Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
GFRP Bars
2.2. Exposure Conditions
2.3. GFRP Strength Retention
2.3.1. Transverse Shear Strength
2.3.2. Instrumentation
2.4. Test Matrix
2.5. Strength Prediction Models
3. Results and Discussion
3.1. TSS–Displacement Response
3.1.1. Control Bars
3.1.2. Conditioned Bars
3.2. Effect of Exposure Solution on TSS
3.3. Comparison with Older-Generation Bars
3.3.1. Reference Study
3.3.2. Effect of Conditioning
4. Transverse Shear Strength Prediction Model
4.1. Dataset
4.2. Linear Regression
4.3. ANN Model
5. Conclusions
- The transverse shear strength retention of the bars identified in the experimental program revealed that the ribbed GFRP bars exhibited good resilience under ambient laboratory conditions, with no notable reduction in strength after 12 months; whereas a dip in strength occurred under high-temperature conditions. After 12 months at 60 °C, RB bars exhibited TSS reductions of 10.6%, 9.7%, 11.1%, and 10.9% owing to exposure solutions E1, E2, E3, and E4, respectively. The sand-coated GFRP exhibited slight reductions in strength under ambient laboratory conditions, with moderate reductions in strength under high-temperature conditions, particularly after 12 months. After 12 months at 60 °C, SC bars exhibited TSS reductions of 22.5%, 29.0%, 13.0%, 13.7% owing to exposure solutions E1, E2, E3, and E4, respectively. The mechanical strength deterioration of GFRP bars in harsh environments is generally due to resin matrix hydrolysis and glass fiber leaching. Hydrolysis breaks polymer chains, weakening molecular bonds, while leaching degrades the glass structure, forming a gel that accelerates water and alkali transport, leading to swelling and microcracking at the glass-matrix interface.
- Three types of older generation bars, including two types of ribbed (RB-O1 and RB-O2) and sand-coated (SC-O) GFRP bars, were compared to understand the generational advancement in the durability performance of GFRP bars. All three types of older generation bars, particularly the sand-coated bars, exhibited severe reductions in transverse shear strength, in contrast to the reasonably good performance of the new-generation bars.
- Prediction models based on linear regression and artificial neural networks were generated and compared. The coefficient of determination of the ANN prediction model (R2 = 0.94) was found to be significantly higher than that of the multiple linear regression model (R2 = 0.69), owing to its ability to consider the nonlinearity of the strength retention in the exposed GFRP bars.
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanni, A.; De Luca, A.; Zadeh, H. Reinforced Concrete with FRP Bars; CRC Press: London, UK, 2014; ISBN 978-0-415-77882-4. [Google Scholar]
- Hussein, A.; Rashid, I.; Benmokrane, B. Two-Way Concrete Slabs Reinforced with GFRP Bars. In Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, AB, Canada, 20–23 July 2004; Canadian Society of Civil Engineers: Calgary, AB, Canada, 2004. [Google Scholar]
- Gooranorimi, O.; Nanni, A. GFRP Reinforcement in Concrete after 15 Years of Service. J. Compos. Constr. 2017, 21, 04017024. [Google Scholar] [CrossRef]
- Feng, S.-Z.; Zeng, J.-J.; Zhao, B.; Hao, Z.-H.; Zhuge, Y.; Zhong, Q.-M.; Zhang, Z.-W. Accelerated Aging Tests of Large-Diameter GFRP Bars in Alkaline Environment. Compos. Part C Open Access 2024, 14, 100486. [Google Scholar] [CrossRef]
- Zhou, J.; Shang, H.; Huang, Y.; Zhao, W.; Wang, R. Bond Properties of GFRP Bar Embedded in Marine Concrete Subjected to Sustained Loads. Constr. Build. Mater. 2024, 438, 136982. [Google Scholar] [CrossRef]
- Chen, Z.F.; Wan, L.L.; Lee, S.; Ng, M.; Tang, J.M.; Liu, M.; Lee, L. Evaluation of CFRP, GFRP and BFRP Material Systems for the Strengthening of RC Slabs. J. Reinf. Plast. Compos. 2008, 27, 1233–1243. [Google Scholar] [CrossRef]
- ACI CODE 440.11-22; Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars-Code and Commentary. American Concrete Institute (ACI): Farmington Hills, MI, USA, 2022; ACI Standard, 1st printing. ISBN 978-1-64195-193-7.
- ACI 440.1R-15; Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute: Farmington Hills, MI, USA, 2015; ACI report, 1st printing. ISBN 978-1-942727-10-1.
- CSA S806-12; Design and Construction of Building Components with Fiber Reinforced Polymers. Canadian Standards Association (CSA): Toronto, ON, USA, 2012.
- Foster, S.K.; Bisby, L.A. Fire Survivability of Externally Bonded FRP Strengthening Systems. J. Compos. Constr. 2008, 12, 553–561. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Bisby, L.A.; Foo, S.H.-C. Thermal Behavior of Fire-Exposed Concrete Slabs Reinforced with Fiber-Reinforced Polymer Bars. ACI Struct. J. 2005, 102, 799. [Google Scholar]
- Idrisi, A.H.; Ismail Mourad, A.-H. Effect of Temperature and Seawater Exposure on Glass/Polyurethane Composite: Experimental and Failure Analysis. In Proceedings of the ASME 2023 Pressure Vessels & Piping Conference, Atlanta, GA, USA, 16–21 July 2023. [Google Scholar]
- Genikomsou, A.S.; Balomenos, G.P.; Arczewska, P.; Polak, M.A. Transverse Shear Testing of GFRP Bars with Reduced Cross Sections. J. Compos. Constr. 2018, 22, 04018041. [Google Scholar] [CrossRef]
- Xian, G.; Zhou, P.; Li, C.; Dong, S.; Du, H.; Tian, J.; Guo, R.; Peng, Z.; Zhang, Z.; He, T. Mechanical Properties Evaluation of Glass Fiber Reinforced Thermoplastic Composite Plate under Combined Bending Loading and Water Immersion. Constr. Build. Mater. 2024, 440, 137470. [Google Scholar] [CrossRef]
- Fasil, M.; Al-Zahrani, M.M. Transverse Shear Capacity Predictions of GFRP Bars Subjected to Accelerated Aging Using Artificial Neural Networks. J. Mater. Civ. Eng. 2023, 35, 04023024. [Google Scholar] [CrossRef]
- Zafar, A.; Bertocco, F.; Schjødt-Thomsen, J.; Rauhe, J.C. Investigation of the Long Term Effects of Moisture on Carbon Fibre and Epoxy Matrix Composites. Compos. Sci. Technol. 2012, 72, 656–666. [Google Scholar] [CrossRef]
- Tannous, F.E.; Saadatmanesh, H. Durability of AR Glass Fiber Reinforced Plastic Bars. J. Compos. Constr. 1999, 3, 12–19. [Google Scholar] [CrossRef]
- Xian, G.; Bai, Y.; Zhou, P.; Wang, J.; Li, C.; Dong, S.; Guo, R.; Tian, J.; Li, J.; Zhong, J.; et al. Long-Term Properties Evolution and Life Prediction of Glass Fiber Reinforced Thermoplastic Bending Bars Exposed in Concrete Alkaline Environment. J. Build. Eng. 2024, 91, 109641. [Google Scholar] [CrossRef]
- Dong, Z.; Ji, J.; Liu, Z.; Wu, C.; Wu, G.; Zhu, H.; Zhang, P. I-Shaped ECC/UHPC Composite Beams Reinforced with Steel Bars and BFRP Sheets. Sustain. Struct. 2023, 3, 000022. [Google Scholar] [CrossRef]
- Ke, L.; Li, Y.; Li, C.; Cheng, Z.; Ma, K.; Zeng, J. Bond Behavior of CFRP-Strengthened Steel Structures and Its Environmental Influence Factors: A Critical Review. Sustain. Struct. 2024, 4, 000038. [Google Scholar] [CrossRef]
- ACI PRC-440.3R-12; Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures. American Concrete Institute: Farmington Hills, MI, USA, 2012; ISBN 978-0-87031-781-1.
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B.; ElSafty, A.; Chaallal, O. Durability Performance and Long-Term Prediction Models of Sand-Coated Basalt FRP Bars. Compos. Part B Eng. 2019, 157, 248–258. [Google Scholar] [CrossRef]
- Yi, Y.; Guo, S.; Li, S.; Zillur Rahman, M.; Zhou, L.; Shi, C.; Zhu, D. Effect of Alkalinity on the Shear Performance Degradation of Basalt Fiber-Reinforced Polymer Bars in Simulated Seawater Sea Sand Concrete Environment. Constr. Build. Mater. 2021, 299, 123957. [Google Scholar] [CrossRef]
- Benmokrane, B.; Mousa, S.; Mohamed, K.; Sayed-Ahmed, M. Physical, Mechanical, and Durability Characteristics of Newly Developed Thermoplastic GFRP Bars for Reinforcing Concrete Structures. Constr. Build. Mater. 2021, 276, 122200. [Google Scholar] [CrossRef]
- Ruiz Emparanza, A.; Kampmann, R.; De Caso, F.; Morales, C.; Nanni, A. Durability Assessment of GFRP Rebars in Marine Environments. Constr. Build. Mater. 2022, 329, 127028. [Google Scholar] [CrossRef]
- Wang, T.; Razaqpur, A.G.; Chen, S. Durability of GFRP and BFRP Reinforcing Bars in Simulated Seawater Sea Sand Calcium Sulfoaluminate Cement Concrete Pore Solution. J. Build. Eng. 2023, 80, 107954. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Kamal, A.S.M.; Boulfiza, M. Durability of GFRP Rebars in Simulated Concrete Solutions under Accelerated Aging Conditions. J. Compos. Constr. 2011, 15, 473–481. [Google Scholar] [CrossRef]
- Gooranorimi, O.; Suaris, W.; Dauer, E.; Nanni, A. Microstructural Investigation of Glass Fiber Reinforced Polymer Bars. Compos. Part B Eng. 2017, 110, 388–395. [Google Scholar] [CrossRef]
- Benmokrane, B.; Manalo, A.; Bouhet, J.-C.; Mohamed, K.; Robert, M. Effects of Diameter on the Durability of Glass Fiber–Reinforced Polymer Bars Conditioned in Alkaline Solution. J. Compos. Constr. 2017, 21, 04017040. [Google Scholar] [CrossRef]
- Alsayed, S.; Al-Salloum, Y.; Almusallam, T.; El-Gamal, S.; Aqel, M. Performance of Glass Fiber Reinforced Polymer Bars under Elevated Temperatures. Compos. Part B Eng. 2012, 43, 2265–2271. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.L.; Xian, G.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Durability Study on Interlaminar Shear Behaviour of Basalt-, Glass- and Carbon-Fibre Reinforced Polymer (B/G/CFRP) Bars in Seawater Sea Sand Concrete Environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Ahmad Sawpan, M. Shear Properties and Durability of GFRP Reinforcement Bar Aged in Seawater. Polym. Test. 2019, 75, 312–320. [Google Scholar] [CrossRef]
- Morales, C.N.; Claure, G.; Emparanza, A.R.; Nanni, A. Durability of GFRP Reinforcing Bars in Seawater Concrete. Constr. Build. Mater. 2021, 270, 121492. [Google Scholar] [CrossRef]
- Feng, D.C.; Liu, Z.T.; Wang, X.D.; Chen, Y.; Chang, J.Q.; Wei, D.F.; Jiang, Z.M. Machine Learning-Based Compressive Strength Prediction for Concrete: An Adaptive Boosting Approach. Constr. Build. Mater. 2020, 230, 117000. [Google Scholar] [CrossRef]
- Dinesh, A.; Anitha Selvasofia, S.D.; Datcheen, K.S.; Rakhesh Varshan, D. Machine Learning for Strength Evaluation of Concrete Structures—Critical Review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Adaptive computation and machine learning; The MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-262-03561-3. [Google Scholar]
- Wang, J. Encyclopedia of Data Science and Machine Learning; Wang, J., Ed.; IGI Global: Hershey, PA, USA, 2023; ISBN 978-1-79989-222-9. [Google Scholar]
- MATLAB What Is a Neural Network? Available online: https://www.mathworks.com/discovery/neural-network.html (accessed on 11 April 2024).
- Behnood, A.; Golafshani, E.M. Predicting the Compressive Strength of Silica Fume Concrete Using Hybrid Artificial Neural Network with Multi-Objective Grey Wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Khashman, A.; Akpinar, P. Non-Destructive Prediction of Concrete Compressive Strength Using Neural Networks. Procedia Comput. Sci. 2017, 108, 2358–2362. [Google Scholar] [CrossRef]
- Yeh, I.C. Modeling of Strength of High-Performance Concrete Using Artificial Neural Networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Naderpour, H.; Hossein Rafiean, A.; Fakharian, P. Compressive Strength Prediction of Environmentally Friendly Concrete Using Artificial Neural Networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Sumra, Y.; Payam, S.; Zainah, I. The pH of Cement-Based Materials: A Review. J. Wuhan Univ. Technol.-Mater Sci Ed 2020, 35, 908–924. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F.; Gales, J. Mechanical Properties of GFRP Reinforcing Bars at High Temperatures. Constr. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- Moon, D.Y.; Ou, Y.-C.; Roh, H. Interlaminar Shear Capacity of Thermally Damaged GFRP Bars under Alkaline Concrete Environment. Constr. Build. Mater. 2017, 152, 105–114. [Google Scholar] [CrossRef]
- ASTM D7617/D7617M-11 (2017); Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars. ASTM International: West Conshohocken, PA, USA, 2017.
- Kotu, V.; Deshpande, B. Chapter 5—Regression Methods. In Data Science, 2nd ed.; Kotu, V., Deshpande, B., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2019; pp. 165–197. ISBN 978-0-12-814761-0. [Google Scholar]
- Puri, M.; Solanki, A.; Padawer, T.; Tipparaju, S.M.; Moreno, W.A.; Pathak, Y. Chapter 1—Introduction to Artificial Neural Network (ANN) as a Predictive Tool for Drug Design, Discovery, Delivery, and Disposition: Basic Concepts and Modeling. In Artificial Neural Network for Drug Design, Delivery and Disposition; Puri, M., Pathak, Y., Sutariya, V.K., Tipparaju, S., Moreno, W., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 3–13. ISBN 978-0-12-801559-9. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer texts in statistics; Corrected at 8th printing; Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2017; ISBN 978-1-4614-7137-0. [Google Scholar]
- Ellis, D.S.; Tabatabai, H.; Nabizadeh, A. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures. Materials 2018, 11, 346. [Google Scholar] [CrossRef]
Bar Type | Ribbed Type (RB) | Sand-Coated Type (SC) |
---|---|---|
Surface texture | Ribbed | Sand-coated |
Diameter (mm, immersion test) | 13.71 ± 0.049 | 13.02 ± 0.083 |
Glass fiber type | Electrical glass | Electrical glass |
Matrix type | Vinyl ester resin | Vinyl ester resin |
24 h moisture uptake (%) | 0.019 ± 0.0007 | 0.027 ± 0.0007 |
Ultimate tensile strength (MPa) | 956.4 ± 18.5 | 1029.6 ± 27.5 |
Ultimate strain (%) | ~1.9% | ~2.4% |
Modulus of elasticity (GPa) | 49.5 ± 0.96 | 43.6 ± 3.32 |
Transverse shear strength (MPa) | 180.1 ± 3.1 | 185.1 ± 10.2 |
Conditioning Solution | Duration (Months) | Temperature | Name |
---|---|---|---|
E1 (alkaline) | 3 | 20 °C | E1-20-3 |
6 | E1-20-6 | ||
12 | E1-20-12 | ||
3 | 60 °C | E1-60-3 | |
6 | E1-60-6 | ||
12 | E1-60-12 | ||
E2 (alkaline and salt) | 3 | 20 °C | E2-20-3 |
6 | E2-20-6 | ||
12 | E2-20-12 | ||
3 | 60 °C | E2-60-3 | |
6 | E2-60-6 | ||
12 | E2-60-12 | ||
E3 (acid) | 3 | 20 °C | E3-20-3 |
6 | E3-20-6 | ||
12 | E3-20-12 | ||
3 | 60 °C | E3-60-3 | |
6 | E3-60-6 | ||
12 | E3-60-12 | ||
E4 (water) | 3 | 20 °C | E4-20-3 |
6 | E4-20-6 | ||
12 | E4-20-12 | ||
3 | 60 °C | E4-60-3 | |
6 | E4-60-6 | ||
12 | E4-60-12 |
Bar Type | Ribbed Type (RB-O1) | Ribbed Type (RB-O2) | Sand-Coated Type (SC-O) |
---|---|---|---|
Surface texture | Ribbed | Ribbed | Sand-coated |
Diameter (mm) (immersion test) | 13.04 | 13.02 | 13.22 |
Glass fiber type | Electrical glass | Electrical glass | Electrical CR-glass |
Matrix type | Vinyl ester resin | Urethane-modified vinyl ester resin | Vinyl ester resin |
24h moisture uptake (%) | 0.046 | 0.055 | 0.092 |
Transverse shear strength (MPa) [15] | 180.27 | 200.56 | 179.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Zahrani, M.M. Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments. Polymers 2024, 16, 2712. https://doi.org/10.3390/polym16192712
Al-Zahrani MM. Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments. Polymers. 2024; 16(19):2712. https://doi.org/10.3390/polym16192712
Chicago/Turabian StyleAl-Zahrani, Mesfer M. 2024. "Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments" Polymers 16, no. 19: 2712. https://doi.org/10.3390/polym16192712
APA StyleAl-Zahrani, M. M. (2024). Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments. Polymers, 16(19), 2712. https://doi.org/10.3390/polym16192712