.; Hou, B. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles. J. Mater. Sci. Technol. 2021, 66, 74–81. [Google Scholar] [CrossRef]
- Sanders, S.; Golden, T.D. Functionalization of cerium oxide nanoparticles to influence hydrophobic properties. Langmuir 2019, 35, 5841–5847. [Google Scholar] [CrossRef]
- Yasmeen, S.; Khan, M.R.; Park, K.; Cho, Y.; Choi, J.W.; Moon, H.-S. Preparation of a hydrophobic cerium oxide nanoparticle coating with polymer binder via a facile solution route. Ceram. Int. 2020, 46, 12209–12215. [Google Scholar] [CrossRef]
- Bakshi, M.I.; Khatoon, H.; Ahmad, S. Hydrophobic, mechanically robust polysorbate-enveloped cerium oxide-dispersed oleo-polyetheramide nanocomposite coatings for anticorrosive and anti-icing applications. Ind. Eng. Chem. Res. 2020, 59, 6617–6628. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Jiang, S.; Bai, H.; Zhang, S. Use of CeO2 nanoparticles to enhance UV-shielding of transparent regenerated cellulose films. Polymers 2019, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Aklalouch, M.; Calleja, A.; Granados, X.; Ricart, S.; Boffa, V.; Ricci, F.; Puig, T.; Obradors, X. Hybrid sol–gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 120, 175–182. [Google Scholar] [CrossRef]
- Piriyawong, V.; Thongpool, V.; Asanithi, P.; Limsuwan, P. Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J. Nanomater. 2012, 2012, 819403. [Google Scholar] [CrossRef]
- Nikolaeva, A.L.; Gofman, I.V.; Yakimansky, A.V.; Ivan’kova, E.M.; Gulii, N.S.; Teplonogova, M.A.; Ivanova, O.S.; Baranchikov, A.E.; Ivanov, V.K. Interplay of polymer matrix and nanosized Redox dopant with regard to thermo-oxidative and pyrolytic stability: CeO2 nanoparticles in a milieu of aromatic polyimides. Mater. Today Commun. 2020, 22, 100803. [Google Scholar] [CrossRef]
- Li, Z.-X.; Zeng, H.-Y.; Gohi, B.F.C.A.; Ding, P.-X. Preparation of CeO2-decorated organic-pillared hydrotalcites for the UV resistance of polymer. Appl. Surf. Sci. 2020, 507, 145110. [Google Scholar] [CrossRef]
- Ouyang, Y.; Ding, F.; Bai, L.; Li, X.; Hou, G.; Fan, J.; Yuan, F. Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105673. [Google Scholar] [CrossRef]
- Chen-Yang, Y.; Chen, H.; Lin, F.; Liao, C.; Chen, T. Preparation and conductivity of the composite polymer electrolytes based on poly [bis (methoxyethoxyethoxy) phosphazene], LiClO4 and α-Al2O3. Solid State Ion. 2003, 156, 383–392. [Google Scholar] [CrossRef]
- Lizarbe, A.J.; Major, G.H.; Fernandez, V.; Fairley, N.; Linford, M.R. Insight note: X-ray photoelectron spectroscopy (XPS) peak fitting of the Al 2p peak from electrically isolated aluminum foil with an oxide layer. Surf. Interface Anal. 2023, 55, 651–657. [Google Scholar] [CrossRef]
- Taucher, T.C.; Hehn, I.; Hofmann, O.T.; Zharnikov, M.; Zojer, E. Understanding chemical versus electrostatic shifts in X-ray photoelectron spectra of organic self-assembled monolayers. J. Phys. Chem. C 2016, 120, 3428–3437. [Google Scholar] [CrossRef]
- Zhao, W.; Göthelid, M.; Hosseinpour, S.; Johansson, M.B.; Li, G.; Leygraf, C.; Johnson, C.M. The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates. J. Colloid Interface Sci. 2021, 581, 816–825. [Google Scholar] [CrossRef]
- Hauffman, T.; Blajiev, O.; Snauwaert, J.; van Haesendonck, C.; Hubin, A.; Terryn, H. Study of the self-assembling of n-octylphosphonic acid layers on aluminum oxide. Langmuir 2008, 24, 13450–13456. [Google Scholar] [CrossRef] [PubMed]
- Teterin, Y.A.; Teterin, A.Y.; Lebedev, A.; Utkin, I. The XPS spectra of cerium compounds containing oxygen. J. Electron Spectrosc. Relat. Phenom. 1998, 88, 275–279. [Google Scholar] [CrossRef]
- Skála, T.; Šutara, F.; Škoda, M.; Prince, K.C.; Matolín, V. Palladium interaction with CeO2, Sn–Ce–O and Ga–Ce–O layers. J. Phys. Condens. Matter 2008, 21, 055005. [Google Scholar] [CrossRef] [PubMed]
- Bamba, T.; Ohtake, T.; Ohata, Y.; Nie, H.-y.; Ban, T.; Yamamoto, S.-i. Octadecylphosphonic acid self-assembled monolayers obtained using rapid dipping treatments. Trans. Mater. Res. Soc. Jpn. 2018, 43, 305–309. [Google Scholar] [CrossRef]
- Mamedov, D.; Åsland, A.C.; Cooil, S.P.; Røst, H.; Bakkelund, J.; Allaniyazov, A.; Wells, J.W.; Karazhanov, S. Enhanced hydrophobicity of CeO2 thin films: Role of the morphology, adsorbed species and crystallography. Mater. Today Commun. 2023, 35, 106323. [Google Scholar] [CrossRef]
- Abed, A.S.; Ziadan, K.M.; Abdullah, A.Q. Some optical properties of polyurethane. Iraqi J. Polym. 2014, 17, 18. [Google Scholar]
- Ali, M.M.; Mahdi, H.S.; Parveen, A.; Azam, A. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conf. Proc. 2018, 1953, 030044. [Google Scholar]
- Hakim, H.; Al-Garah, N.; Hashim, A. The Effect of aluminum oxide nanoparticles on optical properties of (polyvinyl alcohol-polyethylene glycol) blend. J. Ind. Eng. Res. 2015, 1, 94–98. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco-Soto, M.A.; Vázquez-Velázquez, A.R.; Pérez-García, S.A.; Bautista-Carrillo, L.M.; Vorobiev, P.; Méndez-Reséndiz, A.; Licea-Jiménez, L. Functional UV Blocking and Superhydrophobic Coatings Based on Functionalized CeO2 and Al2O3 Nanoparticles in a Polyurethane Nanocomposite. Polymers 2024, 16, 2705. https://doi.org/10.3390/polym16192705
Velasco-Soto MA, Vázquez-Velázquez AR, Pérez-García SA, Bautista-Carrillo LM, Vorobiev P, Méndez-Reséndiz A, Licea-Jiménez L. Functional UV Blocking and Superhydrophobic Coatings Based on Functionalized CeO2 and Al2O3 Nanoparticles in a Polyurethane Nanocomposite. Polymers. 2024; 16(19):2705. https://doi.org/10.3390/polym16192705
Chicago/Turabian StyleVelasco-Soto, Miguel Angel, Arturo Román Vázquez-Velázquez, Sergio Alfonso Pérez-García, Lilia Magdalena Bautista-Carrillo, Pavel Vorobiev, Abraham Méndez-Reséndiz, and Liliana Licea-Jiménez. 2024. "Functional UV Blocking and Superhydrophobic Coatings Based on Functionalized CeO2 and Al2O3 Nanoparticles in a Polyurethane Nanocomposite" Polymers 16, no. 19: 2705. https://doi.org/10.3390/polym16192705
APA StyleVelasco-Soto, M. A., Vázquez-Velázquez, A. R., Pérez-García, S. A., Bautista-Carrillo, L. M., Vorobiev, P., Méndez-Reséndiz, A., & Licea-Jiménez, L. (2024). Functional UV Blocking and Superhydrophobic Coatings Based on Functionalized CeO2 and Al2O3 Nanoparticles in a Polyurethane Nanocomposite. Polymers, 16(19), 2705. https://doi.org/10.3390/polym16192705