3D Printing of Wood Composites: State of the Art and Opportunities
Abstract
:1. Introduction
2. Methodology of Research
3. Wood as a Resource for Additive Manufacturing
3.1. Structure and Composition of Wood
3.1.1. Wood Chemical Structure
Cellulose
Hemicellulose
Lignin
Wood Sources for 3D Printing
3.1.2. A Wood Waste Example: Case of Medium Density Fiberboard (MDF)
3.1.3. Wood-Based Composites
3.2. Additive Manufacturing Generalities
3.2.1. Working Principle of 3D Printing
3.2.2. 3D Printing Processes
4. Use of Wood in Additive Manufacturing
4.1. Binder Jetting
4.1.1. Added Value of Binder Jetting
4.1.2. Mechanical and End-Use Properties
4.1.3. Challenges for Future Development of Binder Jetting
4.2. Sheet Lamination
Potential Markets
4.3. Powder Bed Fusion
4.3.1. Added Value of Powder Bed Fusion
4.3.2. Properties and Recycling Issues
4.4. Vat Photopolymerization
4.4.1. Interests and Potential Markets
4.4.2. Properties of the Composites Obtained
4.4.3. Challenges for Future Development of VAT-Photopolymerization
4.5. Material Extrusion
4.5.1. Added Value and Industrial Markets
4.5.2. Room Temperature Extrusion—LDM
4.5.3. Hot Extrusion—FFF/FDM and FGF
Commonly Used Thermoplastic Polymers
Mechanical Properties Obtained
Need for Compatibilizer
Surface Characteristics
Rheological Properties
Water-Related Issues
4.5.4. Elastomers Thermoplastics
4.5.5. Challenges and Future Developments
5. Conclusions
- -
- Wood species, compartment, and particle size affect the properties of the printing composite.
- -
- Wood-based composites for 3D printing can be used in several markets where they are not currently present. PLA is the most widely used polymer in combination with wood. To increase the biodegradability of the polymer, other polymers of biological origin, such as PHA, could replace PLA.
- -
- 3D printing is mainly used with untreated wood, and only a few studies on the use of wood waste are available. There is clearly a need to step up research into the decontamination of wood waste, to produce a raw material that is non-hazardous and eco-responsible.
- -
- The most mature process at present is material extrusion (most specifically FFF). The challenges for this technology are to increase the loading rates and properties of the obtained parts and to open new potential markets.
- -
- For improving the speed of printing and allowing transfer at an industrial scale, FGF is an interesting alternative to FFF. However, many technical issues remain to be fixed to allow this transfer.
- -
- Photopolymerization, although producing very attractive renderings, still needs to be studied further, to enable higher filler contents to be obtained, while at the same time working on obtaining bio-sourced resins at an industrial level.
- -
- For many applications, mechanical, rheological, and other properties are expected. The incorporation of compatibilizers or pre- and post-treatments of the parts obtained have still to be studied and improved.
- -
- Each process has potential applications for future development as shown in Figure 10.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.Z.R.; Srivastava, S.K.; Gupta, M.K. A State-of-the-Art Review on Particulate Wood Polymer Composites: Processing, Properties and Applications. Polym. Test. 2020, 89, 106721. [Google Scholar] [CrossRef]
- European Wood Initiative. Selected European Wood Species and Their Characterisctics. In Selected European Wood Species and their Characterisctics; proHolz: Vienna, Austria, 2013; pp. 1–30. ISBN 978-3-902320-69-8. [Google Scholar]
- Forest Products Laboratory. Wood Handbook, Wood as an Engineering Material; General Technical Report FPL-GTR-190; Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Spinelli, G.; Kotsilkova, R.; Ivanov, E.; Georgiev, V.; Naddeo, C.; Romano, V. Thermal and Dielectric Properties of 3D Printed Parts Based on Polylactic Acid Filled with Carbon Nanostructures. Macromol. Symp. 2022, 405, 2100244. [Google Scholar] [CrossRef]
- NatureWorks. NatureWorks Ingeo Biopolymer 3D850 Technical Data Sheet 2016. Available online: https://www.natureworksllc.com/~/media/files/natureworks/technical-documents/technical-data-sheets/technicaldatasheet_3d850_monofilament_pdf.pdf?la=en (accessed on 10 July 2024).
- BASF. 3D Printing Solutions Technical Data Sheet—UltraFuse ABS 2019. Available online: https://move.forward-am.com/hubfs/AES%20Documentation/Standard%20Filaments/ABS/TDS/Ultrafuse_ABS_TDS_EN_v5.2.pdf (accessed on 10 July 2024).
- Song, B. Study on Dielectric and Thermal Properties of ABS/Multilayer Graphene Composites. J. Phys. Conf. Ser. 2022, 2247, 012011. [Google Scholar] [CrossRef]
- Besserer, A.; Troilo, S.; Girods, P.; Rogaume, Y.; Brosse, N. Cascading Recycling of Wood Waste: A Review. Polymers 2021, 13, 1752. [Google Scholar] [CrossRef] [PubMed]
- ISO/DIS 17300-1; ISO/TC; Wood Residue and Post-Consumer Wood—Classification—Part 1: Vocabulary. Internation Standard Organization—218 Timber Committee: Geneva, Switzerland, 2021.
- Nguyen, D.L.; Luedtke, J.; Nopens, M.; Krause, A. Production of Wood-Based Panel from Recycled Wood Resource: A Literature Review. Eur. J. Wood Prod. 2023, 81, 557–570. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe Food and Agriculture. Catalogue of Wood Waste Classifications in the UNECE Region; Geneva Timber and Forest Discussion Papers; United Nations Economic Commission for Europe: Geneva, Switzerland, 2021; pp. 1–100. ISBN 978-92-1-002134-0. [Google Scholar]
- Commission of the European Communities. Guidance on Classification of Waste According to EWC-Stat Categories—Supplement to the Manual for the Implementation of the Regulation (EC) No 2150/2002 on Waste Statistics 2010; Commission of the European Communities: Brussels, Belgium, 2010. [Google Scholar]
- The European Parliament and The Concil of the European Union. European Union, Directive 2008/98/EC of the European Parliament and the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Union: Brussels, Belgium, 2008. [Google Scholar]
- ISO 17225-1:2021; Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements. AFNOR: Saint-Denis, France, 2021.
- Eurostat Wastes Generated by Waste Category, Hazard and NACE Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=fr (accessed on 29 November 2022).
- Weitz, K.; Padhye, A.; Sifleet, S.; Gabriele, H.-S.; Zimmer, A.T. Wood Waste Inventory Final Report; Office of Research and Development—National Risk Management Research Laboratory; EPA: Washington, DC, USA, 2018; ISBN EPA/600/R-18/262. [Google Scholar]
- Vega, L.Y.; López, L.; Valdés, C.F.; Chejne, F. Assessment of Energy Potential of Wood Industry Wastes through Thermochemical Conversions. Waste Manag. 2019, 87, 108–118. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Matias, J.C.O.; Catalão, J.P.S. Wood Pellets as a Sustainable Energy Alternative in Portugal. Renew. Energy 2016, 85, 1011–1016. [Google Scholar] [CrossRef]
- Azambuja, R.d.R.; de Castro, V.G.; Trianoski, R.; Iwakiri, S. Recycling Wood Waste from Construction and Demolition to Produce Particleboards. Maderas Cienc. Tecnol. 2018, 20, 681–690. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Pandey, S. Wood Waste Utilization and Associated Product Development from Under-Utilized Low-Quality Wood and Its Prospects in Nepal. SN Appl. Sci. 2022, 4, 168. [Google Scholar] [CrossRef]
- Santos, M.B.; Sillero, L.; Gatto, D.A.; Labidi, J. Bioactive Molecules in Wood Extractives: Methods of Extraction and Separation, a Review. Ind. Crops Prod. 2022, 186, 115231. [Google Scholar] [CrossRef]
- Elangovan, S.; Afanasenko, A.; Haupenthal, J.; Sun, Z.; Liu, Y.; Hirsch, A.K.H.; Barta, K. From Wood to Tetrahydro-2-Benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Cent. Sci. 2019, 5, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
- Basalp, D.; Tihminlioglu, F.; Sofuoglu, S.C.; Inal, F.; Sofuoglu, A. Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites. Waste Biomass Valorization 2020, 11, 5419–5430. [Google Scholar] [CrossRef]
- Turku, I.; Keskisaari, A.; Kärki, T.; Puurtinen, A.; Marttila, P. Characterization of Wood Plastic Composites Manufactured from Recycled Plastic Blends. Compos. Struct. 2017, 161, 469–476. [Google Scholar] [CrossRef]
- Ashori, A. Wood–Plastic Composites as Promising Green-Composites for Automotive Industries! Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef]
- Rahman, A.M.; Rahman, T.T.; Pei, Z.; Ufodike, C.O.; Lee, J.; Elwany, A. Additive Manufacturing Using Agriculturally Derived Biowastes: A Systematic Literature Review. Bioengineering 2023, 10, 845. [Google Scholar] [CrossRef]
- Das, A.K.; Agar, D.A.; Rudolfsson, M.; Larsson, S.H. A Review on Wood Powders in 3D Printing: Processes, Properties and Potential Applications. J. Mater. Res. Technol. 2021, 15, 241–255. [Google Scholar] [CrossRef]
- Krapež Tomec, D.; Kariž, M. Use of Wood in Additive Manufacturing: Review and Future Prospects. Polymers 2022, 14, 1174. [Google Scholar] [CrossRef] [PubMed]
- Zarna, C.; Opedal, M.T.; Echtermeyer, A.T.; Chinga-Carrasco, G. Reinforcement Ability of Lignocellulosic Components in Biocomposites and Their 3D Printed Applications—A Review. Compos. Part C Open Access 2021, 6, 100171. [Google Scholar] [CrossRef]
- Ganpisetti, R.; Lalatsa, A. Cellulose Bio–Ink on 3D Printing Applications. J. Young Pharm. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Shavandi, A.; Hosseini, S.; Okoro, O.V.; Nie, L.; Eghbali Babadi, F.; Melchels, F. 3D Bioprinting of Lignocellulosic Biomaterials. Adv. Healthc. Mater. 2020, 9, 2001472. [Google Scholar] [CrossRef]
- Kalossaka, L.M.; Sena, G.; Barter, L.M.C.; Myant, C. Review: 3D Printing Hydrogels for the Fabrication of Soilless Cultivation Substrates. Appl. Mater. Today 2021, 24, 101088. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Sandler, N.; Willför, S.; Xu, C. Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustain. Chem. Eng. 2018, 6, 5663–5680. [Google Scholar] [CrossRef] [PubMed]
- Chinga-Carrasco, G. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices. Biomacromolecules 2018, 19, 701–711. [Google Scholar] [CrossRef]
- Fijoł, N.; Aguilar-Sánchez, A.; Mathew, A.P. 3D-Printable Biopolymer-Based Materials for Water Treatment: A Review. Chem. Eng. J. 2022, 430, 132964. [Google Scholar] [CrossRef]
- Agustiany, E.A.; Rasyidur Ridho, M.; Rahmi, D.N.M.; Madyaratri, E.W.; Falah, F.; Lubis, M.A.R.; Solihat, N.N.; Syamani, F.A.; Karungamye, P.; Sohail, A.; et al. Recent Developments in Lignin Modification and Its Application in Lignin-based Green Composites: A Review. Polym. Compos. 2022, 43, 4848–4865. [Google Scholar] [CrossRef]
- Zhao, X.; Copenhaver, K.; Wang, L.; Korey, M.; Gardner, D.J.; Li, K.; Lamm, M.E.; Kishore, V.; Bhagia, S.; Tajvidi, M.; et al. Recycling of Natural Fiber Composites: Challenges and Opportunities. Resour. Conserv. Recycl. 2022, 177, 105962. [Google Scholar] [CrossRef]
- Mili, M.; Hashmi, S.A.R.; Ather, M.; Hada, V.; Markandeya, N.; Kamble, S.; Mohapatra, M.; Rathore, S.K.S.; Srivastava, A.K.; Verma, S. Novel Lignin as Natural-biodegradablebinder for Various Sectors—A Review. J. Appl. Polym. Sci. 2022, 139, 51951. [Google Scholar] [CrossRef]
- Pezzana, L.; Malmström, E.; Johansson, M.; Sangermano, M. UV-Curable Bio-Based Polymers Derived from Industrial Pulp and Paper Processes. Polymers 2021, 13, 1530. [Google Scholar] [CrossRef] [PubMed]
- Andanje, M.N.; Mwangi, J.W.; Mose, B.R.; Carrara, S. Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review. Polymers 2023, 15, 2355. [Google Scholar] [CrossRef] [PubMed]
- Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Rajendran Royan, N.R.; Leong, J.S.; Chan, W.N.; Tan, J.R.; Shamsuddin, Z.S.B. Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing. Polymers 2021, 13, 2289. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulos, P.M.; Samouhos, M.; Taxiarchou, M. Functional Fillers in Composite Filaments for Fused Filament Fabrication; a Review. Mater. Today Proc. 2021, 37, 4031–4043. [Google Scholar] [CrossRef]
- Ahmed, W.; Alnajjar, F.; Zaneldin, E.; Al-Marzouqi, A.H.; Gochoo, M.; Khalid, S. Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials 2020, 13, 4065. [Google Scholar] [CrossRef]
- Lamm, M.E.; Wang, L.; Kishore, V.; Tekinalp, H.; Kunc, V.; Wang, J.; Gardner, D.J.; Ozcan, S. Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites. Polymers 2020, 12, 2115. [Google Scholar] [CrossRef]
- Lee, C.H.; Padzil, F.N.B.M.; Lee, S.H.; Ainun, Z.M.A.; Abdullah, L.C. Potential for Natural Fiber Reinforcement in PLA Polymer Filaments for Fused Deposition Modeling (FDM) Additive Manufacturing: A Review. Polymers 2021, 13, 1407. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-5380-1. [Google Scholar]
- Neitzel, N.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials 2022, 15, 4542. [Google Scholar] [CrossRef]
- Satge, C. Etude de Nouvelles Stratégies de Valorisation de Mono et Polysaccharides. Doctoral Dissertation, Université de Limoges, Limoges, France, 2002. [Google Scholar]
- Cheng, W.; Zhu, Y.; Jiang, G.; Cao, K.; Zeng, S.; Chen, W.; Zhao, D.; Yu, H. Sustainable Cellulose and Its Derivatives for Promising Biomedical Applications. Prog. Mater. Sci. 2023, 138, 101152. [Google Scholar] [CrossRef]
- Salem, K.S.; Kasera, N.K.; Rahman, M.A.; Jameel, H.; Habibi, Y.; Eichhorn, S.J.; French, A.D.; Pal, L.; Lucia, L.A. Comparison and Assessment of Methods for Cellulose Crystallinity Determination. Chem. Soc. Rev. 2023, 52, 6417–6446. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Zhang, Y.; Shi, J.; Shan, S.; Cai, L. Exploring Wood Micromechanical Structure: Impact of Microfibril Angle and Crystallinity on Cell Wall Strength. J. Build. Eng. 2024, 90, 109452. [Google Scholar] [CrossRef]
- Binet, S.; Malard, S.; Ricaud, M.; Romero-Hariot, A.; Savary, B. Fibres de Cellulose—Fiche Toxicologique n°282. Institut National de Recherche et de Sécurité (INRS), 2011. Available online: https://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_282 (accessed on 11 May 2023).
- Marynowski, L.; Goryl, M.; Lempart-Drozd, M.; Bucha, M.; Majewski, M.; Stępień, M.; Loręc, R.; Brocks, J.; Simoneit, B.R.T. Differences in Hemicellulose Composition and Pectin Detection in Eocene and Miocene Xylites. Chem. Geol. 2023, 624, 121416. [Google Scholar] [CrossRef]
- Laurichesse, S.; Avérous, L. Chemical Modification of Lignins: Towards Biobased Polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Del Cerro, C.; Erickson, E.; Dong, T.; Wong, A.R.; Eder, E.K.; Purvine, S.O.; Mitchell, H.D.; Weitz, K.K.; Markillie, L.M.; Burnet, M.C.; et al. Intracellular Pathways for Lignin Catabolism in White-Rot Fungi. Proc. Natl. Acad. Sci. USA 2021, 118, e2017381118. [Google Scholar] [CrossRef]
- Cragg, S.M.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.; Distel, D.L.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; Jellison, J.; McGeehan, J.E.; et al. Lignocellulose Degradation Mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015, 29, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Grgas, D.; Rukavina, M.; Bešlo, D.; Štefanac, T.; Crnek, V.; Šikić, T.; Habuda-Stanić, M.; Landeka Dragičević, T. The Bacterial Degradation of Lignin—A Review. Water 2023, 15, 1272. [Google Scholar] [CrossRef]
- Lucia, A.; van Herwijnen, H.W.; Rosenau, T. Wood-Based Resins and Other Bio-Based Binders for the Production of Mineral Wool. Holzforschung 2020, 74, 539–550. [Google Scholar] [CrossRef]
- Stamm, A.; Öhlin, J.; Mosbech, C.; Olsén, P.; Guo, B.; Söderberg, E.; Biundo, A.; Fogelström, L.; Bhattacharyya, S.; Bornscheuer, U.T.; et al. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS Au 2021, 1, 1949–1960. [Google Scholar] [CrossRef]
- FAO FAOSTAT. Available online: https://www.fao.org/faostat/fr/#data/FO (accessed on 27 October 2022).
- Brosse, N.; Rogaume, Y.; Troilo, S.; Girods, P.; Soufflet, L.; Besserer, A. Chapitre 15: Recyclage Du Bois. In Le Recyclage; ISTE OpenScience: Wiltshire, UK, 2022. [Google Scholar]
- Riet, C.V. EPF Standard for Delivery Conditions of Recycled Wood; European Panel Federation: Brussels, Belgium, 2002; 7p, Available online: https://europanels.org/wp-content/uploads/2018/11/EPF-Standard-for-recycled-wood-use.pdf (accessed on 8 February 2024).
- AFNOR. Particleboards: Specifications; AFNOR: Paris, France, 2010. [Google Scholar]
- AFNOR. Wood-Based Panels: Determination of Formaldehyde Release; AFNOR: Paris, France, 2005. [Google Scholar]
- Diyamandoglu, V.; Fortuna, L.M. Deconstruction of Wood-Framed Houses: Material Recovery and Environmental Impact. Resour. Conserv. Recycl. 2015, 100, 21–30. [Google Scholar] [CrossRef]
- Irle, M.; Privat, F.; Couret, L.; Belloncle, C.; Déroubaix, G.; Bonnin, E.; Cathala, B. Advanced Recycling of Post-Consumer Solid Wood and MDF. Wood Mater. Sci. Eng. 2019, 14, 19–23. [Google Scholar] [CrossRef]
- Troilo, S.; Besserer, A.; Rose, C.; Saker, S.; Soufflet, L.; Brosse, N. Urea-Formaldehyde Resin Removal in Medium-Density Fiberboards by Steam Explosion: Developing Nondestructive Analytical Tools. ACS Sustain. Chem. Eng. 2023, 11, 3603–3610. [Google Scholar] [CrossRef]
- Chow, S.-Z.; Pickles, K.J. Thermal Softening and Degradation of Wood and Bark. Wood Fiber Sci. 1971, 3, 166–178. [Google Scholar]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Thermal Decomposition of Wood: Kinetics and Degradation Mechanisms. Bioresour. Technol. 2012, 126, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Cognard, P. Collage du bois. Applications—Produits de première transformation. Tech. De L’ingénieur Génie Mécanique 2007, BM7636. [Google Scholar] [CrossRef]
- Chrobak, J.; Iłowska, J.; Chrobok, A. Formaldehyde-Free Resins for the Wood-Based Panel Industry: Alternatives to Formaldehyde and Novel Hardeners. Molecules 2022, 27, 4862. [Google Scholar] [CrossRef] [PubMed]
- Evertree-Admin Le Premier Panneau de Bois MDF Biosourcé. Available online: https://www.evertree-technologies.com/le-premier-panneau-de-bois-mdf-biosource/ (accessed on 30 January 2024).
- Wang, L.; Skjevrak, G.; Skreiberg, Ø. Investigation on Ash Slag from Combustion of Medium-Density Fiberboard Production Residues. Dteees 2020. [Google Scholar] [CrossRef]
- Hagel, S.; Saake, B. Fractionation of Waste MDF by Steam Refining. Molecules 2020, 25, 2165. [Google Scholar] [CrossRef]
- Gibier, M.; Sadeghisadeghabad, M.; Girods, P.; Zoulalian, A.; Rogaume, Y. Furniture Wood Waste Depollution through Hydrolysis under Pressurized Water Steam: Experimental Work and Kinetic Modelization. J. Hazard. Mater. 2022, 436, 129126. [Google Scholar] [CrossRef]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef]
- Ramli, R.A. A Comprehensive Review on Utilization of Waste Materials in Wood Plastic Composite. Mater. Today Sustain. 2024, 27, 100889. [Google Scholar] [CrossRef]
- Mitaľová, Z.; Litecká, J.; Mitaľ, D.; Simkulet, V. Matrices in Wood Plastic Composites: A Concise Review. TEM J. 2023, 12, 1973–1978. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Panchal, H.; Shanmugan, S.; Muthuramalingam, T.; El-Kassas, A.M.; Ramesh, B. Recent Progresses in Wood-Plastic Composites: Pre-Processing Treatments, Manufacturing Techniques, Recyclability and Eco-Friendly Assessment. Clean. Eng. Technol. 2022, 8, 100450. [Google Scholar] [CrossRef]
- Sekar, V.; Palaniyappan, S.; Noum, S.Y.E.; Putra, A.; Sivanesan, S.; Sheng, D.D.C.V. Acoustic Absrobers Made of Wood Fiber Composites Developed by Compression Molding and Additive Manufacturing. Wood Res. 2023, 68, 68–82. [Google Scholar] [CrossRef]
- Čavlović, A.O.; Pervan, S.; Španić, N.; Klarić, M.; Prekrat, S.; Jarža, L. Additive Technologies and Their Applications in Furniture Design and Manufacturing. Drv. Ind. 2023, 74, 115–128. [Google Scholar] [CrossRef]
- Plarre, R.; Zocca, A.; Spitzer, A.; Benemann, S.; Gorbushina, A.A.; Li, Y.; Waske, A.; Funk, A.; Wilbig, J.; Günster, J. Searching for Biological Feedstock Material: 3D Printing of Wood Particles from House Borer and Drywood Termite Frass. PLoS ONE 2021, 16, e0246511. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, H.; Klemm, D.; Böttger-Hiller, F.; Fritsch, S.; Le Guen, M.J.; Singamneni, S. 3D Printing of Biodegradable Parts Using Renewable Biobased Materials. Procedia Manuf. 2018, 21, 117–124. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Li, Z.; Li, P.; Shi, S.Q. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing. Materials 2017, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Koffi, A.; Toubal, L.; Jin, M.; Koffi, D.; Döpper, F.; Schmidt, H.-W.; Neuber, C. Extrusion-based 3D Printing with High-density Polyethylene Birch-fiber Composites. J. Appl. Polym. Sci. 2022, 12, 51937. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, R.; Yang, J.; Chou, W.; Xue, P.; Ding, Y. Additive Manufacturing of Wood Flour/PHA Composites Using Micro-Screw Extrusion: Effect of Device and Process Parameters on Performance. Polymers 2021, 13, 1107. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Xu, M.; Ye, G.; Guo, R.; Cai, L.; Ren, Z. Mechanical, Thermal, and Shape Memory Properties of Three-Dimensional Printing Biomass Composites. Polymers 2018, 10, 1234. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Löschke, S.; Proust, G. In the Mix: The Effect of Wood Composition on the 3D Printability and Mechanical Performance of Wood-Plastic Composites. Compos. Part C Open Access 2021, 5, 100140. [Google Scholar] [CrossRef]
- Zhang, H.; Bourell, D.; Guo, Y.; Zhang, X.; Zhuang, Y.; Yu, Y.; Jiang, K.; Helal, W.M.K. Study on Laser Sintering of Pine/Co-PES Composites and the Investment Casting Process. Rapid Prototyp. J. 2019, 25, 1349–1358. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, J.; Li, J.; Guo, Y.; Wang, Q. The Effect of Carbon Nanotubes on the Mechanical Properties of Wood Plastic Composites by Selective Laser Sintering. Polymers 2017, 9, 728. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, J.; Zhang, L.; Li, Y. Preparation of High-Porosity Biomass-Based Carbon Electrodes by Selective Laser Sintering. Mater. Lett. 2023, 330, 133300. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Hao, N.; Ragauskas, A.J. Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties. ACS Omega 2019, 4, 20197–20204. [Google Scholar] [CrossRef]
- AFNOR. Additive Manufacturing—General Principles—Fundamentals and Vocabulary; AFNOR: Paris, France, 2021. [Google Scholar]
- André, J.-C.; Le Méhauté, A.; De Witte, O. Dispositif Pour Réaliser un Modèle de Pièce Industrielle; National De La Propriete Industrielle: Paris, France, 1986. [Google Scholar]
- Hull, C.W.; Gabriel, S. Appartus for Production of Three-Dimensional Objects by Stereolitography. U.S. Patent 4,575,330, 11 March 1986. [Google Scholar]
- Sachs, E.M.; Haggerty, J.S.; Cima, M.J.; Williams, P.A. Three-Dimensional Printing Techniques. U.S. Patent 5,204,055, 20 April 1993. [Google Scholar]
- Ziaee, M.; Crane, N.B. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Halicioglu, F.H.; Koralay, S. Applicability Analysis of Additive Manufacturing Methods in Construction Projects. Građevinar 2020, 72, 335–349. [Google Scholar] [CrossRef]
- Beaman, J.J.; Deckard, C.R. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4,938,816, 3 July 1990. [Google Scholar]
- Desktop Metal Forust.Com. Available online: https://www.forust.com/ (accessed on 13 June 2022).
- Metal, D. The Shop System Forust Edition Landing Page. Available online: https://learn.desktopmetal.com/shop-forust (accessed on 22 February 2023).
- Desktop Metal. Shop System—Forust Edition (Datasheet); Desktop Metal: Burlington, MA, USA, 2022; p. 2. [Google Scholar]
- Shakor, P.; Chu, S.H.; Puzatova, A.; Dini, E. Review of Binder Jetting 3D Printing in the Construction Industry. Prog. Addit. Manuf. 2022, 7, 643–699. [Google Scholar] [CrossRef]
- Evdokimov, N.V.; Midukov, N.P.; Kurov, V.S.; Staritsyn, M.V.; Petrov, S.N. Microstructure of Fibers in a Feedstock Composition for Use in Additive Technologies. Fibre Chem. 2022, 54, 181–184. [Google Scholar] [CrossRef]
- Kariz, M.; Sernek, M.; Kuzman, M.K. Use of Wood Powder and Adhesive as a Mixture for 3D Printing. Eur. J. Wood Prod. 2016, 74, 123–126. [Google Scholar] [CrossRef]
- Henke, K.; Talke, D.; Bunzel, F.; Buschmann, B.; Asshoff, C. Individual Layer Fabrication (ILF): A Novel Approach to Additive Manufacturing by the Use of Wood. Eur. J. Wood Wood Prod. 2021, 79, 745–748. [Google Scholar] [CrossRef]
- Ederer, I.; Hochsmann, R. Method for Producing a Part Using a Deposition Technique. U.S. Patent 9,403,32, 2 August 2016. [Google Scholar]
- Stratoconception, Fabrication Additive (Prototypage Rapide, Outillage Rapide, Impression 3D)—Galerie—Pièces. Available online: https://www.stratoconception.com/news/galerie (accessed on 10 January 2024).
- Barlier, C. Procédé pour la création et la réalisation de pièces par C.A.O. et pièces ainsi obtenues. Brevet Français Européen. EP0585502 B1, 9 September 1993. [Google Scholar]
- Tao, Y.; Yin, Q.; Li, P. An Additive Manufacturing Method Using Large-Scale Wood Inspired by Laminated Object Manufacturing and Plywood Technology. Polymers 2021, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, B.; Henke, K.; Talke, D.; Saile, B.; Asshoff, C.; Bunzel, F. Additive Manufacturing of Wood Composite Panels for Individual Layer Fabrication (ILF). Polymers 2021, 13, 3423. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, S.; Li, Z.; Chen, S.; Chen, A.; Yan, C.; Shi, Y.; Zhang, H.; Fan, P. 3D Printed Porous Biomass-Derived SiCnw/SiC Composite for Structure-Function Integrated Electromagnetic Aoborption. Virtual Phys. Prototyp. 2022, 17, 718–733. [Google Scholar] [CrossRef]
- Zeng, W.; Guo, Y.; Jiang, K.; Yu, Z.; Liu, Y.; Shen, Y.; Deng, J.; Wang, P. Laser Intensity Effect on Mechanical Properties of Wood–Plastic Composite Parts Fabricated by Selective Laser Sintering. J. Thermoplast. Compos. Mater. 2013, 26, 125–136. [Google Scholar] [CrossRef]
- Ajdary, R.; Kretzschmar, N.; Baniasadi, H.; Trifol, J.; Seppälä, J.V.; Partanen, J.; Rojas, O.J. Selective Laser Sintering of Lignin-Based Composites. ACS Sustain. Chem. Eng. 2021, 9, 2727–2735. [Google Scholar] [CrossRef]
- DLP Firm. Photocentric Technical Datasheet; UV DLP Firm: Peterborough, UK, 2023. [Google Scholar]
- Bae, S.-U.; Kim, B.-J. Effects of Cellulose Nanocrystal and Inorganic Nanofillers on the Morphological and Mechanical Properties of Digital Light Processing (DLP) 3D-Printed Photopolymer Composites. Appl. Sci. 2021, 11, 6835. [Google Scholar] [CrossRef]
- Dufaud, O. Protoypage Rapide de Composites Céramiques Fonctionnels. Ph.D. Dissertation, Institut National Polytechnique de Lorraine, Nancy, France, 2002. [Google Scholar]
- Formlabs Materials Library. Functionnal Materials That Look the Part 2019. Product Catalog. Functionnal Materials That Look the Part. Available online: https://formlabs.com/asia/3d-printers/catalog/?&utm_source=google&utm_medium=paid-search&utm_campaign=APAC-AU-Prospecting-Search-Trademark-Brand-EN-Phrase-Paid-Adwords&utm_term=formlabs&utm_content=formlabs&utm_device=c&_bt=673140096148&_bk=formlabs&_bm=p&_bn=g&_bg=128206408249&gad_source=1&gclid=CjwKCAjwx4O4BhAnEiwA42SbVBCRURgasi6PxsofjbSsvGFjtzZl-HLG1eAC1urUpSnxEV-4qPiv9hoCw6cQAvD_BwE (accessed on 21 April 2023).
- Zhang, S.; Bhagia, S.; Li, M.; Meng, X.; Ragauskas, A.J. Wood-Reinforced Composites by Stereolithography with the Stress Whitening Behavior. Mater. Des. 2021, 206, 109773. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Wang, P.-C. Application of Lignocellulosic Composite (Taiwan Incense-Cedar) for Digital Light Processing (DLP) in 3D Printing. Wood Mater. Sci. Eng. 2023, 18, 1900–1911. [Google Scholar] [CrossRef]
- Yao, J.; Hakkarainen, M. Methacrylated Wood Flour-Reinforced “All-Wood” Derived Resin for Digital Light Processing (DLP) 3D Printing. Compos. Commun. 2023, 38, 101506. [Google Scholar] [CrossRef]
- Formlabs Technical Datasheet—Clear Resin 2016. Available online: https://formlabs.com/eu/store/materials/clear-resin/ (accessed on 24 April 2023).
- Formlabs Safety Datasheet—Clear Resin 2022. Available online: https://formlabs-media.formlabs.com/datasheets/1801037-SDS-ENEU-0.pdf (accessed on 24 April 2023).
- Arias-Ferreiro, G.; Lasagabáster-Latorre, A.; Ares-Pernas, A.; Ligero, P.; García-Garabal, S.M.; Dopico-García, M.S.; Abad, M.-J. Lignin as a High-Value Bioaditive in 3D-DLP Printable Acrylic Resins and Polyaniline Conductive Composite. Polymers 2022, 14, 4164. [Google Scholar] [CrossRef]
- Boecherer, D.; Li, Y.; Kluck, S.; Nekoonam, N.; Zhu, P.; Rapp, B.E.; Kotz-Helmer, F.; Helmer, D. COLOR3D-Multicolored 3D Printing of Wood Composites by Submicron Structuring. Addit. Manuf. 2023, 75, 103723. [Google Scholar] [CrossRef]
- Lyu, F.; Zhao, D.; Hou, X.; Sun, L.; Zhang, Q. Overview of the Development of 3D-Printing Concrete: A Review. Appl. Sci. 2021, 11, 9822. [Google Scholar] [CrossRef]
- Vaisanen, A.; Alonen, L.; Ylonen, S.; Hyttinen, M. Volatile Organic Compound and Particulate Emissions from the Production and Use of Thermoplastic Biocomposite 3D Printing Filaments. J. Occup. Environ. Hyg. 2022, 19, 381–393. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Rezaei, S.; Ruan, H.; Reinicke, T. Fracture Behavior of Anisotropic 3D-Printed Parts: Experiments and Numerical Simulations. J. Mater. Res. Technol. 2022, 19, 1260–1270. [Google Scholar] [CrossRef]
- Ezzaraa, I.; Ayrilmis, N.; Abouelmajd, M.; Kuzman, M.K.; Bahlaoui, A.; Arroub, I.; Bengourram, J.; Lagache, M.; Belhouideg, S. Numerical Modeling Based on Finite Element Analysis of 3D-Printed Wood-Polylactic Acid Composites: A Comparison with Experimental Data. Forests 2023, 14, 95. [Google Scholar] [CrossRef]
- Scaffaro, R.; Gulino, E.F.; Citarrella, M.C.; Maio, A. Green Composites Based on Hedysarum coronarium with Outstanding FDM Printability and Mechanical Performance. Polymers 2022, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Zarna, C.; Chinga-Carrasco, G.; Echtermeyer, A.T. Biocomposite Panels with Unidirectional Core Stiffeners-3-Point Bending Properties and Considerations on 3D Printing and Extrusion as a Manufacturing Method. Compos. Struct. 2023, 313, 116930. [Google Scholar] [CrossRef]
- Zarna, C.; Chinga-Carrasco, G.; Echtermeyer, A.T. Bending Properties and Numerical Modelling of Cellular Panels Manufactured from Wood Fibre/PLA Biocomposite by 3D Printing. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107368. [Google Scholar] [CrossRef]
- Smardzewski, J.; Maslej, M.; Wojciechowski, K.W. Compression and Low Velocity Impact Response of Wood-Based Sandwich Panels with Auxetic Lattice Core. Eur. J. Wood Wood Prod. 2021, 79, 797–810. [Google Scholar] [CrossRef]
- Ghanbari-Ghazijahani, T.; Kasebahadi, M.; Hassanli, R.; Classen, M. 3D Printed Honeycomb Cellular Beams Made of Composite Materials (Plastic and Timber). Constr. Build. Mater. 2022, 315, 125541. [Google Scholar] [CrossRef]
- Ainin, F.N.; Azaman, M.D.; Majid, M.S.A.; Ridzuan, M.J.M. Low-Velocity Impact Behavior of Sandwich Composite Structure with 3D Printed Hexagonal Honeycomb Core: Varying Core Materials. Funct. Compos. Struct. 2022, 4, 035007. [Google Scholar] [CrossRef]
- Kantaros, A.; Soulis, E.; Petrescu, F.I.T.; Ganetsos, T.; Koh, Y.-H. Advanced Composite Materials Utilized in FDM/FFF 3D Printing Manufacturing Processes: The Case of Filled Filaments. Materials 2023, 16, 6210. [Google Scholar] [CrossRef] [PubMed]
- Sekar, V.; Putra, A.; Palaniyappan, S.; Noum, S.Y.E.; Sivanesan, S.; Jiun, Y.L. Additive Manufactured Acoustic Absorbers Made of Wood-Fiber Composites with Modified Infill Patterns. Wood Mater. Sci. Eng. 2023, 19, 92–101. [Google Scholar] [CrossRef]
- Sekar, V.; Noum, S.Y.E.; Sivanesan, S.; Putra, A.; Sheng, D.D.C.V.; Kassim, D.H. Effect of Thickness and Infill Density on Acoustic Performance of 3D Printed Panels Made of Natural Fiber Reinforced Composites. J. Nat. Fibers 2022, 19, 7132–7140. [Google Scholar] [CrossRef]
- Bahar, A.; Hamami, A.E.A.; Benmahiddine, F.; Belhabib, S.; Belarbi, R.; Guessasma, S. The Thermal and Mechanical Behaviour of Wood-PLA Composites Processed by Additive Manufacturing for Building Insulation. Polymers 2023, 15, 3056. [Google Scholar] [CrossRef]
- Zaharia, S.-M.; Pop, M.A.; Cosnita, M.; Croitoru, C.; Matei, S.; Spirchez, C. Sound Absorption Performance and Mechanical Properties of the 3D-Printed Bio-Degradable Panels. Polymers 2023, 15, 3695. [Google Scholar] [CrossRef] [PubMed]
- Sekula, R.; Immonen, K.; Metsä-Kortelainen, S.; Kuniewski, M.; Zydroń, P.; Kalpio, T. Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation. Polymers 2023, 15, 2518. [Google Scholar] [CrossRef] [PubMed]
- Tomec, D.K.; Straze, A.; Haider, A.; Kariz, M. Hygromorphic Response Dynamics of 3D-Printed Wood-PLA Composite Bilayer Actuators. Polymers 2021, 13, 3209. [Google Scholar] [CrossRef]
- Comino, F.; Romero, P.E.; Molero, E.; de Adana, M.R. Experimental Evaluation of a 3D Printed Air Dehumidification System Developed with Green Desiccant Materials. Appl. Therm. Eng. 2023, 227, 120393. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Esposito Corcione, C. Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing. Materials 2024, 17, 1260. [Google Scholar] [CrossRef] [PubMed]
- Billings, C.; Siddique, R.; Sherwood, B.; Hall, J.; Liu, Y. Additive Manufacturing and Characterization of Sustainable Wood Fiber-Reinforced Green Composites. J. Compos. Sci. 2023, 7, 489. [Google Scholar] [CrossRef]
- John, M.J.; Dyanti, N.; Mokhena, T.; Agbakoba, V.; Sithole, B. Design and Development of Cellulosic Bionanocomposites from Forestry Waste Residues for 3D Printing Applications. Materials 2021, 14, 3462. [Google Scholar] [CrossRef] [PubMed]
- Yurttas, E.; Tetik, N.; Ayrilmis, N. Antimicrobial Properties of 3D Printed Biocomposites with Heat-Treated Wood Flour Using Silver Nanoparticles with Leaf Extract. Wood Mater. Sci. Eng. 2023, 18, 663–671. [Google Scholar] [CrossRef]
- Yang, F.; Guo, X.; Zeng, Z.; Xiao, J.; Li, H.; Luo, Y.; Guan, L.; Zheng, W.; Zhou, W.; Dong, X. Sr2MgSi2O7:Eu2+, Dy3+ Phosphor-Reinforced Wood Plastic Composites with Photoluminescence Properties for 3D Printing. Polym. Compos. 2021, 42, 3125–3136. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, S.; Li, J.; Liu, S.; James, T.; Sessler, J.; Chen, Z. Room Temperature Phosphorescence from Natural Wood Activated by External Chloride Anion Treatment. Nat. Commun. 2023, 14, 2614. [Google Scholar] [CrossRef] [PubMed]
- Nasr Esfahani, K.; Zandi, M.D.; Travieso-Rodriguez, J.A.; Graells, M.; Perez-Moya, M. Manufacturing and Application of 3D Printed Photo Fenton Reactors for Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 4885. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singholi, A.K.S. Shape Memory Andmechanical Characterization of Polylactic Acidwood Composite Fabricated Byfused Filament Fabrication 4Dprinting Technology. Mater. Und. Werkst. 2021, 52, 635–643. [Google Scholar] [CrossRef]
- Kumar, S.R. Effect of Wood Flour and Nano-SiO2 on Stimulus Response, Mechanical, and Thermal Behavior of 3D Printed Polylactic Acid Composites. Polym. Adv. Technol. 2022, 33, 4197–4205. [Google Scholar] [CrossRef]
- Bianconi, F.; Filippucci, M.; Pelliccia, G.; Rossi, G.; Tocci, T.; Tribbiani, G.; Correa, D. Nondestructive Analysis on 4D-Printed Hygroscopic Actuators Through Optical Flow-Based Displacement Measurements. Mater. Eval. 2023, 81, 30–38. [Google Scholar] [CrossRef]
- Kam, D.; Levin, I.; Kutner, Y.; Lanciano, O.; Sharon, E.; Shoseyov, O.; Magdassi, S. Wood Warping Composite by 3D Printing. Polymers 2022, 14, 733. [Google Scholar] [CrossRef]
- Eversmann, P.; Ochs, J.; Heise, J.; Akbar, Z.; Boehm, S. Additive Timber Manufacturing: A Novel, Wood-Based Filament and Its Additive Robotic Fabrication Techniques for Large-Scale, Material-Efficient Construction. 3D Print. Addit. Manuf. 2022, 9, 161–176. [Google Scholar] [CrossRef]
- Kromoser, B.; Reichenbach, S.; Hellmayr, R.; Myna, R.; Wimmer, R. Circular Economy in Wood Construction—Additive Manufacturing of Fully Recyclable Walls Made from Renewables: Proof of Concept and Preliminary Data. Constr. Build. Mater. 2022, 344, 128219. [Google Scholar] [CrossRef]
- Copenhaver, K.; Smith, T.; Armstrong, K.; Kamath, D.; Rencheck, M.; Bhagia, S.; Korey, M.; Lamm, M.; Ozcan, S. Recyclability of Additively Manufactured Bio-Based Composites. Compos. Part B-Eng. 2023, 255, 110617. [Google Scholar] [CrossRef]
- Zhou, G.; Li, M.-C.; Wang, F.; Liu, C.; Mei, C. 3D Printing of Cellulose Nanofiber Monoliths for Thermal Insulation and Energy Storage Applications. Addit. Manuf. 2022, 59, 103124. [Google Scholar] [CrossRef]
- Jiang, J.; Oguzlu, H.; Jiang, F. 3D Printing of Lightweight, Super-Strong yet Fl Exible All-Cellulose Structure. Chem. Eng. J. 2021, 405, 126668. [Google Scholar] [CrossRef]
- Rosenthal, M.; Henneberger, C.; Gutkes, A.; Bues, C.-T. Liquid Deposition Modeling: A Promising Approach for 3D Printing of Wood. Eur. J. Wood Prod. 2018, 76, 797–799. [Google Scholar] [CrossRef]
- Rosenthal, M.; Rueggeberg, M.; Gerber, C.; Beyrich, L.; Faludi, J. Physical Properties of Wood-Based Materials for Liquid Deposition Modeling. Rapid Prototyp. J. 2023, 29, 1004–1013. [Google Scholar] [CrossRef]
- Pitt, K.; Lopez-Botello, O.; Lafferty, A.D.; Todd, I.; Mumtaz, K. Investigation into the Material Properties of Wooden Composite Structures with In-Situ Fibre Reinforcement Using Additive Manufacturing. Compos. Sci. Technol. 2017, 138, 32–39. [Google Scholar] [CrossRef]
- Trifol, J.; Jayaprakash, S.; Baniasadi, H.; Ajdary, R.; Kretzschmar, N.; Rojas, O.J.; Partanen, J.; Seppala, J.V. 3D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA). ACS Sustain. Chem. Eng. 2021, 9, 13979–13987. [Google Scholar] [CrossRef]
- Latif, M.; Jiang, Y.; Kumar, B.; Song, J.M.; Cho, H.C.; Kim, J. High Content Nanocellulose 3D-Printed and Esterified Structures with Strong Interfacial Adhesion, High Mechanical Properties, and Shape Fidelity. Adv. Mater. Interfaces 2022, 9, 2200280. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q.; Wu, G.; Su, X.; Chen, W.; Du, G. Design and Analysis of a 5-Degree of Freedom (DOF) Hybrid Three-Nozzle 3D Printer for Wood Fiber Gel Material. Cellulose 2022, 12, 1061. [Google Scholar] [CrossRef]
- Tümer, E.H.; Erbil, H.Y. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Gomez-Maldonado, D.; Peresin, M.S.; Verdi, C.; Velarde, G.; Saloni, D. Thermal, Structural, and Mechanical Effects of Nanofibrillated Cellulose in Polylactic Acid Filaments for Additive Manufacturing. BioRes 2020, 15, 7954–7964. [Google Scholar] [CrossRef]
- Vandome, J. Poly(Styrène/Butadiène/Acrylonitrile) ABS 1978. Techniques de l’ingénieur (Archives). Available online: https://www-techniques-ingenieur-fr.bases-doc.univ-lorraine.fr/base-documentaire/archives-th12/archives-plastiques-et-composites-tiaam/archive-1/poly-styrene-butadiene-acrylonitrile-abs-a3345/ (accessed on 13 June 2023).
- INRS. Plastiques, Risque et Analyse ThermIQue—Poly(acrylonitrile/butadiène/styrène) ABS 2017. Available online: https://www.inrs.fr/publications/bdd/plastiques/polymere.html?refINRS=PLASTIQUES_polymere_4 (accessed on 30 May 2023).
- Farcas, M.T.; McKinney, W.; Qi, C.; Mandler, K.W.; Battelli, L.; Friend, S.A.; Stefaniak, A.B.; Jackson, M.; Orandle, M.; Winn, A.; et al. Pulmonary and Systemic Toxicity in Rats Following Inhalation Exposure of 3-D Printer Emissions from Acrylonitrile Butadiene Styrene (ABS) Filament. Inhal. Toxicol. 2020, 32, 403–418. [Google Scholar] [CrossRef]
- Yu, W.; Sun, L.; Li, M.; Peng, Y.; Wei, C.; Lei, W.; Qiu, R.; Ge, Y. Effect of Modification and Hydrothermal Ageing on Properties of 3D-Printed Wood Flour-Poly(Butylene Succinate)-Poly(Lactic Acid) Biocomposites. Polymers 2023, 15, 3697. [Google Scholar] [CrossRef] [PubMed]
- Duval, C. Polypropylènes (PP) 2004. Techniques de l’Ingénieur. Available online: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/matieres-thermoplastiques-monographies-42147210/polypropylenes-pp-am3320/ (accessed on 2 October 2024).
- Kariz, M.; Sernek, M.; Kuzman, M.K. Effect of Humidity on 3D-Printed Specimens from Wood-PLA Filaments. Wood Res. 2018, 63, 6. [Google Scholar]
- Yu, W.; Shi, J.; Sun, L.; Lei, W. Effects of Printing Parameters on Properties of FDM 3D Printed Residue of Astragalus/Polylactic Acid Biomass Composites. Molecules 2022, 27, 7373. [Google Scholar] [CrossRef] [PubMed]
- Ayrilmis, N.; Kariz, M.; Kwon, J.H.; Kuzman, M.K. Effect of Printing Layer Thickness on Water Absorption and Mechanical Properties of 3D-Printed Wood/PLA Composite Materials. Int. J. Adv. Manuf. Technol. 2019, 102, 2195–2200. [Google Scholar] [CrossRef]
- Efstathiadis, A.; Symeonidou, I.; Tsongas, K.; Tzimtzimis, E.K.K.; Tzetzis, D. Parametric Design and Mechanical Characterization of 3D-Printed PLA Composite Biomimetic Voronoi Lattices Inspired by the Stereom of Sea Urchins. J. Compos. Sci. 2023, 7, 3. [Google Scholar] [CrossRef]
- Malagutti, L.; Ronconi, G.; Zanelli, M.; Mollica, F.; Mazzanti, V. A Post-Processing Method for Improving the Mechanical Properties of Fused-Filament-Fabricated 3D-Printed Parts. Processes 2022, 10, 2399. [Google Scholar] [CrossRef]
- Muck, D.; Tomc, H.G.; Elesini, U.S.; Ropret, M.; Leskovsek, M. Colour Fastness to Various Agents and Dynamic Mechanical Characteristics of Biocomposite Filaments and 3D Printed Samples. Polymers 2021, 13, 3738. [Google Scholar] [CrossRef] [PubMed]
- Cuan-Urquizo, E.; alvarez-Trejo, A.; Robles Gil, A.; Tejada-Ortigoza, V.; Camposeco-Negrete, C.; Uribe-Lam, E.; Trevino-Quintanilla, C.D. Effective Stiffness of Fused Deposition Modeling Infill Lattice Patterns Made of PLA-Wood Material. Polymers 2022, 14, 337. [Google Scholar] [CrossRef] [PubMed]
- Ezzaraa, I.; Ayrilmis, N.; Kuzman, M.K.; Belhouideg, S.; Bengourram, J. Micromechanical Models for Predicting the Mechanical Properties of 3D-Printed Wood/PLA Composite Materials: A Comparison with Experimental Data. Mech. Adv. Mater. Struct. 2022, 29, 6755–6767. [Google Scholar] [CrossRef]
- Narlioglu, N. Comparison of Mechanical Properties of 3D-Printed and Compression-Molded Wood-Polylactic Acid (PLA) Composites. BioResources 2022, 17, 3291–3302. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Palumbo, E.; Corcione, C.E. Development and Characterization of Sustainable PLA/Olive Wood Waste Composites for Rehabilitation Applications Using Fused Filament Fabrication (FFF). J. Build. Eng. 2022, 56, 104673. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, S.; Cicala, G.; Zarrelli, M.; Acierno, D. Recovery of Waste Material from Biobags: 3D Printing Process and Thermo-Mechanical Characteristics in Comparison to Virgin and Composite Matrices. Polymers 2022, 14, 1943. [Google Scholar] [CrossRef]
- Chawla, K.; Singh, J.; Singh, R. On Recyclability of Thermosetting Polymer and Wood Dust as Reinforcement in Secondary Recycled ABS for Nonstructural Engineering Applications. J. Thermoplast. Compos. Mater. 2022, 35, 913–937. [Google Scholar] [CrossRef]
- Chawla, K.; Singh, J.; Singh, R. On Chemical Assisted Blending of Secondary Recycled ABS with Bakelite and Wood Dust for Fused Filament Fabrication. Adv. Mater. Process. Technol. 2023, 9, 116–137. [Google Scholar] [CrossRef]
- Patti, A.; Cicala, G.; Acierno, S. Rotational Rheology of Wood Flour Composites Based on Recycled Polyethylene. Polymers 2021, 13, 2226. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Jeelani, S.; Rangari, V. Three-Dimensional-Printed Sustainable Biochar-Recycled PET Composites. ACS Sustain. Chem. Eng. 2018, 6, 13940–13948. [Google Scholar] [CrossRef]
- Chen, H.; He, H.; Tian, S.; Chen, S. Recycling of Waste Artificial Marble Powder in HDPE-Wood Composites. Polym. Compos. 2018, 39, 2347–2355. [Google Scholar] [CrossRef]
- Zander, N.E.; Park, J.H.; Boelter, Z.R.; Gillan, M.A. Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. ACS Omega 2019, 4, 13879–13888. [Google Scholar] [CrossRef] [PubMed]
- Sauerbier, P.; Anderson, J.; Gardner, D. Surface Preparation and Treatment for Large-Scale 3D-Printed Composite Tooling Coating Adhesion. Coatings 2018, 8, 457. [Google Scholar] [CrossRef]
- Tan, Y.A.; Chan, M.Y.; Koay, S.C.; Ong, T.K. 3D Polymer Composite Filament Development from Post-Consumer Polypropylene and Disposable Chopstick Fillers. J. Vinyl Addit. Technol. 2023, 29, 909–922. [Google Scholar] [CrossRef]
- Dalloul, F.; Mietner, J.B.; Navarro, J.R.G. Production and 3D Printing of a Nanocellulose-Based Composite Filament Composed of Polymer-Modified Cellulose Nanofibrils and High-Density Polyethylene (HDPE) for the Fabrication of 3D Complex Shapes. Fibers 2022, 10, 91. [Google Scholar] [CrossRef]
- Gudadhe, A.; Bachhar, N.; Kumar, A.; Andrade, P.; Kumaraswamy, G. Three-Dimensional Printing with Waste High-Density Polyethylene. ACS Appl. Polym. Mater. 2019, 1, 3157–3164. [Google Scholar] [CrossRef]
- Chong, S.; Pan, G.-T.; Khalid, M.; Yang, T.C.-K.; Hung, S.-T.; Huang, C.-M. Physical Characterization and Pre-Assessment of Recycled High-Density Polyethylene as 3D Printing Material. J. Polym. Environ. 2017, 25, 136–145. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-Crystalline Feedstock for Filament-Based 3D Printing of Polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Sultana, J.; Rahman, M.M.; Wang, Y.; Ahmed, A.; Xiaohu, C. Influences of 3D Printing Parameters on the Mechanical Properties of Wood PLA Filament: An Experimental Analysis by Taguchi Method. Prog. Addit. Manuf. 2024, 9, 1239–1251. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, R.; Sharma, A.K.; Gupta, N.K.; Somani, N. A Statistical Analysis on Effect of Process Parameters on Tensile, Flexural, and Hardness Characteristics of Wood-Polylactic Acid Composites Using FDM 3D Printing. Int. J. Interact. Des. Manuf. 2024, 18, 1303–1315. [Google Scholar] [CrossRef]
- Petchwattana, N.; Channuan, W.; Naknaen, P.; Narupai, B. 3D Printing Filaments Prepared from Modified Poly (Lactic Acid)/Teak Wood Flour Composites: An Investigation on the Particle Size Effects and Silane Coupling Agent Compatibilisation. J. Phys. Sci. 2019, 30, 169–188. [Google Scholar] [CrossRef]
- Chansoda, K.; Suvanjumrat, C.; Chookaew, W. Comparative Study on the Wood-Based PLA Fabricated by Compression Molding and Additive Manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1137, 012032. [Google Scholar] [CrossRef]
- Estakhrianhaghighi, E.; Mirabolghasemi, A.; Lessard, L.; Akbarzadeh, A. 3D Printed Wood-Fiber Reinforced Architected Cellular Composite Beams with Engineered Flexural Properties. Addit. Manuf. 2023, 78, 103800. [Google Scholar] [CrossRef]
- Oliver-Ortega, H.; Reixach, R.; Espinach, F.X.; Méndez, J.A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials 2022, 15, 1161. [Google Scholar] [CrossRef]
- Luo, W.H.; Wang, Z.L.; Liu, X.X. Mechanical and Rheological Properties of Compatibilized LDPE/Wood Flour Composites. Adv. Mater. Res. 2012, 549, 729–732. [Google Scholar] [CrossRef]
- Mustafa, N.; Yusuf, Y.; Abdul Kudus, S.I.; Razali, N.; Sulistyarini, D.H.; Halim, M.H.; Anak Ujih, A.C. The Influence of MAPP and MAPE Compatibilizers on Physical and Mechanical Properties of 3D Printing Filament Made of Wood Fiber/Recycled Polypropylene. Pertanika J. Sci. Technol. 2024, 32, 77–90. [Google Scholar] [CrossRef]
- Zhang, L.; Lv, S.; Sun, C.; Wan, L.; Tan, H.; Zhang, Y. Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers 2017, 9, 591. [Google Scholar] [CrossRef]
- Bae, S.-U.; Seo, Y.-R.; Kim, B.-J.; Lee, M. Effects of Wood Flour and MA-EPDM on the Properties of Fused Deposition Modeling 3D-Printed Poly Lactic Acid Composites. BioResources 2021, 16, 7121–7137. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Z.; Bi, H.; Song, Y.; Xu, M. Effect of Toughening Agents on the Properties of Poplar Wood Flour/Poly (Lactic Acid) Composites Fabricated with Fused Deposition Modeling. Eur. Polym. J. 2018, 107, 34–45. [Google Scholar] [CrossRef]
- Mimini, V.; Sykacek, E.; Hettegger, H.; Fackler, K.; Potthast, A.; Rosenau, T. Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing. J. Wood Chem. Technol. 2019, 39, 14–30. [Google Scholar] [CrossRef]
- Sabirova, G.A.; Safin, R.R.; Galyavetdinov, N.R.; Shaikhutdinova, A.R.; Khayrullin, R.Z. Studying the Rheological Properties of a Polylactide Melt Mixed with Wood Filler. Lesn. Zhurnal-For. J. 2021, 173–179. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kari, M. Effect of Wood Flour Content on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Int. J. Polym. Anal. Charact. 2019, 24, 659–666. [Google Scholar] [CrossRef]
- Pop, M.A.; Croitoru, C.; Bedő, T.; Geamăn, V.; Radomir, I.; Cosnită, M.; Zaharia, S.M.; Chicos, L.A.; Milosan, I. Structural Changes during 3D Printing of Bioderived and Synthetic Thermoplastic Materials. J. Appl. Polym. Sci. 2019, 136, 47382. [Google Scholar] [CrossRef]
- Yang, T.-C. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers 2018, 10, 976. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-W.; Youe, W.-J.; Kim, S.-J.; Han, S.-Y.; Park, J.-S.; Lee, E.-A.; Kwon, G.-J.; Kim, Y.-S.; Kim, N.-H.; Lee, S.-H. Effect of Lignin Plasticization on Physico-Mechanical Properties of Lignin/Poly(Lactic Acid) Composites. Polymers 2019, 11, 2089. [Google Scholar] [CrossRef] [PubMed]
- Yatigala, N.S.; Bajwa, D.S.; Bajwa, S.G. Compatibilization Improves Physico-Mechanical Properties of Biodegradable Biobased Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 315–325. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, X.; Xu, M.; Rodrigue, D. Printability and Properties of 3D-Printed Poplar Fiber/Polylactic Acid Biocomposite. BioResources 2021, 16, 2774–2788. [Google Scholar] [CrossRef]
- Niang, B.; Schiavone, N.; Askanian, H.; Verney, V.; Ndiaye, D.; Diop, A.B. Development and Characterization of PBSA-Based Green Composites in 3D-Printing by Fused Deposition Modelling. Materials 2022, 15, 7570. [Google Scholar] [CrossRef] [PubMed]
- NF EN ISO 62; Plastics—Determination of Water Absorption. AFNOR: Paris, France, 2008.
- Filgueira, D.; Holmen, S.; Melbø, J.K.; Moldes, D.; Echtermeyer, A.T.; Chinga-Carrasco, G. Enzymatic-Assisted Modification of Thermomechanical Pulp Fibers To Improve the Interfacial Adhesion with Poly(Lactic Acid) for 3D Printing. ACS Sustain. Chem. Eng. 2017, 5, 9338–9346. [Google Scholar] [CrossRef]
- Kariz, M.; Tomec, D.K.; Dahle, S.; Kuzman, M.K.; Sernek, M.; Zigon, J. Effect of Sanding and Plasma Treatment of 3D-Printed Parts on Bonding to Wood with PVAc Adhesive. Polymers 2021, 13, 1211. [Google Scholar] [CrossRef]
- Bi, H.; Ren, Z.; Guo, R.; Xu, M.; Song, Y. Fabrication of Flexible Wood Flour/Thermoplastic Polyurethane Elastomer Composites Using Fused Deposition Molding. Ind. Crops Prod. 2018, 122, 76–84. [Google Scholar] [CrossRef]
- Tokdemir, V.; Altun, S. A Case Study of Wood Thermoplastic Composite Filament for 3D Printing. BioResources 2022, 17, 21–36. [Google Scholar] [CrossRef]
- DDDROP Professional 3D Printers Technical Data Sheet—TPU. Available online: https://dddrop.com/wp-content/uploads/2020/06/TPU-Filament-Technical-Data-Sheet.pdf (accessed on 23 May 2023).
- Horta, J.F.; Simões, F.J.P.; Mateus, A. Large Scale Additive Manufacturing of Eco-Composites. Int. J. Mater. Form. 2018, 11, 375–380. [Google Scholar] [CrossRef]
- Ayrilmis, N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018, 71, 163–166. [Google Scholar] [CrossRef]
- Narlıoğlu, N.; Salan, T.; Alma, M.H. Properties of 3D-Printed Wood Sawdust-Reinforced PLA Composites. BioRessources 2021, 16, 5467–5480. [Google Scholar] [CrossRef]
- Saarikoski, E.; Kosonene, H.; Kinnunen, A.P.; Nurminen, A. A Composite Material for Addotove Manufacturing of a Three-Dimensional Composite Product. U.S. Patent No. 10,406,747, 10 September 2019. [Google Scholar]
- Huang, X.; Zhao, H.; Gu, J. Modified PLA (polylactic acid) Material for 3D Printers 2015. Chinese Patent CN104327470A, 31 December 2014. [Google Scholar]
- Filamentive Datasheet Wood 2022. Available online: https://www.filamentive.com/product-category/wood-pla-3d-printer-filament/ (accessed on 18 July 2023).
- ArianPlast 3D Filament Bois Résineux Clair 3D Filament F-WOODBOIS. Available online: https://www.arianeplast.com/3d-filaments-wood/342-3d-filament-bois-resineux-clair-3d-filament.html (accessed on 5 July 2023).
- Le Guen, M.-J.; Hill, S.; Smith, D.; Theobald, B.; Gaugler, E.; Barakat, A.; Mayer-Laigle, C. Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Front. Chem. 2019, 7, 735. [Google Scholar] [CrossRef]
- Liu, L.; Lin, M.; Xu, Z.; Lin, M. Polylactic Acid-Based Wood-Plastic 3D Printing Composite and Its Properties. BioResources 2019, 14, 8484–8498. [Google Scholar] [CrossRef]
- Boubekeur, B.; Belhaneche-Bensemra, N.; Massardier, V. Low-Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. J. Vinyl Addit. Technol. 2020, 26, 443–451. [Google Scholar] [CrossRef]
- Pringle, A.M.; Rudnicki, M.; Pearce, J.M. Wood Furniture Waste–Based Recycled 3-D Printing Filament. For. Prod. J. 2018, 68, 86–95. [Google Scholar] [CrossRef]
- Pollen Additive Manufacturing. PLA Woodfill. Technical Data Sheet. Available online: https://www.pollen.am/parts_gallery_pla_surfin/ (accessed on 4 July 2023).
- ColorFabb. Safety Data Sheet—Woodfill 2020. Available online: https://ninjatek.com/wp-content/uploads/colorFabb_WoodFill_Printing_Filament_SDS.pdf (accessed on 26 May 2023).
- PLA Premium Wanhao Bois Wood 0.5/1Kg. Available online: https://www.wanhaofrance.com/products/pla-wanhao-bois-wood-1kg (accessed on 5 July 2023).
- Makershop. Bois Foncé Neofil3D—Fiche de Données de Sécurité 2019. Available online: https://www.makershop.fr/filament-bois/1057-bois-fonce-neofil3d.html (accessed on 5 December 2023).
- Add North. 3D Filament Technical Data Sheet PLA Wood 2021. Available online: https://addnorth.com/product/PLA%20Wood/PLA%20Wood%20-%201.75mm%20-%201000g%20-%20Light%20Oak (accessed on 5 December 2023).
Class A | Class B | Class C | Class D |
---|---|---|---|
AT, BA, FR, NL, UK | AT, FR, FI, GE, NL, UK | AT, NL | FI, FR, GE, NL, SI SW, UK |
Unpainted and untreated wood, without or minor defects and a few restrictions on use | Partially contaminated (painted, varnished, coated, glued etc.) wood without preservatives or halogenated compounds | Hazardous waste wood—containing hazardous or toxic substances (e.g., paint, varnish, stain) or treated with halogenated organic materials | Wood waste treated with wood preservatives containing hazardous substances (e.g., copper and chromium or copper, chromium, arsenic, and creosote) |
FI, GE, SW | BA, CH | BA, FI, FR, GE, SW, UK | AT, BA |
Pure wood, only mechanically treated, insignificantly contaminated with harmful substances | Wood of average equivalent to A class quality, without specific requirements for pure wood | Non-hazardous waste wood with low-concentration chemical additives and organic halogenated compounds in the coating, with no wood preservatives | Wood waste that could not be assigned to other categories or components that are not wood waste (e.g., furniture with less than 50 wt.% wood) |
3D Printing Process | Matrix Used (Supplier) | Reinforcement (Grain Size) | Key Results | Reference |
---|---|---|---|---|
Binder Jetting | Binder from ExOne GmbH (PM-B-SR2-02) | Frass from European house borer and termites (600–1000 µm) | Feedstock suitable for 3D printing | [84] |
HP binder | Miscanthus, wood, seashell, fruit stone, and rice husk flour | Large variety of renewable reinforcement available | [85] | |
Material Extrusion | PLA—Ingeo 4032D (NatureWorks) | Aspen wood flour (14 µm) | Thermal degradation is about 270 °C | [86] |
HDPE (Ra-Plast) | Yellow birch (500 µm) | HDPE with wood reduces 3D printing issues | [87] | |
PHA | Wood flour | There are connections between process parameters and quality | [88] | |
Elastollan C85A | Poplar wood flour (150 µm) | Flexible parts with wood flour can be 3D printed with shape memory properties | [89] | |
ABS (Martogg Group) | Australian hardwood (90–212 µm) | A composite with 29 wt.% wood can be 3D printed with material extrusion | [90] | |
Powder Bed Fusion | Copolyester hot-melt adhesive | Pine powder (45–90 µm) | Loading rates like to material extrusion process can be obtained | [91] |
Poyether sulfone (PES) | Pine powder (45–90 µm) | Adding carbon nanotube can increase mechanical properties | [92] | |
Phenolic Resin | Pine powder | Custom electrodes with wood can be successfully printed with wood | [93] | |
Vat Photopolymerization | RS-F2GPCL-04 (Formlabs) | Softwood kraft lignin | Lignin reduces cross-link reaction leading to more residual resin | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaux, J.; Ziegler-Devin, I.; Besserer, A.; Nouvel, C. 3D Printing of Wood Composites: State of the Art and Opportunities. Polymers 2024, 16, 2827. https://doi.org/10.3390/polym16192827
Ramaux J, Ziegler-Devin I, Besserer A, Nouvel C. 3D Printing of Wood Composites: State of the Art and Opportunities. Polymers. 2024; 16(19):2827. https://doi.org/10.3390/polym16192827
Chicago/Turabian StyleRamaux, Johan, Isabelle Ziegler-Devin, Arnaud Besserer, and Cécile Nouvel. 2024. "3D Printing of Wood Composites: State of the Art and Opportunities" Polymers 16, no. 19: 2827. https://doi.org/10.3390/polym16192827
APA StyleRamaux, J., Ziegler-Devin, I., Besserer, A., & Nouvel, C. (2024). 3D Printing of Wood Composites: State of the Art and Opportunities. Polymers, 16(19), 2827. https://doi.org/10.3390/polym16192827