Efficacy of Acacia Gum Biopolymer in Strength Improvement of Silty and Clay Soils under Varying Curing Conditions
Abstract
:1. Introduction
2. Materials
3. Methodology
4. Results and Discussion
4.1. Plasticity Characteristics
4.2. Compaction Characteristics
4.3. UCS
4.3.1. Strength Characteristics
4.3.2. Mechanism of Strength Improvement
4.3.3. Effect of Aging and Temperature
4.4. CBR
4.5. pH and Viscosity
4.6. FTIR
4.7. SEM and Average Particle Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haas, R. The ICMPA7 Investment Analysis and Communication Challenge for Road Assets. In Proceedings of the Seventh International Conference on Managing Pavement Assets, Calgary, AB, Canada, 24–28 June 2008. [Google Scholar]
- Bouassida, M.; Fattah, M.Y.; Mezni, N. Bearing Capacity of Foundation on Soil Reinforced by Deep Mixing Columns. Geomech. Geoengin. 2022, 17, 309–320. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of A Sustainable Building: A Conceptual Framework for Implementing Sustainability in the Building Sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- Pastuszka, M.K.; MacKay, J.A. Engineering Structure and Function Using Thermoresponsive Biopolymers. WIREs Nanomed. Nanobiotechnol. 2016, 8, 123–138. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Besliu, I.; Gutt, G. Edible Biopolymers-Based Materials for Food Applications—The Eco Alternative to Conventional Synthetic Packaging. Polymers 2021, 13, 3779. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.; Ballard, J.; Griggs, C.; Newman, J.K.; Nestler, C. An Innovative Non-Petroleum Rhizobium tropici Biopolymer Salt for Soil Stabilization. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vancouver, BC, Canada, 12–18 November 2010; pp. 1279–1284. [Google Scholar]
- Dove, C.A.; Bradley, F.F.; Patwardhan, S.V. Seaweed Biopolymers as Additives for Unfired Clay Bricks. Mater. Struct. 2016, 49, 4463–4482. [Google Scholar] [CrossRef]
- Onah, H.N.; Nwonu, D.C.; Ikeagwuani, C.C. Feasibility of Lime and Biopolymer Treatment for Soft Clay Improvement: A Comparative and Complementary Approach. Arab. J. Geosci. 2022, 15, 337. [Google Scholar] [CrossRef]
- Molfetta, A.D.; Sethi, R. Clamshell Excavation of a Permeable Reactive Barrier. Environ. Geol. 2006, 50, 361–369. [Google Scholar] [CrossRef]
- Ringelberg, D.B.; Cole, D.M.; Foley, K.L.; Ruidaz-Santiago, C.M.; Reynolds, C.M. Compressive Strength of Soils Amended with a Bacterial Succinoglycan: Effects of Soluble Salts and Organic Matter. Can. Geotech. J. 2014, 51, 747–757. [Google Scholar] [CrossRef]
- Ayeldeen, M.K.; Negm, A.M.; El Sawwaf, M.A. Evaluating the Physical Characteristics of Biopolymer/Soil Mixtures. Arab. J. Geosci. 2016, 9, 371. [Google Scholar] [CrossRef]
- Kwon, Y.M.; Chang, I.; Lee, M.; Cho, G.C. Geotechnical Engineering Behavior of Biopolymer-Treated Soft Marine Soil. Geomech. Eng. 2019, 17, 453–464. [Google Scholar] [CrossRef]
- He, J.; Fang, C.; Mao, X.; Qi, Y.; Zhou, Y.; Kou, H.; Xiao, L. Enzyme-Induced Carbonate Precipitation for the Protection of Earthen Dikes and Embankments Under Surface Runoff: Laboratory Investigations. J. Ocean. Univ. China 2022, 21, 306–314. [Google Scholar] [CrossRef]
- Maaitah, O.N. Soil Stabilization by Chemical Agent. Geotech. Geol. Eng. 2012, 30, 1345–1356. [Google Scholar] [CrossRef]
- Jamal, A.; Huntsinger, L. Deterioration of a Sustainable Agro-Silvo-Pastoral System in the Sudan: The Gum Gardens of Kordofan. Agrofor. Syst. 1993, 23, 23–38. [Google Scholar] [CrossRef]
- Ashour, M.A.; Fatima, W.; Imran, M.; Ghoneim, M.M.; Alshehri, S.; Shakeel, F. A Review on the Main Phytoconstituents, Traditional Uses, Inventions, and Patent Literature of Gum Arabic Emphasizing Acacia Seyal. Molecules 2022, 27, 1171. [Google Scholar] [CrossRef]
- Imeson, A. (Ed.) Food Stabilisers, Thickeners and Gelling Agents, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-1-4051-3267-1. [Google Scholar]
- Daoub, R.M.A.; Elmubarak, A.H.; Misran, M.; Hassan, E.A.; Osman, M.E. Characterization and Functional Properties of Some Natural Acacia Gums. J. Saudi Soc. Agric. Sci. 2018, 17, 241–249. [Google Scholar] [CrossRef]
- Kumar, S.A.; Kannan, G.; Vishweswaran, M.; Sujatha, E.R. Review on Biopolymer Stabilization—A Natural Alternative for Erosion Control. In Advances in Sustainable Materials and Resilient Infrastructure; Reddy, K.R., Pancharathi, R.K., Reddy, N.G., Arukala, S.R., Eds.; Springer Transactions in Civil and Environmental Engineering; Springer: Singapore, 2022; pp. 185–200. ISBN 9789811697432. [Google Scholar]
- Nussinovitch, A. Plant Gum Exudates of the World: Sources, Distribution, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-15046-3. [Google Scholar]
- Prasad, N.; Thombare, N.; Sharma, S.C.; Kumar, S. Gum Arabic—A Versatile Natural Gum: A Review on Production, Processing, Properties and Applications. Ind. Crop. Prod. 2022, 187, 115304. [Google Scholar] [CrossRef]
- Oluremi, J.R.; Ishola, K. Compaction and Strength Characteristics of Lead Contaminated Lateritic Soil Treated with Eco-Friendly Biopolymer for Use as Road Foundation Material. Hybrid Adv. 2024, 5, 100158. [Google Scholar] [CrossRef]
- Dagliya, M.; Satyam, N. Large Scale Study on Influence of Biopolymer to Mitigate Wind Induced Sand Erosion with Durability Analysis. Soil Tillage Res. 2024, 236, 105942. [Google Scholar] [CrossRef]
- Lemboye, K.; Almajed, A.; Alnuaim, A.; Arab, M.; Alshibli, K. Improving Sand Wind Erosion Resistance Using Renewable Agriculturally Derived Biopolymers. Aeolian Res. 2021, 49, 100663. [Google Scholar] [CrossRef]
- Nie, S.-P.; Wang, C.; Cui, S.W.; Wang, Q.; Xie, M.-Y.; Phillips, G.O. A Further Amendment to the Classical Core Structure of Gum Arabic (Acacia Senegal). Food Hydrocoll. 2013, 31, 42–48. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Ray, S.S. Gum Acacia Polysaccharide-Based pH Sensitive Gels for Targeted Delivery of Neridronate. Polym. Bull. 2017, 74, 2641–2655. [Google Scholar] [CrossRef]
- Vishweshwaran, M.; Sujatha, E.R.; Harshith, N.; Umesh, C. Geotechnical Properties of β-Glucan-Treated Clayey Sand; Springer: Berlin/Heidelberg, Germany, 2021; pp. 63–73. [Google Scholar]
- Chang, I.; Cho, G.-C. Strengthening of Korean Residual Soil with β-1,3/1,6-Glucan Biopolymer. Constr. Build. Mater. 2012, 30, 30–35. [Google Scholar] [CrossRef]
- Joseph, D.; Vipulanandan, C. Characterization of Field Compacted Soils (Unsoaked) Using the California Bearing Ratio (CBR) Test. In Proceedings of the Geo-Frontiers 2011, Dallas, TX, USA, 13–16 March 2011; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 2719–2728. [Google Scholar]
- Khalid, R.A.; Ahmad, N.; Arshid, M.U.; Zaidi, S.B.; Maqsood, T.; Hamid, A. Performance Evaluation of Weak Subgrade Soil under Increased Surcharge Weight. Constr. Build. Mater. 2022, 318, 126131. [Google Scholar] [CrossRef]
- IS 2720-5 (1985); Methods of Test for Soils, Part 5: Determination of Liquid and Plastic Limit. Bureau of Indian Standards: New Delhi, India, 1985.
- IS 2720-7 (1980); Methods of Test for Soils, Part 7: Determination of Water Content-Dry Density Relation Using Light Compaction. Bureau of Indian Standards: New Delhi, India, 1980.
- IS 2720-10 (1991); Methods of Test for Soils, Part 10: Determination of Unconfined Compressive Strength. Bureau of Indian Standards: New Delhi, India, 1991.
- IS 2720-16 (1987); Methods of Test for Soils, Part 16: Laboratory Determination of CBR. Bureau of Indian Standards: New Delhi, India, 1987.
- Vishweshwaran, M.; Sujatha, E.R.; Baldovino, J.A. Freeze-Dried β-Glucan and Poly-γ-Glutamic Acid: An Efficient Stabilizer to Strengthen Subgrades of Low Compressible Fine-Grained Soils with Varying Curing Periods. Polymers 2024, 16, 1586. [Google Scholar] [CrossRef]
- Anandha Kumar, S.; Sujatha, E.R. Compaction and Permeability Characteristics of Biopolymer-Treated Soil. In Sustainable Practices and Innovations in Civil Engineering; Ramanagopal, S., Gali, M.L., Venkataraman, K., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2021; Volume 79, pp. 107–117. ISBN 9789811551000. [Google Scholar]
- Yadav, K.; Yadav, B.S.; Yadav, R.B.; Dangi, N. Physicochemical, Pasting and Rheological Properties of Colocasia Starch as Influenced by the Addition of Guar Gum and Xanthan Gum. Food Meas. 2018, 12, 2666–2676. [Google Scholar] [CrossRef]
- M, V.; Sujatha, E.R. β-Glucan as a Sustainable Alternative to Stabilize Pavement Subgrade. Polymers 2022, 14, 2850. [Google Scholar] [CrossRef]
- Adabi, M.; Darvishan, E.; Eyvazi, G.; Jahanbaksh Motlagh, H. Geoenvironmental Application of Novel Persian Gum Biopolymer in Sandy Soil Stabilization. Arab. J. Sci. Eng. 2022, 47, 12915–12929. [Google Scholar] [CrossRef]
- Arabani, M.; Shalchian, M.M. A Review of the Use of Bio-Based Substances in Soil Stabilization. Environ. Dev. Sustain. 2023, 26, 13685–13737. [Google Scholar] [CrossRef]
- Theng, B.K.G. Clay-Polymer Interactions: Summary and Perspectives. Clays Clay Miner. 1982, 30, 1–10. [Google Scholar] [CrossRef]
- Lal, R.; Shukla, M.K. Principles of Soil Physics; CRC Press: Boca Raton, FL, USA, 2004; ISBN 978-0-429-21533-9. [Google Scholar]
- Cheng, Z.; Geng, X. Investigation of Unconfined Compressive Strength for Biopolymer Treated Clay. Constr. Build. Mater. 2023, 385, 131458. [Google Scholar] [CrossRef]
- Azimi, M.; Soltani, A.; Mirzababaei, M.; Jaksa, M.B.; Ashwath, N. Biopolymer Stabilization of Clayey Soil. J. Rock Mech. Geotech. Eng. 2024, 16, 2801–2812. [Google Scholar] [CrossRef]
- Armistead, S.J.; Smith, C.C.; Staniland, S.S. Sustainable Biopolymer Soil Stabilization in Saline Rich, Arid Conditions: A ‘Micro to Macro’ Approach. Sci. Rep. 2022, 12, 2880. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Che, W.; Lan, X.; Hu, M.; Qi, M.; Song, Z.; Sun, M.; Jing, M.; Qian, W.; Qi, C. Performance and Mechanism of a Novel Biopolymer Binder for Clayey Soil Stabilization: Mechanical Properties and Microstructure Characteristics. Transp. Geotech. 2023, 42, 101044. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Reddy, N.G.; Nongmaithem, R.S.; Basu, D.; Rao, B.H. Application of Biopolymers for Improving the Strength Characteristics of Red Mud Waste. Environ. Geotech. 2020, 9, 340–359. [Google Scholar] [CrossRef]
- Feng, M.; Wang, J.; Liu, S.; Wanatowski, D.; Ren, Y. Coupling Effect of Curing Temperature and Relative Humidity on the Unconfined Compressive Strength of Xanthan Gum-Treated Sand. Constr. Build. Mater. 2024, 448, 138224. [Google Scholar] [CrossRef]
- Fatehi, H.; Ong, D.E.L.; Yu, J.; Chang, I. Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review. Geosciences 2021, 11, 291. [Google Scholar] [CrossRef]
- Vishweshwaran, M.; Sujatha, E.R. Experimental Investigation and Numerical Modeling of a Cross-Linked Biopolymer Stabilized Soil. Arab. J. Geosci. 2021, 14, 1952. [Google Scholar] [CrossRef]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.-C. Soil Strengthening Using Thermo-Gelation Biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T.; Blondet, F.P. Biopolymers as Supports for Heterogeneous Catalysis: Focus on Chitosan, a Promising Aminopolysaccharide. In Ion Exchange and Solvent Extraction; CRC Press: Boca Raton, FL, USA, 2007; pp. 151–292. ISBN 0-429-12769-3. [Google Scholar]
- Indian Roads Congress. IRC: 37: 2018-Guidelines for the Design of Flexible Pavements; IRC: New Delhi, India, 2018. [Google Scholar]
- Khaleghi, M.; Heidarvand, M. A Novel Study on Hydro-Mechanical Characteristics of Biopolymer-Stabilized Dune Sand. J. Clean. Prod. 2023, 398, 136518. [Google Scholar] [CrossRef]
- Hamza, M.; Nie, Z.; Aziz, M.; Ijaz, N.; Fang, C.; Ghani, M.U.; Ijaz, Z.; Noshin, S.; Salman, M. Geotechnical Properties of Problematic Expansive Subgrade Stabilized with Guar Gum Biopolymer. Clean Techn Env. Policy 2023, 25, 1699–1719. [Google Scholar] [CrossRef]
- El Sawwaf, M.A.; Shahien, M.M.; Nasr, A.M.; Habib, M.S. Improvement of Collapsible Soil Characteristics Using Environmentally Friendly Materials. Indian Geotech. J. 2023, 53, 1202–1212. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kato, K.; Shimauchi, A.; Xu, P.; Fujita, K.-I.; Tanaka, T.; Tarui, Y.; Hirasawa, E. Physicochemical Properties of Cross-Linked Poly-γ-Glutamic Acid and Its Flocculating Activity against Kaolin Suspension. J. Biosci. Bioeng. 2005, 99, 130–135. [Google Scholar] [CrossRef]
- Smitha, S.; Rangaswamy, K. Experimental Study on Unconfined Compressive and Cyclic Triaxial Test Behavior of Agar Biopolymer–Treated Silty Sand. Arab. J. Geosci. 2021, 14, 590. [Google Scholar] [CrossRef]
- Friebele, E.; Shimoyama, A.; Ponnamperuma, C. Adsorption of Protein and Non-Protein Amino Acids on a Clay Mineral: A Possible Role of Selection in Chemical Evolution. J. Mol. Evol. 1980, 16, 269–278. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Awraheem, M.H.; Khalaf, M.M. Geotechnical Properties of a Low-Plasticity Clay with Biopolymer. J. Mater. Civ. Eng. 2018, 30, 04018170. [Google Scholar] [CrossRef]
- Vishweshwaran, M.; Sujatha, E.R. Geotechnical Investigation of Gelatin Biopolymer on Cohesive Soils. Sustainability 2023, 15, 2041. [Google Scholar] [CrossRef]
- Nikolic, G. Fourier Transforms: New Analytical Approaches and FTIR Strategies; InTech: Rijeka, Croatia, 2011; ISBN 953-307-232-6. [Google Scholar]
- Ait-Akbour, R.; Boustingorry, P.; Leroux, F.; Leising, F.; Taviot-Guého, C. Adsorption of PolyCarboxylate Poly(Ethylene Glycol) (PCP) Esters on Montmorillonite (Mmt): Effect of Exchangeable Cations (Na+, Mg2+ and Ca2+) and PCP Molecular Structure. J. Colloid Interface Sci. 2015, 437, 227–234. [Google Scholar] [CrossRef]
Soil | C (%) | O (%) | Ca (%) | Si (%) | Al (%) | Fe (%) | Na (%) | Mg (%) | Trace Elements |
---|---|---|---|---|---|---|---|---|---|
High compressible clay (HCC) | 15.85 | 60.09 | - | 11.6 | 11.31 | - | - | - | 1.15 |
LCC | - | 65.08 | - | 17.58 | 9.28 | 3.89 | 1.06 | 1.58 | 1.53 |
Low compressible silt (LCS) | 14.82 | 54.69 | 13.5 | 6.93 | 3.11 | 2.64 | - | 1.78 | 2.53 |
AG | 46.98 | 51.38 | - | - | - | - | - | - | 1.64 |
Soil Type | Soil | Soil + 0.5%AG | Soil + 1%AG | Soil + 1.5%AG | Soil + 2%AG | |||||
---|---|---|---|---|---|---|---|---|---|---|
1D | 28D | 1D | 28D | 1D | 28D | 1D | 28D | 1D | 28D | |
HCC | 6.1 | 6.1 | 6.07 | 6.06 | 6.05 | 6.05 | 6.03 | 6.02 | 6.02 | 6.01 |
LCC | 6.8 | 6.8 | 6.78 | 6.77 | 6.76 | 6.75 | 6.75 | 6.73 | 6.72 | 6.70 |
LCS | 7.05 | 7.05 | 7.04 | 7.04 | 7.02 | 7.02 | 7.0 | 6.99 | 6.97 | 6.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishweshwaran, M.; Sujatha, E.R.; Rehman, A.U.; Moghal, A.A.B. Efficacy of Acacia Gum Biopolymer in Strength Improvement of Silty and Clay Soils under Varying Curing Conditions. Polymers 2024, 16, 2831. https://doi.org/10.3390/polym16192831
Vishweshwaran M, Sujatha ER, Rehman AU, Moghal AAB. Efficacy of Acacia Gum Biopolymer in Strength Improvement of Silty and Clay Soils under Varying Curing Conditions. Polymers. 2024; 16(19):2831. https://doi.org/10.3390/polym16192831
Chicago/Turabian StyleVishweshwaran, Muralidaran, Evangelin Ramani Sujatha, Ateekh Ur Rehman, and Arif Ali Baig Moghal. 2024. "Efficacy of Acacia Gum Biopolymer in Strength Improvement of Silty and Clay Soils under Varying Curing Conditions" Polymers 16, no. 19: 2831. https://doi.org/10.3390/polym16192831
APA StyleVishweshwaran, M., Sujatha, E. R., Rehman, A. U., & Moghal, A. A. B. (2024). Efficacy of Acacia Gum Biopolymer in Strength Improvement of Silty and Clay Soils under Varying Curing Conditions. Polymers, 16(19), 2831. https://doi.org/10.3390/polym16192831