Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of SA-MP Composite Aerogel
2.3. Characterizations
3. Results and Discussion
3.1. Material Characterizations
3.2. Fire-Retardant and Thermal Insulation Properties
3.3. Flame Retardant Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, G.; Wang, W. China’s energy consumption in construction and building sectors: An outlook to 2100. Energy 2020, 195, 117045. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Wang, Y.; Song, R.; Li, J.; Yuan, W.; Zhang, S. The increasing district heating energy consumption of the building sector in China: Decomposition and decoupling analysis. J. Clean. Prod. 2020, 271, 122696. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.-H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.; Sanjayan, J.G.; Memon, R.A. Comparative analysis of building insulation material properties and performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Balaji, D.; Sivalingam, S.; Bhuvaneswari, V.; Amarnath, V.; Adithya, J.; Balavignesh, V. Aerogels as alternatives for thermal insulation in buildings-A comparative teeny review. Mater. Today Proc. 2022, 62, 5371–5377. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- Sen, S.; Singh, A.; Bera, C.; Roy, S.; Kailasam, K. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: A review. Cellulose 2022, 29, 4805–4833. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Du, C.; Xu, K.; Li, Y.; Xu, M.; Bourbigot, S.; Fontaine, G.; Li, B.; Liu, L. High-strength, thermal-insulating, fire-safe bio-based organic lightweight aerogel based on 3D network construction of natural tubular fibers. Compos. B Eng. 2023, 261, 110809. [Google Scholar] [CrossRef]
- Varamesh, A.; Zhu, Y.; Hu, G.; Wang, H.; Rezania, H.; Li, Y.; Lu, Q.; Ren, X.; Jiang, F.; Bryant, S.L. Fully biobased thermal insulating aerogels with superior fire-retardant and mechanical properties. Chem. Eng. J. 2024, 495, 153587. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.-F.; Li, M.; Yao, J. Attapulgite-Reinforced Cellulose Hydrogels with High Conductivity and Antifreezing Property for Flexible Sensors. Langmuir, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Ahankari, S.; Paliwal, P.; Subhedar, A.; Kargarzadeh, H. Recent developments in nanocellulose-based aerogels in thermal applications: A review. ACS Nano 2021, 15, 3849–3874. [Google Scholar] [CrossRef]
- Zhang, R.; Fu, Y.; Qin, W.; Qiu, S.; Chang, J. Preparation of a novel bio-based aerogel with excellent hydrophobic flame-retardancy and high thermal insulation performance. J. Appl. Polym. Sci. 2024, 141, e55416. [Google Scholar] [CrossRef]
- Wang, Z.; He, Q.; Liu, Y.; Yu, C.; Zhang, X.-F.; Kong, X. Amino functionalized zeolitic imidazolate framework-8 coated cellulose aerogel for enhanced air purification. Sep. Purif. Technol. 2024, 355, 129741. [Google Scholar] [CrossRef]
- Li, M.; Shu, L.; Zhang, X.-F.; Peng, X.; Ding, M.; Yao, J. Efficient atmospheric water harvesting enabled by hierarchically structured cellulose foam. Chem. Eng. J. 2024, 499, 155932. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydr. Polym. 2021, 266, 118130. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Yu, Z.; Liu, J.; Zhao, Y.; Ke, Y. Ecofriendly flame-retardant composite aerogel derived from polysaccharide: Preparation, flammability, thermal kinetics, and mechanism. Carbohydr. Polym. 2021, 269, 118291. [Google Scholar] [CrossRef]
- Makarova, A.O.; Derkach, S.R.; Khair, T.; Kazantseva, M.A.; Zuev, Y.F.; Zueva, O.S. Ion-induced polysaccharide gelation: Peculiarities of alginate egg-box association with different divalent cations. Polymers 2023, 15, 1243. [Google Scholar] [CrossRef]
- Han, X.; Ding, S.; Zhu, L.; Wang, S. Preparation and characterization of flame-retardant and thermal insulating bio-based composite aerogels. Energy Build. 2023, 278, 112656. [Google Scholar] [CrossRef]
- Lv, J.; Li, Z.; Dong, R.; Xue, Y.; Wang, Y.; Li, Q. Highly flame-retardant materials of different divalent metal ions alginate/silver phosphate: Synthesis, characterizations, and synergistic phosphorus-polymetallic effects. Int. J. Biol. Macromol. 2023, 247, 125834. [Google Scholar] [CrossRef]
- Jiang, Y.; Pang, X.; Deng, Y.; Sun, X.; Zhao, X.; Xu, P.; Shao, P.; Zhang, L.; Li, Q.; Li, Z. An Alginate Hybrid Sponge with High Thermal Stability: Its Flame Retardant Properties and Mechanism. Polymers 2019, 11, 1973. [Google Scholar] [CrossRef]
- Özer, M.S.; Gaan, S. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Prog. Org. Coat. 2022, 171, 107027. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Sykam, K.; Försth, M.; Sas, G.; Restas, A.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crops Prod. 2021, 164, 113349. [Google Scholar] [CrossRef]
- Wang, K.; Meng, D.; Wang, S.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crops Prod. 2022, 176, 114364. [Google Scholar] [CrossRef]
- Sun, H.; Wang, W.; Liu, Y.; Wang, Q. A highly efficient, colorless phosphorus–nitrogen synergistic flame retardant for durable flame retardancy in wood pulp paper. Polym. Degrad. Stab. 2023, 215, 110468. [Google Scholar] [CrossRef]
- Nazir, R.; Gaan, S. Recent developments in P(O/S)-N containing flame retardants. J. Appl. Polym. Sci. 2020, 137, 47910. [Google Scholar] [CrossRef]
- Sun, L.; Xie, Y.; Wu, J.; Wang, H.; Wang, S.; Li, W.; Zhang, J.; Zhang, Z.; Zhu, P.; Lu, Z. A novel P/N-based flame retardant synthesized by one-step method toward cotton materials and its flame-retardant mechanism. Cellulose 2021, 28, 3249–3264. [Google Scholar] [CrossRef]
- Liu, Z.; Song, S.; Dong, L.; Guo, J.; Wang, J.; Tan, S.; Li, Y.; Shen, M.; Zhao, S.; Li, L.; et al. Bio-based phytic acid and urea interfacial layer by layer assembly for flame-retardant cotton. Polym. Degrad. Stab. 2023, 216, 110479. [Google Scholar] [CrossRef]
- Ding, H.; Qiu, S.; Wang, X.; Song, L.; Hu, Y. Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams. Cellulose 2021, 28, 9769–9783. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Yu, H.-Y.; Liu, X.; Dong, Y.; Qian, P.-C.; Wang, X. Cellulose Nanocrystals/Melamine/Phytic Acid Nanocomposites as Thermally Insulating and Flame-Retardant Structural Materials. ACS Appl. Nano Mater. 2023, 6, 20866–20877. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, C.; Zeng, X.; Li, G. A bioactive composite sponge based on biomimetic collagen fibril and oxidized alginate for noncompressible hemorrhage and wound healing. Carbohydr. Polym. 2024, 343, 122409. [Google Scholar] [CrossRef]
- Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-induced gelation of alginate: Mechanisms and applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, J.W.; Hwang, C.; Park, J.; Karmakar, M.; Huh, J.W.; Kim, D.D.; Kim, H.C.; Cho, H.J. Intravascular Casting Radiopaque Hydrogel Systems for Transarterial Chemo/Cascade Catalytic/Embolization Therapy of Hepatocellular Carcinoma. Small, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Ren, X.; Song, M.; Jiang, J.; Yu, Z.; Zhang, Y.; Zhu, Y.; Liu, X.; Li, C.; Oguzlu-Baldelli, H.; Jiang, F. Fire-Retardant and Thermal-Insulating Cellulose Nanofibril Aerogel Modified by In Situ Supramolecular Assembly of Melamine and Phytic Acid. Adv. Eng. Mater. 2022, 24, 2101534. [Google Scholar] [CrossRef]
- Shang, S.; Yuan, B.; Sun, Y.; Chen, G.; Huang, C.; Yu, B.; He, S.; Dai, H.; Chen, X. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J. Colloid Interface Sci. 2019, 553, 364–371. [Google Scholar] [CrossRef]
- Zhan, H.; Liu, J.; Wang, P.; Wang, C.; Wang, Z.; Chen, M.; Zhu, X.; Fu, B. Integration of N- and P- elements in sodium alginate aerogels for efficient flame retardant and thermal insulating properties. Int. J. Biol. Macromol. 2024, 273, 132643. [Google Scholar] [CrossRef]
- Du, C.; Xu, Y.; Yan, C.; Zhang, W.; Hu, H.; Chen, Y.; Xu, M.; Wang, C.; Li, B.; Liu, L. Facile construction strategy for intrinsically fire-safe and thermal-insulating bio-based chitosan aerogel. Sustain. Mater. Technol. 2024, 39, e00794. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Ma, Y.; Lou, Y.; Jiao, Y.; Xu, J. Hierarchical boric acid/melamine aerogel based on reversible hydrogen bonds with robust fire resistance, thermal insulation and recycling properties. Compos. B Eng. 2023, 252, 110507. [Google Scholar] [CrossRef]
- Lokhande, K.D.; Bhakare, M.A.; Bondarde, M.P.; Dhumal, P.S.; Some, S. Quick self-grown ternary supramolecules embedded in sodium alginate to fabricate ultralight sponge exhibiting superior flame retardancy. Int. J. Biol. Macromol. 2024, 275, 133766. [Google Scholar] [CrossRef]
- Yue, X.; Deng, W.; Zhou, Z.; Xu, Y.; He, J.; Wang, Z. Reinforced and flame retarded cellulose nanofibril/sodium alginate compound aerogel fabricated via boric acid/Ca2+ double cross-inking. J. Polym. Environ. 2023, 31, 1038–1050. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.; Guo, W.; Li, N.; Chen, Y.; Meng, X.; Zhai, M.; Zhang, S.; Wang, Z. Sodium alginate/Al2O3 fiber nanocomposite aerogel with thermal insulation and flame retardancy properties. Chem. Eng. J. 2024, 489, 151223. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, P.; Liu, Y.; Zhu, P. Flame retardant cotton fabrics with anti-UV properties based on tea polyphenol-melamine-phenylphosphonic acid. J. Colloid Interface Sci. 2023, 629, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, Y.; Xu, K.; Yan, C.; Qin, A.; Du, C.; Xu, M.; Wang, C.; Li, B.; Liu, L. Fire-resistant and thermal-insulating alginate aerogel with intelligent bionic armor for exceptional mechanical and fire early-warning performance. Chem. Eng. J. 2024, 498, 155181. [Google Scholar] [CrossRef]
- Cen, Q.; Chen, S.; Yang, D.; Zheng, D.; Qiu, X. Full Bio-Based Aerogel Incorporating Lignin for Excellent Flame Retardancy, Mechanical Resistance, and Thermal Insulation. ACS Sustain. Chem. Eng. 2023, 11, 4473–4484. [Google Scholar] [CrossRef]
- Zheng, C.; Li, X.; Yu, J.; Huang, Z.; Li, M.; Hu, X.; Li, Y. Biomass-derived lightweight SiC aerogels for superior thermal insulation. Nanoscale 2024, 16, 4600–4608. [Google Scholar] [CrossRef]
- Wu, K.; Ye, Z.; Cheng, J.; Zeng, Y.; Wang, R.; Sun, W.; Kuang, Y.; Jiang, F.; Chen, S.; Zhao, X. Excellent thermal insulation and flame retardancy property of konjac glucomannan/sodium alginate aerogel reinforced by phytic acid. Ind. Crops Prod. 2023, 205, 117495. [Google Scholar] [CrossRef]
- Yu, X.; Jin, X.; He, Y.; Yu, Z.; Zhang, R.; Qin, D. Eco-friendly bamboo pulp foam enabled by chitosan and phytic acid interfacial assembly of halloysite nanotubes: Toward flame retardancy, thermal insulation, and sound absorption. Int. J. Biol. Macromol. 2024, 260, 129393. [Google Scholar] [CrossRef]
Sample | LOI (%) | Dripping | t1/t2 (s) | UL-94 |
---|---|---|---|---|
SA-Bare | 21.5 | No | 40/57 | NR |
SA-0.2 MP | 28.3 | No | 10/6 | V-0 |
SA-0.6 MP | 37.2 | No | 2/1 | V-0 |
SA-1.0 MP | 48.8 | No | 1/0 | V-0 |
Sample | TTI (s) | THR (MJ/m2) | PHRR (kW/m2) | TpHRR (s) | FIGRA (kW/(m2·s)) |
---|---|---|---|---|---|
SA-Bare | 9 | 3.07 | 38.5 | 37 | 1.041 |
SA-1.0 MP | - | 1.12 | 9.91 | 41 | 0.242 |
Sample | Td10% (°C) | Td max (°C) | Cy800 (%) |
---|---|---|---|
SA-Bare | 102.4 | 232.6 | 19.83 |
SA-0.2 MP | 84.8 | 238.6 | 31.58 |
SA-0.6 MP | 96.9 | 247.6 | 33.43 |
SA-1.0 MP | 100.4 | 253.5 | 35.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhan, H.; Song, J.; Wang, C.; Zhao, T.; Fu, B. Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements. Polymers 2024, 16, 2814. https://doi.org/10.3390/polym16192814
Liu J, Zhan H, Song J, Wang C, Zhao T, Fu B. Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements. Polymers. 2024; 16(19):2814. https://doi.org/10.3390/polym16192814
Chicago/Turabian StyleLiu, Ju, Huanhui Zhan, Jianan Song, Chenfei Wang, Tong Zhao, and Bo Fu. 2024. "Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements" Polymers 16, no. 19: 2814. https://doi.org/10.3390/polym16192814
APA StyleLiu, J., Zhan, H., Song, J., Wang, C., Zhao, T., & Fu, B. (2024). Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements. Polymers, 16(19), 2814. https://doi.org/10.3390/polym16192814