Methallylsulfonate Polymeric Antiscalants for Application in Thermal Desalination Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Copolymere
2.2. Other Materials
2.3. Description of Experimental Units
2.3.1. Pressure Measurement and Control (P-MAC) Test Unit
2.3.2. High Temperature-High Pressure Test Unit
3. Results
3.1. Series One: Preliminary Evaluation Tests on the P-MAC Unit
3.2. Series Two: Evaluation Tests on the High-Temperature–High-Pressure Unit
3.2.1. Series 2, Group 1: Direct Comparison of the Performances of the Nine Antiscalants
3.2.2. Series 2, Group 2: Impact of Other Ions on Antiscalant Performance
3.2.3. Series 2, Group 3: Comparison of Antiscalants on Synthetic Concentrated Seawater
3.2.4. Series 2, Group 4: Comparison of Antiscalants in Concentrated Seawater
3.3. Series Three: Performance of Low Molar Mass Antiscalants in the P-MAC Unit
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fellows, C.M.; Alhamzah, A.A.; East, C.P. Scale Control in Thermal Desalination. In Water-Formed Deposits: Fundamentals and Mitigation Strategies; Amjad, Z., Demadis, K., Eds.; Elsevier: London, UK, 2022; pp. 457–476. [Google Scholar]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, J.; Liu, Z. Controlling calcium sulfate scale in process of multi-stage distillation desalination of seawater. Sea-Lake Salt Chem. Ind. 2005, 34, 6–8. [Google Scholar]
- Glater, J.; Dooly, R.L.; McCutchan, J.W. Calcium Sulfate Scale Control in High Temperature Desalting Processes; US Department of Interior: Washington DC, USA, 1973; Report UCAL-ENG 7364.
- Sheikholeslami, R.; Ong, H.W.K. Kinetics and thermodynamics of calcium carbonate and calcium sulfate at salinities up to 1.5 M. Desalination 2003, 157, 217–234. [Google Scholar] [CrossRef]
- Fellows, C.M.; Al-Hamzah, A. Thermal Desalination: Current Challenges. In Mineral Scales and Deposits: Scientific and Technological Approaches; Amjad, Z., Demadis, K., Eds.; Elsevier: London, UK, 2015; pp. 583–602. [Google Scholar]
- Yu, B.; Miao, S.; Ding, M.; Ren, Y. Solubility and Physical Properties of α-Calcium Sulfate Hemihydrate in NaCl and Glycerol Aqueous Solutions at 303.15, 323.15, and 343.15 K. J. Chem. Eng. Data 2021, 66, 3686–3694. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Tian, M.; Sadighi, A.; Meng, T.; Yang, H.; Butscher, C. Experimental Data on Solubility of the Two Calcium Sulfates Gypsum and Anhydrite in Aqueous Solutions. Data 2022, 7, 140. [Google Scholar] [CrossRef]
- Reigl, S.; Van Driessche, A.E.S.; Mehringer, J.; Koltzenburg, S.; Kunz, W.; Kellermeier, M. Revisiting the Roles of Salinity, Temperature and Water Activity in Phase Selection during Calcium Sulfate Precipitation. CrystEngComm 2022, 24, 1529–1536. [Google Scholar] [CrossRef]
- Solomon, D.H.; Rolfe, P.F. Polymers that inhibit the deposition of calcium sulfate. Desalination 1966, 1, 260–266. [Google Scholar] [CrossRef]
- Amjad, Z. Calcium sulfate dihydrate (gypsum) scale formation on heat exchanger surfaces: The influence of scale inhibitors. J. Coll. Interf. Sci. 1988, 123, 523–536. [Google Scholar] [CrossRef]
- Oner, M.; Dogan, O.G.; Oner, G. The influence of polyelectrolytes architecture on calcium sulfate dihydrate growth retardation. J. Crystal Growth 1998, 186, 427–437. [Google Scholar] [CrossRef]
- Xue, X.; Change, F.; Li, N.; Zheng, F.; Yang, W.; Yang, X. Performance of a non-phosphorus antiscalant on inhibition of calcium-sulfate precipitation. Water Sci. Technol. 2012, 66, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Popov, K.; Rudakova, G.; Larchenko, V.; Tusheva, M.; Kamagurov, S.; Dikareva, J.; Kovaleva, N. A comparative performance evaluation of some novel (Green) and traditional antiscalants in calcium sulfate scaling. Adv. Mater. Sci. Eng. 2016, 2016, 7635329. [Google Scholar] [CrossRef]
- Zhang, S.; Qu, H.; Yang, Z.; Fu, C.-E.; Tian, Z. Scale inhibition performance and mechanism of sulfamic/amino acids modified polyaspartic acid against calcium sulfate. Desalination 2017, 419, 152–159. [Google Scholar] [CrossRef]
- Singh, Y.B.; Ng, K.C. Elucidation of dual-mode inhibition mechanism of a typical polymer-based antiscalant on Red seawater for thermal desalination at higher temperatures and higher concentration factors. J. Petrol. Sci. Eng. 2019, 183, 10638. [Google Scholar] [CrossRef]
- Reigl, S.; Van Driessche, A.E.S.; Wagner, E.; Montes-Hernandez, G.; Mehringer, J.; Koltzenburg, S.; Kunz, W.; Kellermeier, M. Toward more sustainable hydraulic binders: Controlling calcium sulfate phase selection via specific additives. ACS Sustain. Chem. Eng. 2023, 11, 8450–8461. [Google Scholar] [CrossRef]
- Al-Hamzah, A.; Wallace, A.G.; East, C.P.; Fellows, C.M.; Doherty, W.O.S. Inhibition by poly(acrylic acid) and morphological changes in calcium carbonate and calcium carbonate/calcium sulfate crystallization on silica fibers. Ind. Eng. Chem. Res. 2014, 53, 8793–8803. [Google Scholar] [CrossRef]
- Emmons, D.H. Low Molecular Weight Polyvinyl Sulfonate for Low pH Barium Sulfate Scale Control. United States Patent US4710303A, 1 December 1987. [Google Scholar]
- Falk, D.O.; Dormish, F.L.; Beazley, P.M.; Thompson, R.G. Polyvinyl Sulfonate Scale Inhibitor. United States Patent US5092404A, 3 March 1992. [Google Scholar]
- Crossman, M.; Holt, S.P.R. Scale Control Composition for High Scaling Environments. United States Patent 6995120B2, 7 February 2006. [Google Scholar]
- Shen, L.; Sippola, H.; Li, X.; Lindberg, D.; Taskinen, P. Thermodynamic modeling of calcium sulfate hydrates in the CaSO4-H2O system from 273.15 to 473.15 K with extension to 548.15 K. J. Chem. Eng. Data 2019, 64, 2697–2709. [Google Scholar] [CrossRef] [PubMed]
- Pitzer, K.S. Theoretical considerations of solubility with emphasis on mixed aqueous electrolytes. Pure Appl. Chem. 1986, 58, 1599–1610. [Google Scholar] [CrossRef]
- Zannoni, R.; Resini, I.; Liberti, L.; Santori, M.; Boari, G. Desulphation pretreatment for 138 °C (290 °F) operation and performance test of a 1 MGD plant at Doha East (Kuwait) power station. Desalination 1987, 66, 431–442. [Google Scholar] [CrossRef]
- Amjad, Z.; Zuhl, R.W.; Zibrida, J.F. Factors influencing the precipitation of calcium-inhibitor salts in industrial water systems. In Proceedings of the Association of Water Technologies Annual Convention, Phoenix, AZ, USA, 3–6 November 2003. [Google Scholar]
- Schweins, R.; Huber, K. Collapse of sodium polyacrylate chains in calcium salt solutions. Eur. Phys. J. E 2001, 5, 117–126. [Google Scholar] [CrossRef]
- Amjad, Z.; Zuhl, R.W.; Zibrida, J.F. The impact of thermal stress on deposit control polymer performance. In Proceedings of the Association of Water Technologies Annual Convention & Exposition, Uncasville, CT, USA, 19–22 September 2013. [Google Scholar]
- Senogles, E.; Doherty, W.O.S.; Crees, O.L.C. Scale Inhibitors. In Encyclopedia of Polymer Science and Technology, 2nd ed.; Mark, H.F., Bikales, N., Menges, G., Gaylord, N., Kroschwitz, J.I., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 1996; pp. 7587–7594. [Google Scholar]
Sample Number | w/w % SMS | Molar Mass/103 (Mm) Degussa/RI/UV | Molar Mass/103 (Mn) |
---|---|---|---|
1 | 9 | 2.5/2.9/2.3 | 1.6/1.5/1.2 |
2 | 18 | 2.0/2.6/1.8 | 1.5/1.5/0.9 |
3 | 28 | 2.5// | 1.6// |
4 | 9 | 5.0/5.9/3.0 | 3.0/3.4/1.3 |
5 | 19 | 5.0/5.5/4.3 | 3.0/2.5/1.7 |
6 | 28 | 4.5/5.0/3.4 | 3.0/2.1/1.6 |
7 | 9 | 9.0/10.9/8.7 | 6.0/6.5/2.9 |
8 | 19 | 9.5// | 6.0// |
9 | 30 | 7.0/8.7/5.8 | 5.0/5.7/2.0 |
Parameter | Value | Unit |
---|---|---|
TDS | 44,500 | ppm |
pH | 8.1 | |
Chloride (Cl−) | 23,500 | ppm |
Sodium (Na+) | 12,400 | ppm |
Sulfate (SO42−) | 3290 | ppm |
Magnesium (Mg2+) | 1530 | ppm |
Calcium (Ca2+) | 450 | ppm |
Potassium (K+) | 470 | ppm |
Hydrogen carbonate (HCO3−) | 98 | ppm |
Antiscalant | 1 | 2 | 3 | 6 |
---|---|---|---|---|
Time to reach pressure drop of 2 psi (min) | 26.5 | 28.5 | 45 | 8.2 |
14.37 | 28 | 7.03 | 3.02 | |
11.18 | 13 | 4.75 | 3 | |
5.5 | 18.5 | 4.02 | 3 | |
4.0 | 7.83 | 2.33 | 2.82 | |
3.37 | 7.78 | 2.03 | 2.23 | |
3.0 | 6.5 | 2.06 | ||
2.93 | 3 | 2 | ||
2.72 | 2.33 | |||
2.5 | ||||
2.02 | ||||
Average | 7.1 | 11.7 | 10.9 | 3.3 |
Standard Deviation | 7.2 | 9.3 | 15.4 | 1.9 |
Maximum | 26.5 | 28.5 | 45 | 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hamzah, A.A.; Fellows, C.M.; Hamed, O.A. Methallylsulfonate Polymeric Antiscalants for Application in Thermal Desalination Processes. Polymers 2024, 16, 2838. https://doi.org/10.3390/polym16192838
Al-Hamzah AA, Fellows CM, Hamed OA. Methallylsulfonate Polymeric Antiscalants for Application in Thermal Desalination Processes. Polymers. 2024; 16(19):2838. https://doi.org/10.3390/polym16192838
Chicago/Turabian StyleAl-Hamzah, Ali A., Christopher M. Fellows, and Osman A. Hamed. 2024. "Methallylsulfonate Polymeric Antiscalants for Application in Thermal Desalination Processes" Polymers 16, no. 19: 2838. https://doi.org/10.3390/polym16192838
APA StyleAl-Hamzah, A. A., Fellows, C. M., & Hamed, O. A. (2024). Methallylsulfonate Polymeric Antiscalants for Application in Thermal Desalination Processes. Polymers, 16(19), 2838. https://doi.org/10.3390/polym16192838