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Abstract: Environment-friendly polymer blends of poly(lactic acid) (PLA) and itaconic acid (IA),
poly(itaconic acid) (PIA), poly(itaconic acid)-co-poly(methyl itaconate) (Cop-IA), and net-poly(itaconic
acid)-ν-triethylene glycol dimethacrylate (Net-IA) were performed via melt blending. The composi-
tions studied were 0.1, 1, 3, and 10 wt% of the diverse chemical architectures. The research aims to
study and understand the effect of IA and its different architectures on the mechanical, rheological,
and thermal properties of PLA. The PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends were
characterized by dynamic mechanical thermal analysis, rotational rheometer (RR), thermogravimetric
analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The
complex viscosity, storage module, and loss module for the RR properties were observed in the follow-
ing order: PLA/Cop-IA, PLA/Net-IA, and PLA/PIA > PLA > PLA/IA. Thermal stability improved
with increasing concentrations of Cop-IA and Net-IA. In the same way, the mechanical properties
were enhanced. In addition, the micrographs illustrated the formation of fibrillar structures for all
blends. The crystallinity degree displayed higher values for the blends that contain Net-IA > Cop-IA
than IA > PIA. Therefore, IA and its architectures can influence these studied properties, which have
potential applications in disposable food packing.

Keywords: PLA blends; itaconic acid architectures; poly(itaconic acid); itaconate copolymer; crosslinking;
mechanical rheological and thermal

1. Introduction

The generation of polymer blends with poly(lactic acid) (PLA) via melt blending is
a strategy that has improved its drawbacks, such as elasticity, impact resistance, thermal
stability, heat resistance, rheological properties, and biodegradability over the years [1].
For example, Liu et al. reported that the PLA/Poly(Butylene adipate-co-terephthalate)
(PBAT)/Graphene blend (20:79.8:0.2 wt.%) increased by 24%, 5%, and 62% compared with
neat PLA in the tensile strength, elongation at break, and Young’s modulus, respectively.
The elongation at break, elastic modulus, and tensile strength reached 87.3%, 3.8 GPa, and
75.6 MPa, respectively, for the PLA/CNTs/MMT blend (98.5:0.5:1 wt%) [2]. The mixture of
PLA with graphene oxide dispersed in epoxidized soybean oil and then crosslinked with
sebacic acid to a concentration of 80:20 (wt %) has antistatic properties and shape memory
foam [3]. Li et al. reported PLA/Poly(hydroxybutyrate) (PHB) blends where the impact
strength, flexural modulus, and Young’s modulus increased by 80.5%, 16.4%, and 41.4%,
respectively, for PLA/PHB 80:20 wt.% compared with neat PLA [4].

Additionally, most research is focused on mixing PLA with another biobased or syn-
thetic polymer. The architecture typically used is a homopolymer, e.g., PLA/Polycaprolact
one(PCL) [3,5], PLA/Polyethylene glycol (PEG) [6–10], PLA/PHB [4], PLA/Polyethylene
terephthalate(PET) [11,12], PLA/Polyamide (PA) [13–16], PLA/PBAT [17–20],
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PLA/starch [21–23], or PLA/Polyvinyl alcohol (PVA) [24]. The applications of these poly-
mer blends are used in various fields, such as flexible packaging [6,22,24], engineering [16],
3D printing [17,18], medical devices (e.g., sutures, medical implants, catheters) [15,25],
shape memory materials [26], coating [7], cushioning application [20], and agricultural
films [15].

Regarding mixtures of PLA with copolymers or complex architectures, there are some
works in the literature. For instance, Odent et al. reported PLA/poly(ε-caprolactone-
co-D-L-lactide) blends. The blends exhibited increased impact strength, correlated with
the presence of ribbon-like rubbery microdomains [27]. Li et al. reported PLA/P(3HB-
co-4HB) blends. The blends exhibit improved mechanical properties and an increased
crystallinity degree in the materials [4]. Therefore, the study of PLA/bioplastics blends,
particularly with itaconate copolymers and crosslinking networks of itaconic acid (IA), has
been relatively unexplored.

Furthermore, IA is generally utilized as a versatile building block for synthesizing
complex architecture renewable sources [28]. Krishnan et al. synthesized by polyconden-
sation a bioelastomer (IA, sebacic acid, 1,4 butanediol, and lactic acid)-based aliphatic
copolyester elastomer, which was blended with PLA in the presence of free radical initiator
dicumyl peroxide [29]. Ivorra-Martinez et al. reported mixtures of PLA/dibutyl itaconate
(80:20 wt.%) by reactive extrusion. The blend considerably reduces the Tg, exhibiting
a plasticization effect. The Young’s modulus, tensile strength, and elongation at break
reached 108 MPa, 20.6 MPa, and 209%, respectively [30]. For this reason, our research
utilizes IA to obtain different architectures because, in addition to being a green monomer,
it has different reactive functional groups, in particular alkene and carboxylic acid.

In contrast, grafted polymer synthesis through the functionalization of PLA with IA
has been extensively studied [31]. Agustin-Salazar et al. reported that a blend of PLA and
pecan nutshell grafted with IA increased the thermal stability and enhanced the crystal-
lization phenomenon. Additionally, the blend exhibited a strain of 11.7% at 140 ◦C [31].
Walallavita et al. reported a blend of itaconic anhydride grafted with PLA/Novatein
(50:50 wt%), with the tensile strength and impact strength increasing by 42% and 36%,
respectively [32]. Kučera et al. reported that itaconic anhydride grafted with PLA in melt
blending achieved a grafting efficiency of about 60% [33]. The graft copolymer architecture
in our research was not explored due to these works at this time.

Despite these investigations, few studies analyze the effect of polymer architecture
on PLA, and even fewer studies on IA. Here, environment-friendly polymer blends of
poly(lactic acid) (PLA) and IA, poly(itaconic acid) (PIA), poly(itaconic acid)-co-poly(methyl
itaconate) (Cop-IA), and net-poly(itaconic acid)-ν-triethylene glycol dimethacrylate (Net-
IA) were developed via melt blending. The research aims to study and understand the
effects of IA and its different architectures on the mechanical, rheological, and thermal
properties of PLA. Furthermore, the properties of the PLA/IA, PLA/PIA, PLA/Cop-IA,
and PLA/Net-IA blends, including rheological, morphological, thermal, mechanical, and
thermomechanical properties, were studied in detail. Likewise, the architectures obtained
from IA were analyzed, establishing their effects on the mixtures with PLA.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (2003D) (PLA) with 4.3% mol of D was supplied by NatureWorks
(Minneapolis, MN, USA), with a density of 1.24 g/cm3 and a melt index of 6 g/10 min
(210 ◦C). Itaconic acid (IA), potassium persulfate (KPS), p-toluenesulfonic acid, and triethy-
lene glycol dimethacrylate (TEGDMA) were acquired from Sigma Aldrich (Burlington,
MA, USA). In addition, methanol, acetone, and distilled water were acquired from CTR
Scientific (Chihuahua, Chih., Mexico).
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2.2. Synthesis of Itaconic Acid Architectures

Poly(itaconic acid) (PIA) was synthesized via radical polymerization according to the
methodology reported by Nagai and Yoshida [34]. The polymerization time was 50 h at
a temperature of 75 ◦C with constant mechanical stirring at 120 rpm. The homopolymer
was then purified by washing (three times) with distilled water and acetone. Finally, it was
dried at room temperature.

The copolymer (poly(itaconic acid)-co-poly(methyl itaconate)) (Cop-IA) was pre-
pared from the esterification of (PIA) (1 g) with methanol (2 mol), using the catalyst
p-toluenesulfonic acid (5 wt%). The substances were added to a reactor (250 mL) equipped
with a reflux system and constant magnetic stirring. The synthesis was kept at 80 ◦C for
4 h. The copolymer was filtered and washed with distilled water. Finally, the product was
dried at room temperature.

The synthesis of net-poly(itaconic acid)-ν-triethylene glycol dimethacrylate (Net-IA)
was carried out via radical polymerization, specifically in a reactor (1 L) equipped with a
magnetic stirred system. Then, 1.5 mol of IA, 0.05 mol of KPS, 0.5 mol of TEGDMA, and 1 L
of distilled water were added. The polymerization system was maintained with constant
stirring at 150 rpm at 70 ◦C for 3 h. Finally, the synthesis product was filtered, washed, and
dried at room temperature.

2.3. Preparation of Blends of PLA/Itaconic Acid and Its Architectures

Prior to blending and formulating, the PLA resin was vacuum-dried at 65 ◦C in a Fisher
Scientific vacuum oven for 12 h. Next, the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-
IA blends were prepared in concentrations of 0.1, 1, 3, and 10 wt %. The formulations
were mixed in a Brabender internal mixer, model DDRV501 (Brabender Instruments Inc.,
South Hackensack, NJ, USA), at a temperature of 180 ◦C, a speed of 60 rpm, and a total
mixing time of 8 min, employing CAM-type blades.

2.4. Film Preparation

The films were prepared by hot compression molding (Carver Inc., Wabash, IN, USA).
First, the mixtures obtained were ground using a blade grinder (Fritsch model Pulverisette,
Pittsboro, NC, USA). Next, the ground samples were molded at 165 ◦C for 3 min without
applying pressure. Afterward, 3 tons of pressure was applied for 4 min. Finally, the samples
were cooled down to 25 ◦C by recirculating water.

2.5. Characterization
2.5.1. Fourier Transform Infrared Spectroscopy

The PLA blends, IA, and its architectures were analyzed using an IR Affinity 1S B
spectrometer equipped with a diamond ATR accessory (Shimadzu, Kyoto, Japan). The
samples were measured in transmittance mode in the 4000 cm−1 to 400 cm−1 range with a
resolution of 4 cm−1.

2.5.2. Electron Microscopy

Morphological analysis was performed on continuous carbon membrane copper
grids (200 mesh). IA and its diverse architectures were morphologically analyzed using a
transmission electron microscope (TEM, Hitachi 7700, Tokyo, Japan) with an acceleration
voltage of 40 kV. Additionally, the PLA blends were morphologically evaluated through
secondary electron analysis using a scanning electron microscope (SEM, Hitachi SU3500,
Tokyo, Japan) with a voltage of 10 kV, examining both the surface and cross-sectional views.
In addition, the samples analyzed in the cross-sections were prepared by coating the sample
with a layer of gold using a sputtering system (Denton vacuum DESK II, Moorestown,
NJ, USA).
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2.5.3. Rheological Properties

The storage modulus and complex viscosity of the PLA/IA, PLA/PIA, PLA/Cop-IA,
and PLA/Net-IA blends were evaluated using a Physica MCR 501 rotational rheometer
(Anton Paar, Graz, Austria), employing parallel plate geometry. A frequency sweep was
conducted in the range of 0.01–100 Hz, with a strain amplitude of 0.1%, and the reference
temperature for the analysis was set at 170 ◦C.

2.5.4. Differential Scanning Calorimetry

DSC was employed to evaluate the thermal properties and crystallinity degrees of
the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends. These properties were
observed during the second heating scan. The measurements were conducted using a
DSC Q200 Instruments (TA Instruments, New Castle, DE, USA) under an air atmosphere
(50 mL/min). The heating rate was 10 ◦C/min from 30 to 220 ◦C.

2.5.5. X-ray Diffraction

For the XRD analysis of the blends, a Bruker D8 Advance diffractometer (Bruker Corp.,
Billerica, MA, USA) was employed. The instrument was operated with CuKα radiation
(λ = 1.54 Å) over 2θ of 5◦ to 80◦, with a step size of 0.02◦.

2.5.6. Dynamic Mechanical Thermal Analysis

The thermomechanical behavior of the PLA blends was evaluated using a DMA RSAIII
(TA Instruments, New Castle, DE, USA) in tension mode. The samples were analyzed over
a temperature ramp from 30 to 180 ◦C, with a heating rate of 5 ◦C/min. The deformation
frequency was set at 1 Hz, with a strain percentage of 0.1%.

2.5.7. Thermogravimetric Analysis

The thermal stability of the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends
was determined using a TGA Q5000 (TA Instruments, New Castle, DE, USA). The samples
were heated from 25 to 700 ◦C, with a heating rate of 10 ◦C/min under an air atmosphere
(50 mL/min), and each analysis was performed in triplicate.

2.5.8. Mechanical Analysis

The effect of IA and its architectures on the elasticity and elongation of the PLA blends
was evaluated using a DMA RSAIII (TA Instruments, New Castle, DE, USA) in tension
mode. In the stress-deformation test, a constant deformation rate of 0.01 mm/s at 25 ◦C
was applied.

3. Results and Discussion

The PLA blends with itaconic acid (IA), poly(itaconic acid) (PIA), poly(itaconic acid)-co-
poly(methyl itaconate) (Cop-IA), and net-poly(itaconic acid)-ν-triethylene glycol dimethacry-
late (Net-IA) were made at a temperature of 170 ◦C due to the melting temperature of IA,
discussed in the section on thermogravimetric analysis. Scheme 1 illustrates the synthesis
paths of the different polymeric architectures. PIA was synthesized with excess potassium
persulfate at a temperature of 50 ◦C and a polymerization time of 72 h. It is well known
that IA polymerization generates complex structures according to the type of initiator [35],
controlled radical polymerization [36], synthesis conditions [35], and radical polymeriza-
tion (transfer chain reactions) [37]. Therefore, the intrinsic properties of the synthesized
polymer are difficult to compare.
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of hydrogen bonding; see Figure 1a. In addition, the peak corresponding to the stretching 
vibration of the carbonyl group is shown at 1687 cm−1 owing to intramolecularly hydro-
gen-bonded acids (as a dimer). For the CH2–CO group, the methylene group presents a 
deformation vibration at 1435 cm−1. These signals are characteristic of carboxylic acid 
groups. At 1624 cm−1, the C=C stretching vibration is displayed. The peaks corresponding 
at 1435 (asymmetric deformation) and 1390 cm−1 (symmetric band) are assigned to the 
methyl group adjacent to the carbonyl groups [38]. Likewise, the band at 2918 cm−1 is as-
signed to the symmetrical vibration of methylene (CH2) [38]. 

Figure 1b displays the spectrum of the PIA homopolymer. The broad band at 3800–
2750 cm−1 is attributed to the O–H stretching vibration. In addition, the peaks at 2922 cm−1 
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tions, respectively. Finally, the peaks at 1637, 1257, 663, 588, and 551 cm−1 are attributed to 
the dimer’s presence of the COOH groups [39]. 

Scheme 1. (a) Itaconic acid (IA) monomer; (b) polymerization of IA, poly(itaconic acid) (PIA); (c) PIA
esterification with methanol, poly(itaconic acid)-co-poly(methyl itaconate) (Cop-IA); (d) crosslinking
IA with triethylene glycol dimethacrylate (TEGMA), net-poly(itaconic acid)-n-triethylene glycol
dimethacrylate) (Net-IA); photos of prototypes manufactured by film preparation. Dimensions of
probes are according to ASTM D-638 type 5, (e) poly(lactic acid) (PLA)/IA blend; (f) PLA/PIA blend;
(g) PLA/Cop-IA blend; (h) PLA/Net-IA blend.

Moreover, the random copolymer was synthesized from the esterification of PIA with
methanol using p-toluenesulfonic acid as a catalyst. From a purification point of view, these
synthesis pathways were less challenging than the esterification of IA with methanol. On
the other hand, IA was also crosslinked with TEGMA and KPS initiators at a temperature
of 60 ◦C. The obtaining of microspheres was evident from the moment of polymerization.

3.1. Fourier Transform Infrared Spectroscopy

Infrared spectroscopy was employed before mixing PLA with IA or its architec-
tures to understand their differences. The FTIR spectrum of IA exhibits a broad band
at 3385–2400 cm−1, which is attributed to the O–H stretching vibration as a result of the
presence of hydrogen bonding; see Figure 1a. In addition, the peak corresponding to the
stretching vibration of the carbonyl group is shown at 1687 cm−1 owing to intramolecularly
hydrogen-bonded acids (as a dimer). For the CH2–CO group, the methylene group presents
a deformation vibration at 1435 cm−1. These signals are characteristic of carboxylic acid
groups. At 1624 cm−1, the C=C stretching vibration is displayed. The peaks corresponding
at 1435 (asymmetric deformation) and 1390 cm−1 (symmetric band) are assigned to the
methyl group adjacent to the carbonyl groups [38]. Likewise, the band at 2918 cm−1 is
assigned to the symmetrical vibration of methylene (CH2) [38].

Figure 1b displays the spectrum of the PIA homopolymer. The broad band at
3800–2750 cm−1 is attributed to the O–H stretching vibration. In addition, the peaks
at 2922 cm−1 and 2856 cm−1 are assigned to the asymmetric and symmetrical C–H stretch-
ing vibrations, respectively. Finally, the peaks at 1637, 1257, 663, 588, and 551 cm−1 are
attributed to the dimer’s presence of the COOH groups [39].

The spectrum of Cop-IA is shown in Figure 1c. The peaks at 2924 cm−1 and 2854 cm−1

are attributed to the asymmetrical and symmetrical stretching vibrations of the C–H bond.
The peak at 1718 cm−1 is assigned to the carbonyl group stretching vibration of the ester
group. The band at 1429 cm−1 corresponds to the asymmetrical CH3 deformation vibration.
Similarly, the peak at 1128 cm−1 (rocking vibration) is attributed to the methyl ester
group. These signals confirm the formation of the copolymer from the esterification of
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the homopolymer with methanol [8]. Similar to PIA, the non-esterified COOH groups
associate in the form of dimers, according to the observed bands at 1259, 670, 590, and
551 cm−1 corresponding to the stretching vibration of C–O [39,40]. The methyl content
was determined based on deconvolution from the peak to 1718, with a value of 35%; see
Figure S1 [11,41].
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Figure 1. FTIR spectra. (a) IA; (b) PIA; (c) Cop-IA; (d) Net-IA.

Figure 1d illustrates the FTIR spectrum of Net-IA. The band corresponds to the O–H
stretching vibration, which is located between 3385 cm−1 and 2500 cm−1. The peaks at 2993
and 2945 cm−1 correspond to the stretching vibration of the C–H bond. At 1710 cm−1, the
stretching vibration of the carbonyl (C=O) of the ester group, particularly the crosslinking
agent, is observed [42]. The peak of 1641 cm−1 is assigned to the stretching vibration of
the carbonyl group of IA. On the other hand, the peaks at 1350 cm−1 and 1390 cm−1 are
attributed to the combination of C–O bond vibrations and O–H deformation.

On the other hand, the blend’s constituents have similar groups; for this reason, the
mixtures were analyzed at a 10% content of itaconic acid and its architectures. Figure 2
illustrates the infrared spectra of PLA/IA and its architecture blends and their compari-
son with PLA. The PLA/IA10 blend shows the characteristic band corresponding to the
stretching vibration of the CO at 1695 cm−1. Likewise, the C=C stretching vibration is
observed at 1624 cm−1. This molecular vibration is essential because it suggests that a
process of self-polymerization does not occur during the formation of the PLA/IA10 blend
at a temperature of 170 ◦C for 2 min.

The spectra of the PLA/PIA10 and PLA/Cop-IA10 blends show significant differences
in some of these bands at 1266, 669, 620 590, and 558 cm−1, which are attributed to
dicarboxylic acid due to the in-plane vibration of the O–CO group, i.e., dimers. However,
the band at 1266 cm−1 in PLA/Cop-IA10 is more intense because a methyl ester stretching
vibration also occurs. Despite the absence of these bands in the PLA/Net-IA10 spectrum, it
suggests that PLA covers the Net-IA microspheres. Thus, the PLA/Net-IA10 spectrum is
similar to the PLA spectrum.
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In conclusion, based on the results, the chemical structures of IA, PIA, and Cop-
IA showed a hydrogen bond in the form of a dimer between two carboxylic acids of
a different IA, PIA, or Cop-IA, i.e., a head-to-tail bond. The polymerization of IA was
successful due to the absence of the band corresponding to the alkene group. Likewise,
the crosslinking between IA and TEGMA displayed substantial changes compared to its
precursors. The esterification of PIA with methanol proved to be an easier method for
obtaining copolymers because it eliminates the monomer purification process. Compared
to IA and its architectures, the PLA/IA10, PLA/PIA10, and PLA/Cop-IA10 blends also
exhibit the formation of dimers.

3.2. Electron Microscopy

The morphology analysis by transmission electron microscopy (TEM) of IA and
its architectures was conducted in order to elucidate the differences presented by these
materials. Figure 3 illustrates the TEM micrographs of (a) IA, (b) PIA, (c) Cop-IA, and
(d) Net-IA. The micrograph of IA shows thin layers similar to graphene. Harlow R.L. and
Pfluger C.E. reported that the crystal structure of IA (orthorhombic, Pbca) is composed of
molecules that are hydrogen-bonded in a head-to-tail fashion to form infinite chains in a
direction (a-axis) [43]. Arun Renganathan et al. reported that IA exhibited several intra-
and intermolecular hydrogen bond interactions [44]. They also theoretically studied the
possibility that IA can present molecular packing along the a-, b-, and c-axes [44]. Therefore,
the observed morphology of IA corresponds to the inter- and intramolecular interaction of
hydrogen bonds forming a packing in one direction. This result coincides with the infrared
spectroscopy, where the formation of dimers is observed.

The TEM micrographs of the IA architectures, in general, exhibit a spherical morphol-
ogy; see Figure 3b–d. IA, PIA, Cop-IA, and Net-IA have a particle size of 20–30, 80–250, and
200–600 nm, respectively. Figure 3b shows the TEM micrograph of PIA, and the formation
of clusters of the homopolymer is observed due to the interaction between the polymer
chains and the functional groups present in them. The sample preparation methodology,
which utilized isopropyl alcohol, explains this result. As PIA is not soluble and has more
groups of carboxylic acid, it undergoes an agglomeration and is observed with spherical
particles at the edges.
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Figure 3c presents the TEM micrograph of Cop-IA, showing an amorphous structure
with areas with a higher electron density, where copolymer aggregates are located. Finally,
Figure 3d displays the TEM micrograph of Net-IA, where the surface of the sphere has
a rough texture, suggesting the crosslinking of the polymeric structures. Likewise, small
nodules are observed on the surface due to the polymerization of IA and TEGDMA,
together with the formation of the three-dimensional network in the material. Similarly,
Alrahlah et al. report that spherical conformation particles of regular size and micro holes
are observed on the surface [45].

The morphology of the PLA/IA10, PLA/PIA10, PLA/Cop-IA10, and PLA/Net-IA10
blends was evaluated through SEM. Figure 4a illustrates the SEM micrograph of the
PLA/IA10 blend, showing fibers and roughness formed on the surface. At low concentra-
tions of IA, i.e., 0.1 wt%, Figure S2, and 1 wt%, Figure S3, the morphology of the PLA/IA
blend does not suffer significant alterations. Meanwhile, when the concentration increases
to 3%, Figure S4 is identical to PLA/IA10. The PLA/IA blend morphology can be attributed
to chemical or physical interactions between IA and PLA, where the additive forms nucle-
ation points in the polymer matrix, which promotes the alignment of the polymer in the
form of fibers.

The SEM micrographs of the PLA/PIA10 blends are illustrated in Figure 4c. These
blends exhibit a behavior similar to that described above in the PLA/IA blends, where at
low concentrations, e.g., 0.1 wt%, Figure S5, and 1 wt%, Figure S6, PIA does not have a
significant incidence on the morphology of PLA. The interaction between PLA and PIA is
visible at 3 wt%, Figure S7, and 10 wt%. For the PLA/PIA blend, it is suggested that the
homopolymer generates nucleation points that promote the formation of fibrillar structures.
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Figure 4e displays the micrograph of the PLA/Cop-IA10 blends obtained by SEM. The
copolymer particles embedded in the polymer matrix are observed in various concentra-
tions. In the same way, Cop-IA has acceptable compatibility with the polymer, promoting
the formation of fibrillar structures, where the surface is maintained with a smooth texture.

The SEM micrograph of the PLA/Net-IA10 blends is shown in Figure 4g. The micro-
spheres are embedded and evenly distributed in the polymer matrix. In turn, PLA fibers
with a smooth texture are formed. This result can be explained due to the physical interac-
tions between Net-IA and the polymeric material. Nevertheless, these interactions were not
detected by infrared spectroscopy because the interface between the Net-IA microsphere
and PLA has to be analyzed. On the other hand, Net-IA and Cop-IA have similar behavior
in the PLA matrix.

Figure 4b,d,f,h illustrate the cross-section of the PLA/IA10, PLA/PIA10, PLA/Cop-
IA10, and PLA/Net-IA10 blends, respectively. All blends, except PLA/Net-IA10, showed a
porous microstructure that formed throughout the fibrillar material.

In summary, it is clear that the microstructures obtained after the melting blend
process are of the fibrous type, which could be applied to develop fabrics or the 3D printing
of filament.

3.3. Rheology

Rheological measurements were performed to understand and to obtain information,
including the miscibility, phase behavior, structure, and shear thinning behavior, among
others, of the blends. Figure 5 displays that the complex viscosity (η*) values for PLA/PIA,
PLA/Cop-IA, and PLA/Net-IA are similar or superior to those of neat PLA at all fre-
quencies, except for PLA/Net-IA10, which is lower and more identical to the PLA/IA1
blend. In contrast, the PLA/IA blend values have a singular rheological behavior and
are completely different at all frequencies, whereas the PLA/IA10 blend exhibits a minor
complex viscosity compared to all blends. It is important to note that a high concentration
of IA is extremely plasticizing.
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On the contrary, the blends containing 1, 3, and 10 wt% of IA exhibit a Newtonian
plateau at low frequencies. In addition, it is evident that IA acts as a plasticizer by decreasing
the η*. Benkraled et al. demonstrated the behavior of a plasticizer on η* when PLA was
mixed with PEG using the Carreau–Yasuda model [9]. Ivorra-Martinez et al. observed that
the DBI content in the PLA matrix results in a decrease in viscosity owing to a reduction in
the intermolecular interactions in the polymer chains, creating a plasticizing effect [46].

Table 1 illustrates a comparison of the η* obtained at a frequency of 0.1 Hz and the
Carreau–Yasuda model. The results of the Carreau–Yasuda model were calculated using
Equation (S1), and Table S1 displays the parameters used for the model. Although there
is a difference between the two criteria, the results obtained at 0.1 Hz are comparable to
the Carreau–Yasuda model. The IA present in the PLA/IA blends has a plasticizing effect,
and it is observed that it drastically decreases the η* when the mixture contains 10 wt% of
IA. Low concentrations of PIA, Cop-IA, and Net-IA in the PLA/PIA, PLA/Cop-IA, and
PLA/Net-IA blends can be utilized to reinforce, as revealed by the findings. However, the
PLA/PIA10 blend has a η* similar to PLA, so it is necessary to study high concentrations of
PIA to determine whether it has a plasticizing effect. On the contrary, the PLA/Net-IA10
blend significantly decreases, suggesting a plasticizing effect at this concentration.
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Table 1. The comparison of the complex viscosity (η*) at 0.1 Hz and the Carreau–Yasuda model.

Sample η* at 0.1 Hz (Pa·s) η0, Carreau–Yasuda Model (Pa·s)

PLA 2140 2073.1
PLA/IA0.1 2038.4 1999.3
PLA/IA1 1189.0 1175.7
PLA/IA3 118.7 113.8
PLA/IA10 5.35 ---

PLA/PIA0.1 3579.3 3568.9
PLA/PIA1 4059.0 4118.4
PLA/PIA3 3139.2 3020.1
PLA/PIA10 2400.5 2252.5

PLA/Cop-IA0.1 3453.4 3471.1
PLA/Cop-IA1 3066.9 3010.0
PLA/Cop-IA3 2877.4 2806.1
PLA/Cop-IA10 3594.7 3584.1
PLA/Net-IA0.1 3553.7 3607.7
PLA/Net-IA1 2914.2 2897.8
PLA/Net-IA3 3455.2 3545.9

PLA/Net-IA10 910.6 858.71

Figure 6 displays the plots of storage modulus (G’) and loss modulus (G”) versus
frequency for the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends. For PLA/IA,
Figure 6a, the G’ decrease concerning IA concentration is due to a decrease in molecular
entanglements. Likewise, the behavior of the G” is typical of a plasticizing effect [9]. In
contrast, the G’ of the PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends is equivalent to or
higher than neat PLA, except for the PLA/Net-IA10 blend, which is similar to the PLA/IA
blend. The increase in the G’ of the blends compared to PLA is attributed to an increased
chain entanglement [25].
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Huerta-Angeles et al. reported that the enhancement in the molecular weight of PIA
leads to an enhancement in the viscosity of the aerogel. They also found that the G’ and G”
of the PIA/laponite hydrogel increased with a higher frequency, which can be attributed
to the enhanced hydrogen bonds [47]. In the same way, Kwon et al. reported that the
addition of IATG (IA/1-thioglycerol) to polyurethane results in an increase in the storage
modulus. They attributed this behavior to the carboxyl groups, which generate an increase
in physical crosslinking in the polyurethane chains by forming more hydrogen bonds [48].

Finally, the compatibility between PLA and IA and its architecture can be elucidated
through the correlations of G’ vs. G”, known as Han plots; see Figure S8. The Han plots
display linear behavior for the PLA/IA blend, indicating a homogeneous structure, and the
blend demonstrates excellent compatibility, according to the results of Yang et al. [49]. For
the PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends, a nonlinear correlation is observed
with an increasing additive concentration, indicating immiscibility in the blends [50,51].

In summary, the η*, G’, and G” of the PLA/IA blend suggest a behavior as a plasticizer;
on the contrary, the rest of the architectures have a reinforcing effect on PLA.

3.4. Differential Scanning Calorimetry

The glass transition temperature (Tg) and melting temperature (Tm) for all blends
were obtained from the second heating by DSC; see Table 2. The DSC thermograms of
the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends (Figures S9–S12) show a
decrease in the Tg compared with neat PLA, especially for PLA/IA10 and PLA/Cop-IA10,
which exhibit a decrease of 23% and 11%, respectively. This behavior could be explained by
the fact that IA and its architectures act as plasticizers, providing greater mobility in the
amorphous domains of the polymeric matrix and favoring ductility.

Table 2. Values were obtained from DSC curves of PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-
IA blends vs. PLA.

Sample Tg
1 (◦C) Tcc

2 ∆Hcc
3 Tm

4 (◦C) ∆Hm
5 χcc

6 (%)

PLA 65.2 122.9 8.6 153.6 19.8 12
PLA/IA0.1 56.5 116.4 7.5 149.4 16.3 9.5
PLA/IA1 58.5 119.5 11.3 148.5 19.3 8.7
PLA/IA3 49.0 121.3 11.5 147.9 20.9 11.2

PLA/IA10 51.2 114.6 13.7 146.5 19.5 6.4
PLA/PIA0.1 59.6 122.0 4.0 152.2 16.3 13.2
PLA/PIA1 59.3 124.1 8.9 149.9 15.1 6.9
PLA/PIA3 59.1 123.7 10.1 150.4 15.8 6.2

PLA/PIA10 59.2 122.0 9.3 149.5 15.0 6.8
PLA/Cop-IA0.1 59.3 119.7 13.3 148.9 18.3 5.4
PLA/Cop-IA1 62.6 126.5 4.1 150.2 9.3 6.2
PLA/Cop-IA3 59.4 125.1 7.3 153.6 13.8 7.1

PLA/Cop-IA10 59.4 122.9 6.7 150.4 16.2 10.5
PLA/Net-IA0.1 60.3 119.6 13.2 152.3 19.4 6.7
PLA/Net-IA1 59.5 120.3 12.9 150.5 19.2 6.8
PLA/Net-IA3 59.6 120.6 10.6 151.2 19.1 9.4
PLA/Net-IA10 64.0 121.4 11.9 153.6 25.6 16.4

1 Tg: glass transition temperature; 2 Tcc: cold crystallization temperature; 3 ∆Hcc: enthalpy cold crystallization;
4 Tm: melting temperature; 5 ∆Hm: melting enthalpy; 6 χcc: crystallization grade.

Additionally, Ivorra-Martinez et al. reported a decrease in the Tg for mixtures of diester
itaconates with PLA [46]. Spasojevic et al. reported a decreased Tg when incorporating
dibutyl itaconate into poly(methyl methacrylate). The flexible ester groups of the itaconate
provide a plasticizing effect [52]. Zhao et al. observed a decrease in the Tg of the PLA/citric
acid/PEG blend at low concentrations and those superior to 15%, attributed to a reduction
in the intermolecular forces in the polymer matrix, producing a plasticizing effect. However,
when 15% PEG/CA was incorporated, there was an increased Tg of the blend owing to
the enhanced branched PEG/CA, forming copolyesters with the PLA matrix, generating



Polymers 2024, 16, 2780 13 of 21

greater entanglement between the chains of the blend, and limiting the movement of the
polymer chains [25].

On the other hand, the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends
show a decrease in the Tm. Compared with PLA (Tm = 153.6 ◦C), the PLA/IA10, PLA/PIA10,
PLA/Cop-IA10, and PLA/Net-IA10 blends have a value close to 150 ◦C, highlighting the
incorporation of IA at 10 wt.%, where a Tm of 147.9 ◦C is reached.

All blends’ cold crystallization temperature (Tcc) is close to 120 ◦C. Marsilla et al.
observed that the Tcc decreases with higher IA content due to the steric effect of the
additive that prevents crystal growth [53]. Ivorra-Martinez et al. reported that increasing
the DBI content enhances the Tcc of the PLA/DBI blend [46].

The mixtures exhibit different behaviors in the enthalpy of crystallization (∆Hcc).
For instance, the PLA/IA blend increases the ∆Hcc concerning the concentration of IA.
Nevertheless, significant ∆Hcc changes were not observed in the PLA/PIA, PLA/Cop-IA,
or PLA/Net-IA blends at all concentrations. Finally, similar behavior is observed in the
fusion enthalpy of polymer blends.

The crystallinity degree (χcc) was determined using Equation (S2) for all blends; see
Table 2. Due to the proximity between the crystallization and enthalpy peaks of the
second heating cycle, the first derivative was used to establish the limits of the integral
for determining the enthalpy; see Figure S13. The supplementary material contains the
DSC thermograms and the χcc equation; see Figures S9–S12. Compared with PLA, the
PLA/IA blend exhibits the maximum χcc when it contains 3 wt% of IA. Nevertheless, the
PLA/PIA blends decrease their χcc relative to the increase in PIA concentration. In contrast,
the PLA/Cop-IA and PLA/Net-IA blends enhance their χcc depending on the Cop-IA or
Net-IA concentration. These results are consistent with those reported by Zhao et al. [25].
Similarly, Hu et al. observed an increase in the χcc with the addition of citric acid to the
polymer matrix, as it restricts the chain mobility [54].

The variations in the χcc observed in the DSC were validated by the XRD. It is well
known that the XRD spectrum of neat PLA exhibits two characteristic peaks at angle
2θ = 16.6◦ and 19.3◦, corresponding to the crystalline structure of PLA [55]. Furthermore,
for these peaks to be observed under this characterization technique, it is necessary to
perform the analysis at a temperature of 80 ◦C or a heat treatment [55].

Figure 7 displays the XRD analysis of the PLA/IA10, PLA/PIA10, PLA/Cop-IA10, and
PLA/Net-IA10 blends and PLA. Compared to PLA, the PLA/IA10 and PLA/PIA10 blends
do not show the characteristic peaks of crystallinity of PLA, and even the PLA/PIA10 blend
is more amorphous than the PLA/IA blend. Nevertheless, these peaks can be observed
only in the PLA/IA3 and PLA/PIA0.1 blends; see Figures S14 and S15, respectively.
Therefore, this behavior is consistent with the DSC findings. In contrast, the PLA/Cop-IA
and PLA/Net-IA blends show this pair of peaks. Low concentrations are also observed
to highlight the PLA/Net-IA blend because all Net-IA concentrations are shown; see
Figures S16 and S17. This evidence suggests that the Cop-IA and Net-IA architectures
restrict the mobility of the PLA chains, and hence, the particles generate nucleation points.
However, the Net-IA architecture more substantially affects the χcc than the Cop-IA does
due to the particle size. Sa’adah et al. observed an increase in the crystallinity peak of the
PLA/PVA/Starch blend with the addition of citric acid [56].

On the other hand, the PLA/PIA10 and PLA/Cop-IA10 blends display the charac-
teristic peaks of PLA, as well as additional peaks reported for the structure based on
itaconic acid [57].
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3.5. Dynamic Mechanical Thermal Analysis

Dynamic mechanical thermal analysis (DMTA) is a polymer characterization technique
with far more sensitivity to macroscopic and molecular relaxation processes than thermal
analysis techniques. Figure 8 displays the dynamic mechanical relaxation spectra for the
PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends. The Tg determination under
this technique is that it is a direct method and was calculated with the Tan δ maximum,
see Table S2. The Tg’s behavior is altogether unique compared to the DSC. The PLA/IA
blends display a decrease in the Tg, with the minimum in the PLA/IA3 (54.1 ◦C) blend. The
PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends have a Tg close to that of PLA (61.4 ◦C).
The PLA/Cop-IA0.1 and PLA/Net-IA3 blends displayed the highest values at 64.4 and
64.2 ◦C, respectively. Therefore, the incorporation of IA in PLA has a plasticizing effect,
and PIA, Cop-IA, and Net-IA have no significant changes on the Tg of PLA.

Figure 8 displays the DMTA curves in the region’s glassy state, glass–rubber relaxation,
and rubbery plateau of PLA. Compared with the elastic modulus (E’) of PLA (2733 MPa),
the PLA/IA1, PLA/PIA10, PLA/Cop-IA0.1, PLA/Cop-IA1, PLA/Cop-IA3, PLA/Cop-
IA10, PLA/Net-IA3, and PLA/Net-IA10 blends have higher E’ values, which are 5284,
2769, 3463, 3272, 4421, 4200, 2889, and 2736 MPa, respectively. The E’ was determined at a
temperature of 35 ◦C. Liu et al. found that IA produced an increase in the E’, which was
attributed to the intermolecular repulsion between the polyacrylate chains and IA [58].
The PLA/Cop-IA blends are highlighted, since they all outperformed PLA. This result
may be explained by the fact that the additive used in the PLA blend needs a balance of
hydrophilic and hydrophobic groups to have an adequate miscibility and, therefore, an
increase in the E’ [59].

On the other hand, the tan δ for the PLA/IA blend diminishes as the IA content
increases, suggesting a plasticizing effect; see Figure 5a. Ivorra-Martinez et al. reported
a decrease in the tan δ, indicating a high level of plasticization in the PLA-DBI blends,
resulting in a ductile material at room temperature [30,46]. The tan δ of PLA/PIA0.1 and
PLA/Cop-IA10 had a behavior similar to neat PLA; see Figure 8b,c. The rest of the mixtures
have a tan δ above that of neat PLA. Spasojevic et al. observed an increase in the tan δ
concerning the itaconate content in the PMMA matrix. They attributed this effect to the
interaction of the aliphatic chains of the itaconates with the polymer [52].
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3.6. Thermogravimetric Analysis

The evaluation of the thermal stability of the PLA/IA, PLA/PIA, PLA/Cop-IA, and
PLA/Net-IA blends is necessary due to the decomposition of the chains that make up these
additives. For this reason, the temperature was evaluated at a weight loss of 5% (T5), 10%
(T10), 50% (T50), and at the maximum decomposition temperature (Tmax) according to the
first derivative of the TGA curve; see Figure 9. Table S3 illustrates the thermogravimetric
results for the PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends at T5, T10, T50,
and Tmax.

At a concentration of 1%, the PLA/IA and PLA/PIA blends experience the highest T5,
reaching 321.9 ◦C and 330.8 ◦C, respectively. Meanwhile, thermal stability is achieved at a
concentration of 10%, i.e., T10, for the PLA/Cop-IA and PLA/Net-IA blends. Compared to
neat PLA, the thermal stability is favored, suggesting that Cop-IA and Net-IA produce a
higher ordering in the polymer chains, as observed in the SEM images, where the fibrillar
structures of the polymer are obtained. On the other hand, as the concentration of the IA in
the blend increases, there is a decrease in the thermal stability owing to the interactions
between the polymer matrix and the monomer. This result is verified by the DSC and
DMTA analyses, in which a considerable decrease in the Tg is observed.

Neat PLA has a Tmax of 359.1 ◦C, but it varies in the PLA/IA, PLA/PIA, PLA/Cop-IA,
and PLA/Net-IA blends. For example, the Tmax for PLA/IA1, PLA/PIA1, PLA/Cop-IA1,
and PLA/Net-IA1 is 360.6 ◦C, 371.3 ◦C, 364.1 ◦C, and 362.7 ◦C, respectively. Therefore,
these architectures promote thermal stability due to their interactions at the structural level.
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Figure 9. The thermal stability at a weight loss of 5% (T5), 10% (T10), and 50% (T50) and at the
maximum decomposition temperature (Tmax), according to the first derivative of the TGA curve.
(a) PLA/IA0.1, PLA/IA1, PLA/IA3, PLA/IA10, and PLA. (b) PLA/PIA0.1, PLA/PIA1, PLA/PIA3,
PLA/PIA10, and PLA. (c) PLA/Cop-IA0.1, PLA/Cop-IA1, PLA/Cop-IA3, PLA/Cop-IA10, and PLA.
(d) PLA/Net-IA0.1, PLA/Net-IA1, PLA/Net-IA3, PLA/Net-IA10, and PLA.

A recent study by Liu et al. identified that the addition of IA to polyacrylate increases
the thermal stability due to the stearic hindrance of IA and the repulsive forces that occur
in the polyacrylate chains, forming compact structures with a higher Tg [58]. In an analysis
of the incorporation of citric acid into starch, Chen et al. found that it generates strong
intermolecular interactions (hydrogen bonds); however, at high concentrations of citric
acid, the thermal stability decreases, attributed to acid hydrolysis that reduces the degree
of polymer crosslinking [19]. Likewise, Wang et al. demonstrated that the T5% decreases
with the increase in citric acid content for thermoplastic starch [60].

On the other hand, the thermogravimetric trace of IA is given in Figure S17. The
sample displays a single mass loss over a fairly broad temperature range. Until 150 ◦C, the
sample is stable, but it rapidly loses 98% of its mass at 221 ◦C. In this stage, two endothermic
phenomena occur, according to the DSC. Except for IA, the values obtained from Tm are
from the first heating. The first is the melting point at 176 ◦C (160–200 ◦C), and the second
is the decomposition of IA from 200 to 260 ◦C. The mass loss during the melting point
is close to 11% up to 200 ◦C. The processing conditions of the PLA/IA blends and their
different architectures are at 170 ◦C, with a mass loss of about 1%. In contrast, the mass loss
of the second endothermic peak is close to 86% due to the decarboxylation and dehydration
of IA. Silva et al. reported the TGA and DTG thermograms for citric acid, in which the
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decomposition occurs in one step (150–220 ◦C) due to the dehydration and decarboxylation
processes [61].

3.7. Mechanical Analysis by DMA

Table 3 illustrates the DMA results for the PLA/IA, PLA/PIA, PLA/Cop-IA, and
PLA/Net-IA blends. The incorporation of IA has a plasticizing effect on the PLA matrix.
Compared with neat PLA, the PLA/IA0.1 and PLA/IA1 blends exhibit an increase in the
elongation at break of 1220% and 106%, respectively. Similarly, the E’ and σ increased by
93% and 27%, respectively, with the concentration of PLA/IA1; however, as the IA content
increases, the E’ and ε decrease. Ivorra-Martinez observed this effect in PLA-DBI blends,
where this additive increases the free volume between the polymer matrix chains [46]. The
plasticizing effect is also observed with organic acids, e.g., citric acid, which reduces the
polymer chain interactions, replacing them with hydrogen bonds between the additive and
the bioplastic, resulting in increased flexibility on the polymer [56].

Table 3. DMA result overview of PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends.

Sample Tg
1 (◦C) E’ max 2 (MPa) σmax 3 (MPa) ε 4 (%)

PLA 61.4 2733.3 32.6 3.4
PLA-IA0.1 64.6 657.6 30.6 41.6
PLA/IA1 61.3 5284.3 41.5 7.0
PLA-IA3 54.1 2642.6 37.3 3.7

PLA-IA10 58.2 1478.0 8.2 2.0
PLA/PIA0.1 62.9 1131.4 21.9 14.2
PLA/PIA1 62.9 872.6 28.5 17.6
PLA/PIA3 62.4 1086.8 24.4 3.2

PLA/PIA10 63.7 2769.4 32.7 6.3
PLA/Cop-IA0.1 64.4 3462.7 27.1 3.4
PLA/Cop-IA1 62.9 3271.6 28.6 3.1
PLA/Cop-IA3 62.8 4421.0 30.9 3.1
PLA/Cop-IA10 60.3 4200.0 35.3 3.8
PLA/Net-IA0.1 63.1 2005.1 29.6 3.0
PLA/Net-IA1 62.7 1887.5 24.5 3.2
PLA/Net-IA3 64.2 2889.2 22.1 3.0

PLA/Net-IA10 63.5 2735.7 21.2 2.7
1 Tg: glass transition temperature. 2 E’: elastic modulus. 3 σ stress. 4 ε strain.

Moreover, PLA/IA10 shows a reduction of 41% in the ε. Krishnan et al. described this
effect in polymer blends, attributing it to phase separation or material agglomeration due
to the high additive content [29].

The PLA/PIA0.1 and PLA/PIA1 blends exhibit a plasticizing effect, achieving an
increase of 417% and 517% in the ε, respectively. On the other hand, the PLA/PIA3 blend
decreases by 6% and 39% for the ε and E’, respectively. In contrast, the PLA/Cop-IA3 and
PLA/Cop-IA10 blends show a 69% increase of 62% and 53% in the E’, respectively. This
result is consistent with Ivorra-Martinez’s findings, where IA esters are a reliable option for
bioplastic plasticization [30].

The PLA/Net-IA3 blend exhibits a 5% increase in the E’ and a 32% decrease in the σ
compared to neat PLA. This behavior was reported by Ivorra-Martinez et al., attributing
it to the crosslinking in the material’s chemical structure, restricting the mobility of the
polymer chains [30]. Likewise, Spasojevic et al. reported that the incorporation of dimethyl
itaconate (DMI) into PMMA creates micro-defects in the polymer chains, causing a decrease
in the tensile strength and elongation at break [52]. In the same way, Lazouzi et al. reported
PMMA/DMI (95:5 wt%) blends where the addition of DMI to the polymer increased the
elastic modulus and decreased the elongation at break, attributed to the incorporation of
pendant groups by DMI, which creates micro-defects in the polymer structure [62]. In
another work, Liu et al. reported that the elastic modulus increased and the elongation
at break decreased with the IA content, attributed to the repulsive forces between the
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polyacrylate chains and IA [58]. Therefore, the PLA/IA and PLA/PIA blends show plasti-
cization effects at low concentrations, in particular 0.1 and 1.0 wt%, owing to the physical
interactions between IA or PIA and PLA.

4. Conclusions

In the present investigation, the diverse chemical architectures from itaconic acid (IA),
including poly(itaconic acid) (PIA), poly(itaconic acid)-co-poly(methyl itaconate) (Cop-IA),
and net-poly(itaconic acid)-ν-triethylene glycol dimethacrylate (Net-IA), were synthesized.
The carboxylic acids present in these chemical structures formed dimers, i.e., interactions
of the hydrogen bonds between two different units of IA, PIA, or Cop-IA.

Moreover, poly(lactic acid) (PLA)/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA
blends were developed and studied using various characterization techniques. All blends
were prepared with 0.1, 1, 3, and 10 wt% of IA, PIA, Cop-IA, or Net-IA. The formation of
the dimers between the carboxylic acids was confirmed by infrared spectroscopy for the
PLA/IA, PLA/PIA, and PLA/Cop-IA blends. Because of this, fibrillar structures for the
PLA/IA, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends were observed. Additionally,
the cross-sectional evaluation of the fibers revealed the presence of porous microstructures
throughout the material, except for the PLA/Net-IA blend.

The incorporation of IA into a polymeric blend can be carried out at 170 ◦C via melting
blend, without the processes of decarboxylation and self-polymerization. However, IA is
recommended to be used at a concentration of less than 1 wt%; at high concentrations, it
is an extreme plasticizer, according to the complex viscosity, storage modulus, and loss
modulus of the PLA/IA blend. On the contrary, PLA/PIA, PLA/Cop-IA, and PLA/Net-IA
have a reinforcing effect on the PLA.

The PLA Tg decreases in the PLA/IA blend, while the values for the other blends
are similar. The tan δ for the PLA/IA blend also diminishes as the IA content increases,
suggesting a plasticizing effect. The E’s (at 35 ◦C) of the PLA/Cop-IA blends are highlights,
since they all outperformed PLA. In the rubbery plateau, the E’ for the PLA/IA3, PLA/IA10,
and PLA/Cop-IA10 blends is superior to that of PLA. These blends are stiffer than PLA,
e.g., 80 ◦C, so they could be applied as disposable food packing.

The crystallinity degree displays higher values for blends that contain Net-IA > Cop-IA
than IA > PIA. Net-IA enhances the crystallinity degree because it restricts the mobility
of PLA. Likewise, the PLA/Net-IA3 blend exhibits a 5% increase in the E’ and a 32%
decrease in the σ compared to neat PLA. On the other hand, the PIA, Cop-IA, and Net-IA
architectures promote thermal stability in the PLA blends.

Finally, the properties of PLA are influenced by IA and its diverse chemical architec-
tures, especially PIA, Cop-IA, and Net-IA. The potential applications may be several, such
as disposable food packaging, fabrics, medical surgery products, and additive manufactur-
ing, among others.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/polym16192780/s1; Figure S1: Infrared spectrum of poly(itaconic
acid)-co-poly(methyl itaconate) (Cop-IA); Figure S2: SEM micrograph of poly(lactic acid)/itaconic
acid (IA) 0.1 wt% (PLA/IA0.1) blend; Figure S3: SEM micrograph of poly(lactic acid)/itaconic
acid (IA) 1 wt% (PLA/IA1) blend; Figure S4: SEM micrograph of poly(lactic acid)/itaconic acid
(IA) 3 wt% (PLA/IA3) blend; Figure S5: SEM micrograph of poly(lactic acid)/itaconic acid (IA)
10 wt% (PLA/IA10) blend; Figure S6: SEM micrograph of poly(lactic acid)/poly(itaconic acid)
(PIA) 0.1 wt% (PLA/PIA0.1) blend; Figure S7: SEM micrograph of poly(lactic acid)/poly(itaconic
acid) (PIA) 3 wt% (PLA/PIA3) blend; Figure S8: Han plot curves of (a) PLA/IA, (b) PLA/PIA,
(c) PLA/Cop-IA, and (d) PLA/Net/IA; Figure S9: DSC curves for poly(lactic acid)/itaconic acid
blends; Figure S10: DSC curves for poly(lactic acid)/poly(itaconic acid) blends; Figure S11: DSC
curves for poly(lactic acid)/(poly(itaconic acid)-co-poly(methyl itaconate)) blends; Figure S12: DSC
curves for poly(lactic acid)/net-poly(itaconic acid)-v-triethylene glycol dimethacrylate blends; Figure
S13: DSC curves (second heating) for PLA/Net-IA10 blend and its first derivative for determin-
ing enthalpy; Figure S14: X-ray diffraction for poly(lactic acid)/itaconic acid blends; Figure S15:
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X-ray diffraction for poly(lactic acid)/poly(itaconic acid) blends; Figure S16: X-ray diffraction for
poly(lactic acid)/(poly(itaconic acid)-co-poly(methyl itaconate)) blends; Figure S17: X-ray diffraction
for poly(lactic acid)/net-poly(itaconic acid)-v-triethylene glycol dimethacrylate blends; Figure S18:
TGA, DTG, and DSC of itaconic acid; Table S1: Parameters utilized for Carreau–Yasuda model;
Table S2: Comparison of Tg, DMA vs. DSC; Table S3: Thermogravimetric analysis of PLA/IA,
PLA/PIA, PLA/Cop-IA, and PLA/Net-IA blends; Equation (S1): Equation for Carreau–Yasuda
model; Equation (S2): Equation for crystallinity degree.
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37. Bednarz, S.; Wesołowska-Piętak, A.; Konefał, R.; Świergosz, T. Persulfate Initiated Free-Radical Polymerization of Itaconic Acid:
Kinetics, End-Groups and Side Products. Eur. Polym. J. 2018, 106, 63–71. [CrossRef]

38. Kwon, Y.-R.; Kim, J.-S.; Kim, D.-H. Effective Enhancement of Water Absorbency of Itaconic Acid Based-Superabsorbent Polymer
via Tunable Surface—Crosslinking. Polymers 2021, 13, 2782. [CrossRef]

39. Meaurio, E.; Velada, J.L.; Cesteros, L.C.; Katime, I. Blends and Complexes of Poly(Monomethyl Itaconate) with Polybases Poly(
N, N -Dimethylacrylamide) and Poly(Ethyloxazoline). Association and Thermal Behavior. Macromolecules 1996, 29, 4598–4604.
[CrossRef]

https://doi.org/10.1016/j.polymer.2023.125906
https://doi.org/10.3390/molecules27206819
https://doi.org/10.1080/26889277.2022.2113986
https://doi.org/10.1039/D4MA00233D
https://doi.org/10.1016/j.ijbiomac.2024.132375
https://doi.org/10.1016/j.radphyschem.2020.109239
https://doi.org/10.1016/j.polymer.2024.126815
https://doi.org/10.1016/j.carbpol.2023.120975
https://www.ncbi.nlm.nih.gov/pubmed/37321705
https://doi.org/10.1016/j.heliyon.2022.e10833
https://www.ncbi.nlm.nih.gov/pubmed/36247174
https://doi.org/10.1021/acssuschemeng.4c01406
https://doi.org/10.1016/j.lwt.2023.115249
https://doi.org/10.1039/D4RA00757C
https://doi.org/10.1021/ma500846x
https://doi.org/10.1016/j.eurpolymj.2012.12.006
https://doi.org/10.1002/pi.5399
https://doi.org/10.1007/s10965-017-1421-2
https://doi.org/10.1016/j.polymertesting.2023.108059
https://doi.org/10.3390/polym14245532
https://www.ncbi.nlm.nih.gov/pubmed/36559900
https://doi.org/10.3139/217.3343
https://doi.org/10.1016/j.reactfunctpolym.2017.05.004
https://doi.org/10.1295/koron1944.17.748
https://doi.org/10.14314/polimery.2005.118
https://doi.org/10.1002/marc.202000546
https://doi.org/10.1016/j.eurpolymj.2018.07.010
https://doi.org/10.3390/polym13162782
https://doi.org/10.1021/ma950960j


Polymers 2024, 16, 2780 21 of 21

40. Bellamy, L.J. Associated XH Frequencies, the Hydrogen Bond. In The Infrared Spectra of Complex Molecules; Springer: Dordrecht,
The Netherlands, 1980; pp. 240–292, ISBN 978-94-011-6522-8.

41. Nguyen-Thai, N.U.; Hong, S.C. Structural Evolution of Poly(Acrylonitrile- Co -Itaconic Acid) during Thermal Oxidative Stabiliza-
tion for Carbon Materials. Macromolecules 2013, 46, 5882–5889. [CrossRef]

42. Hodásová, L’.; Alemán, C.; Del Valle, L.J.; Llanes, L.; Fargas, G.; Armelin, E. 3D-Printed Polymer-Infiltrated Ceramic Network
with Biocompatible Adhesive to Potentiate Dental Implant Applications. Materials 2021, 14, 5513. [CrossRef] [PubMed]

43. Harlow, R.L.; Pfluger, C.E. Itaconic Acid. IUCr J. 1973, 29, 2965–2966. [CrossRef]
44. Arun Renganathan, R.R.; Hema, M.K.; Karthik, C.S.; Lokanath, N.K.; Ravishankar Rai, V. Extraction of Itaconic Acid by

Endophytic Aspergillus Sp., Isolated from Garcinia Indica: Spectroscopic, Structural and Quantum Computational Studies. J. Mol.
Struct. 2022, 1268, 133635. [CrossRef]

45. Alrahlah, A.; Khan, R.; Al-Odayni, A.-B.; Saeed, W.S.; Bautista, L.S.; Alnofaiy, I.A.; De Vera, M.A.T. Advancing Dimethacrylate
Dental Composites by Synergy of Pre-Polymerized TEGDMA Co-Filler: A Physio-Mechanical Evaluation. Biomimetics 2023,
8, 577. [CrossRef]

46. Ivorra-Martinez, J.; Peydro, M.A.; Gomez-Caturla, J.; Boronat, T.; Balart, R. The Potential of an Itaconic Acid Diester as
Environmentally Friendly Plasticizer for Injection-Molded Polylactide Parts. Macro Mater. Amp; Eng 2022, 307, 2200360. [CrossRef]

47. Huerta-Angeles, G.; Kanizsová, L.; Mielczarek, K.; Konefał, M.; Konefał, R.; Hodan, J.; Kočková, O.; Bednarz, S.; Beneš, H.
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