Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pectin-Rich Fractions Isolation
2.3. Pectin-Rich Fractions Characterization
2.4. Structural Characterization
2.4.1. Monomeric Composition Determination by GC-FID Analysis
2.4.2. Molecular Weight Distribution Determination by HPSEC-ELSD Analysis
2.4.3. XRD Analysis
2.4.4. FTIR Analysis
2.5. Determination of Techno-Functional and Antioxidant Properties
2.5.1. Water Retention Capacity
2.5.2. Oil-Holding Capacity
2.5.3. Emulsifying Properties
2.5.4. Total Polyphenol Content
2.5.5. Antioxidant Activity
2.6. Prebiotic Activity Determination
2.7. Statistical Analysis
3. Results
3.1. Pectin-Rich Fraction Extraction and Determination of Physicochemical Properties
3.2. Pectin-Rich Fractions Monomeric Composition
3.3. Molecular Weight Distribution
3.4. XRD Analysis
3.5. FTIR Analysis
3.6. Techno-Functional and Antioxidant Properties
3.7. Prebiotic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAP | Citric acid pectin |
AOPP | Ammonium oxalate pectic polysaccharides |
Mw | Molecular weight |
HG | Homogalacturonan |
RGI | Rhamnogalacturonan I |
DM | Degree of methyl esterification |
TPC | Total phenolic content |
WRC | Water retention capacity |
OHC | Oil holding capacity |
DB-RGI | Degree of branching of rhamnogalacturonan I |
EB-RGI | Extent of branching of rhamnogalacturonan I |
LP | Linearity of pectin |
PP | Pectin purity |
GalA | Galacturonic acid |
Rha | Rhamnose |
Xyl | Xylose |
Ara | Arabinose |
Gal | Galactose |
Glc | Glucose |
Man | Mannose |
GC-FID | Gas Chromatography coupled to Flame Ionisation Detector |
HPSEC-ELSD | High-Performance Size-Exclusion Chromatography (HPSEC) coupled to Evaporative Light Scattering Detector (ELSD) |
FTIR | Fourier Transform Infrared spectroscopy |
XRD | X-ray Diffraction |
References
- Stacy, B.A.; Belkaid, Y. Microbial guardians of skin health Skin microbes can promote skin immunity, repair, and antimicrobial defense. Science 2019, 363, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Krismer, B.; Weidenmaier, C.; Zipperer, A.; Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 2017, 15, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017, 9, eaah4680. [Google Scholar] [CrossRef] [PubMed]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef]
- Roman-Benn, A.; Contador, C.A.; Li, M.W.; Lam, H.M.; Ah-Hen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Pasarin, D.; Ghizdareanu, A.I.; Teodorescu, F.; Rovinaru, C.; Banu, A. Characterization of Pectin Oligosaccharides Obtained from Citrus Peel Pectin. Fermentation 2023, 9, 312. [Google Scholar] [CrossRef]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton FL, USA, 2009; pp. 1–890. [Google Scholar]
- Ramawat, K.G.; Mérillon, J.M. Polysaccharides: Bioactivity and Biotechnology; Springer: New York, NY, USA, 2015; pp. 1–2241. [Google Scholar]
- Hasnain, M.S.; Nayak, A.K. Natural Polysaccharides in Drug Delivery and Biomedical Applications, 1st ed.; Elsevier Science: London, UK, 2019; pp. 1–628. [Google Scholar]
- Chung, W.S.F.; Meijerink, M.; Zeuner, B.; Holck, J.; Louis, P.; Meyer, A.S.; Wells, J.M.; Flint, H.J.; Duncan, S.H. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol. Ecol. 2017, 93, fix127. [Google Scholar] [CrossRef]
- Blanco-Pérez, F.; Steigerwald, H.; Schülke, S.; Vieths, S.; Toda, M.; Scheurer, S. The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota. Curr. Allergy Asthma Rep. 2021, 21, 43. [Google Scholar] [CrossRef]
- Gómez, B.; Gullón, B.; Remoroza, C.; Schols, H.A.; Parajó, J.C.; Alonso, J.L. Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes. J. Agric. Food Chem. 2014, 62, 9769–9782. [Google Scholar] [CrossRef]
- Chung, W.S.F.; Walker, A.W.; Louis, P.; Parkhill, J.; Vermeiren, J.; Bosscher, D.; Duncan, S.H.; Flint, H.J. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Marounek, M.; Dušková, D. Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett. Appl. Microbiol. 1999, 29, 429–433. [Google Scholar] [CrossRef]
- Presentato, A.; Scurria, A.; Albanese, L.; Lino, C.; Sciortino, M.; Pagliaro, M.; Zabini, F.; Meneguzzo, F.; Alduina, R.; Nuzzo, D.; et al. Superior Antibacterial Activity of Integral Lemon Pectin Extracted via Hydrodynamic Cavitation. ChemistryOpen 2020, 9, 628–630. [Google Scholar] [CrossRef]
- Lin, J.; Xiang, S.; Lv, H.; Wang, T.; Rao, Y.; Liu, L.; Yuan, D.; Wang, X.; Chu, Y.; Luo, D.; et al. Antimicrobial high molecular weight pectin polysaccharides production from diverse citrus peels using a novel PL10 family pectate lyase. Int. J. Biol. Macromol. 2023, 234, 123457. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Ruiz-Torralba, A.; Méndez-Albiñana, P.; Guerra-Hernández, E.; García-Villanova, B.; Moreno, R.; Villamiel, M.; Montilla, A. Berry fruits as source of pectin: Conventional and non-conventional extraction techniques. Int. J. Biol. Macromol. 2021, 186, 962–974. [Google Scholar] [CrossRef]
- Cserjési, P.; Bélafi-Bakó, K.; Csanádi, Z.; Beszédes, S.; Hodúr, C. Simultaneous recovery of pectin and colorants from solid agro-wastes formed in processing of colorful berries. Prog. Agric. Eng. Sci. 2011, 7, 65–80. [Google Scholar] [CrossRef]
- Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and characterisation of dietary fibre from blackcurrant pomace. Food Hydrocoll. 2018, 81, 398–408. [Google Scholar] [CrossRef]
- Salleh, N.; Goh, K.K.T.; Sims, I.M.; Bell, T.J.; Huffman, L.M.; Weeks, M.; Matia-Merino, L. Characterization of Anthocyanin-Bound Pectin-Rich Fraction Extracted from New Zealand Blackcurrant (Ribes nigrum) Juice. ACS Food Sci. Technol. 2021, 1, 1130–1142. [Google Scholar] [CrossRef]
- Myasishcheva, N.V.; Artyomova, E.N. Biologically active substances of black currant of new varieties. Vopr. Pitan. 2013, 82, 68–71. [Google Scholar]
- Petrov Ivanković, A.; Milivojević, A.; Ćorović, M.; Simović, M.; Banjanac, K.; Jansen, P.; Vukoičić, A.; van den Bogaard, E.; Bezbradica, D. In vitro evaluation of enzymatically derived blackcurrant extract as prebiotic cosmetic ingredient: Extraction conditions optimization and effect on cutaneous microbiota representatives. Chem. Biol. Technol. Agric. 2023, 10, 125. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Jing, J.; Zhao, Q.; Ren, L.; Hu, Z. Optimization of sunflower head pectin extraction by ammonium oxalate and the effect of drying conditions on properties. Sci. Rep. 2021, 11, 10616. [Google Scholar] [CrossRef] [PubMed]
- Megías-Pérez, R.; Ferreira-Lazarte, A.; Villamiel, M. Valorization of Grape Pomace as a Renewable Source of Techno-Functional and Antioxidant Pectins. Antioxidants 2023, 12, 957. [Google Scholar] [CrossRef] [PubMed]
- Sabater, C.; Corzo, N.; Olano, A.; Montilla, A. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L. Carbohydr. Polym. 2018, 190, 43–49. [Google Scholar] [CrossRef]
- Bayar, N.; Friji, M.; Kammoun, R. Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chem. 2018, 241, 127–134. [Google Scholar] [CrossRef]
- Inthalaeng, N.; Dugmore, T.I.J.; Matharu, A.S. Production of Hydrogels from Microwave-Assisted Hydrothermal Fractionation of Blackcurrant Pomace. Gels 2023, 9, 674. [Google Scholar] [CrossRef]
- Ngouémazong, E.D.; Christiaens, S.; Shpigelman, A.; Van Loey, A.; Hendrickx, M. The Emulsifying and Emulsion-Stabilizing Properties of Pectin: A Review. Comp. Rev. Food Sci. Food Saf. 2015, 14, 705–718. [Google Scholar] [CrossRef]
- Niu, H.; Chen, X.; Luo, T.; Chen, H.; Fu, X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll. 2022, 128, 107566. [Google Scholar] [CrossRef]
- Pérez-Martínez, J.D.; Sánchez-Becerril, M.; Ornelas-Paz, J.J.; González-Chávez, M.M.; Ibarra-Junquera, V.; Escalante-Minakata, P. The Effect of Extraction Conditions on the Chemical Characteristics of Pectin from Opuntia ficus indica Cladode Flour. J. Polym. Environ. 2013, 21, 1040–1051. [Google Scholar] [CrossRef]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef]
- Schultink, A.; Liu, L.; Zhu, L.; Pauly, M. Structural diversity and function of xyloglucan sidechain substituents. Plants 2014, 3, 526–542. [Google Scholar] [CrossRef]
- Atmodjo, M.A.; Hao, Z.; Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 2013, 64, 747–779. [Google Scholar] [CrossRef]
- Hilz, H.; Bakx, E.J.; Schols, H.A.; Voragen, A.G.J. Cell wall polysaccharides in black currants and bilberries—Characterisation in berries, juice, and press cake. Carbohydr. Polym. 2005, 59, 477–488. [Google Scholar] [CrossRef]
- Kosmala, M.; Kołodziejczyk, K.; Markowski, J.; Mieszczakowska, M.; Ginies, C.; Renard, C.M.G.C. Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT 2010, 43, 173–180. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, J.; Zhang, H.; Wu, D.; Ye, X.; Linardt, R.J.; Chen, S. Gelling mechanism of RG-I enriched citrus pectin: Role of arabinose side-chains in cation- and acid-induced gelation. Food Hydrocoll. 2020, 101, 105536. [Google Scholar] [CrossRef]
- Yuliarti, O.; Matia-Merino, L.; Goh, K.K.T.; Mawson, J.; Williams, M.A.K.; Brennan, C. Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chem. 2015, 166, 479–485. [Google Scholar] [CrossRef]
- Kar, F.; Arslan, N. Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship. Carbohydr. Polym. 1999, 40, 277–284. [Google Scholar] [CrossRef]
- Rowe, M.C.; Brewer, B.J. AMORPH: A statistical program for characterizing amorphous materials by X-ray diffraction. Comput. Geosci. 2018, 120, 21–31. [Google Scholar] [CrossRef]
- Wang, R.S.; He, X.; Lin, H.; Liang, R.H.; Liang, L.; Chen, J.; Liu, C.M. Solubility difference between pectic fractions from creeping fig seeds. Polymers 2019, 11, 159. [Google Scholar] [CrossRef]
- Chen, J.; Sarma, B.; Evans, J.M.B.; Myerson, A.S. Pharmaceutical Crystallization. Cryst. Growth Des. 2011, 11, 887–895. [Google Scholar] [CrossRef]
- Sharma, R.; Kamboj, S.; Khurana, R.; Singh, G.; Rana, V. Physicochemical and functional performance of pectin extracted by QbD approach from Tamarindus indica L. pulp. Carbohydr. Polym. 2015, 134, 364–374. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, Y.; Zhu, X.; Xiong, H.; Woo, M.W.; Hu, J. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. Australis Peel. Carbohydr. Polym. 2012, 87, 1663–1669. [Google Scholar] [CrossRef]
- Barbaud, A.; Lafforgue, C. Risks associated with cosmetic ingredients. Ann. Dermatol. Venereol. 2021, 148, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Millane, R.P.; Hendrixson, T.L. Crystal structures of mannan and glucomannans. Carbohydr. Polym. 1994, 25, 245–251. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Benthin, A.; Zimathies, A.; Görke, O.; Drusch, S. Pectin-water interactions: Comparison of different analytical methods and influence of storage. Food Hydrocoll. 2015, 43, 577–583. [Google Scholar] [CrossRef]
- Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural Determination of Pectins by Spectroscopy Methods. Coatings 2022, 12, 546. [Google Scholar] [CrossRef]
- Hamimed, S.; Jebli, N.; Sellami, H.; Landoulsi, A.; Chatti, A. Dual Valorization of Olive Mill Wastewater by Bio-Nanosynthesis of Magnesium Oxide and Yarrowia lipolytica Biomass Production. Chem. Biodivers. 2020, 17, e1900608. [Google Scholar] [CrossRef]
- Mierczyńska, J.; Cybulska, J.; Zdunek, A. Rheological and chemical properties of pectin enriched fractions from different sources extracted with citric acid. Carbohydr. Polym. 2017, 156, 443–451. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef]
- Almeida, E.A.M.S.; Facchi, S.P.; Martins, A.F.; Nocchi, S.; Schuquel, I.T.A.; Nakamura, C.V.; Rubira, A.F.; Muniz, E.C. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells. Carbohydr. Polym. 2015, 115, 139–145. [Google Scholar] [CrossRef]
- Bu, K.; Wu, S.; Zhu, C.; Wei, M. Comparative study of HG-type low-ester hawthorn pectin as a promising material for the preparation of hydrogel. Carbohydr. Polym. 2022, 296, 119941. [Google Scholar] [CrossRef]
- Cui, S.W.; Chang, Y.H. Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT—Food Sci. Technol. 2014, 58, 396–403. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A. Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr. Polym. 2020, 230, 115644. [Google Scholar] [CrossRef] [PubMed]
- Montilla, A.; Muñoz-Almagro, N.; Villamiel, M. A new approach of functional pectin and pectic oligosaccharides: Role as antioxidant and antiinflammatory compounds. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress, 1st ed.; Elsevier Science: London, UK, 2022; pp. 105–120. [Google Scholar]
- Kaistha, S.D.; Deshpande, N. Traditional Probiotics, Next-Generation Probiotics and Engineered Live Biotherapeutic Products in Chronic Wound Healing. In Wound Healing Research: Current Trends and Future Directions, 1st ed.; Springer Nature: Singapore, 2021; pp. 247–284. [Google Scholar]
- Baviera, G.; Leoni, M.C.; Capra, L.; Cipriani, F.; Longo, G.; Maiello, N.; Ricci, G.; Galli, E. Microbiota in healthy skin and in atopic eczema. BioMed Res. Int. 2014, 2014, 436921. [Google Scholar] [CrossRef] [PubMed]
- Petrov Ivanković, A.; Ćorović, M.; Milivojević, A.; Simović, M.; Banjanac, K.; Veljković, M.; Bezbradica, D. Berries Pomace Valorization: From Waste to Potent Antioxidants and Emerging Skin Prebiotics. Int. J. Fruit Sci. 2024, 24, 85–101. [Google Scholar] [CrossRef]
Sample | Yield (% (w/w)) | pH | Moisture (%) | aw | Proteins (mg/g) |
---|---|---|---|---|---|
CAP | 2.90 ± 0.18 a | 2.95 ± 0.14 a | 6.35 ± 0.54 a | 0.32 ± 0.01 a | 1.64 ± 0.10 b |
AOPP | 1.77 ± 0.17 b | 3.15 ± 0.18 a | 7.12 ± 0.63 a | 0.34 ± 0.02 a | 4.97 ± 0.27 a |
Sample | Xyl | Ara | Rha | Gal | Man | Glc | GalA |
---|---|---|---|---|---|---|---|
CAP | 0.86 ± 0.05 a | 10.44 ± 0.80 a | 3.81 ± 0.23 b | 10.63 ± 0.36 a | 0.24 ± 0.02 b | 1.69 ± 0.08 b | 72.32 ± 6.41 a |
AOPP | 0.93 ± 0.04 a | 2.63 ± 0.15 b | 11.36 ± 0.67 a | 6.76 ± 0.32 b | 25.62 ± 1.49 a | 4.40 ± 0.28 a | 48.30 ± 3.68 b |
Sample | HG (%) | RGI (%) | DB-RGI | EB-RGI | LP | PP | DM (%) |
---|---|---|---|---|---|---|---|
CAP | 68.52 ± 2.36 a | 28.69 ± 1.44 b | 18.99 ± 1.36 a | 5.54 ± 0.20 a | 2.91 ± 0.06 a | 50.26 ± 1.87 a | 48.70 ± 3.15 a |
AOPP | 36.94 ± 1.09 b | 32.11 ± 1.01 a | 4.25 ± 0.18 b | 0.83 ± 0.04 b | 2.33 ± 0.09 b | 2.30 ± 0.18 b | 51.26 ± 4.61 a |
Sample | WRC (mL/g) | OHC (mL/g) | EC (%) | ES (%) | TPC (mg GAE/g) | FRAP (µmol TE/g) |
---|---|---|---|---|---|---|
CAP | 9.97 ± 0.42 a | 18.96 ± 1.27 a | 33.33 ± 2.42 b | 100.00 ± 0.03 a | 43.80 ± 3.24 a | 131.42 ± 5.47 a |
AOPP | 7.32 ± 0.50 b | 19.32 ± 1.39 a | 49.33 ± 3.07 a | 94.12 ± 3.48 b | 4.59 ± 0.37 b | 45.21 ± 2.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćorović, M.; Petrov Ivanković, A.; Milivojević, A.; Veljković, M.; Simović, M.; López-Revenga, P.; Montilla, A.; Moreno, F.J.; Bezbradica, D. Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient. Polymers 2024, 16, 2779. https://doi.org/10.3390/polym16192779
Ćorović M, Petrov Ivanković A, Milivojević A, Veljković M, Simović M, López-Revenga P, Montilla A, Moreno FJ, Bezbradica D. Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient. Polymers. 2024; 16(19):2779. https://doi.org/10.3390/polym16192779
Chicago/Turabian StyleĆorović, Marija, Anja Petrov Ivanković, Ana Milivojević, Milica Veljković, Milica Simović, Paula López-Revenga, Antonia Montilla, Francisco Javier Moreno, and Dejan Bezbradica. 2024. "Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient" Polymers 16, no. 19: 2779. https://doi.org/10.3390/polym16192779
APA StyleĆorović, M., Petrov Ivanković, A., Milivojević, A., Veljković, M., Simović, M., López-Revenga, P., Montilla, A., Moreno, F. J., & Bezbradica, D. (2024). Valorisation of Blackcurrant Pomace by Extraction of Pectin-Rich Fractions: Structural Characterization and Evaluation as Multifunctional Cosmetic Ingredient. Polymers, 16(19), 2779. https://doi.org/10.3390/polym16192779