Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. PI Resin Synthesis and Film Preparation
3. Results and Discussion
3.1. PI Resin Synthesis and Film Preparation
3.2. Thermal and Dielectric Properties
3.3. Optical Properties
3.4. AO Erosion Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater. 2019, 31, 1807738. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.H.; Wang, H.L.; Wu, H.; An, Y.C.; Zhi, X.X.; Liu, J.G. Preparation and characterization of transparent polyimide nanocomposite films with potential applications as spacecraft antenna substrates with low dielectric features and good sustainability in atomic-oxygen environments. Nanomaterials 2021, 11, 1886. [Google Scholar] [CrossRef]
- Smith, T.; Bingham, C.; Stewart, P.; Allarton, R.; Stewart, J. Energy harvesting and power network architectures for the multibody advanced airship for transport high altitude cruiser-feeder airship concept. Proc. IMechE. Part G J. Aerospace Eng. 2012, 227, 586–598. [Google Scholar] [CrossRef]
- Razdan, A.K.; Parekh, B.; Debles, T. Takacs GA XPS surface characterization of UV photo-oxidized colorless polyimides. J. Adhesion Sci. Technol. 2012, 26, 18–19. [Google Scholar]
- Dever, J.A.; Miller, S.K.; Sechkar, E.A.; Wittberg, T.N. Space environment exposure of polymer films on the materials international space station experiment: Results from MISSE1 and MISSE 2. High Perform. Polym. 2008, 20, 371–387. [Google Scholar] [CrossRef]
- Toto, E.; Santonicola, M.G.; Laurenzi, S.; Circi, C.; Pellefrini, R.C.; Cavallini, E.; Serra, E.; Scaglione, S.; Zola, D. UV-VIS-NIR optical properties of micrometric-thick polyimide membranes for lightweight devices in space. Opt. Mater. 2023, 146, 114604. [Google Scholar] [CrossRef]
- Fay, C.C.; Stoakley, D.M.; St Clair, A.K. Molecularly oriented films for space applications. High Perform. Polym. 1999, 11, 145–156. [Google Scholar] [CrossRef]
- Reed, K.; Willenberg, H.J. Early commercial demonstration of space solar power using ultra-lightweight arrays. Acta Astronaut. 2009, 65, 1250–1260. [Google Scholar] [CrossRef]
- Ni, H.; Liu, J.; Wang, Z.; Yang, S. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J. Ind. Eng. Chem. 2015, 28, 16–27. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Ren, X.; Zhang, Y.; Wang, X.; Yang, C.; Han, S.; Yu, H.; Liu, J. Preparation and properties of pale-colored and optically transparent fluoro-containing polyimide films with low solar absorptivity and enhanced high-temperature dimensional stability for potential applications in space environments. J. Appl. Polym. Sci. 2024, 141, e55606. [Google Scholar] [CrossRef]
- Huang, C.; Liu, J.; Zhao, L.; Hu, N. Advances in atomic oxygen resistant polyimide composite films. Compos. Part A Appl. Sci. Manuf. 2023, 168, 107459. [Google Scholar] [CrossRef]
- Song, G.; Li, X.; Jiang, Q.; Mu, J.; Jiang, Z. A novel structural polyimide material with synergistic phosphorus and POSS for atomic oxygen resistance. RSC. Adv. 2015, 5, 11980–11988. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Yang, D.; Yang, Y.; Yu, Q.; Che, L.; Liu, J. Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS: Preparation and characterization. Polymers 2019, 11, 1013. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Wu, X.; Zhong, M.; Yan, D.; Huang, W. The atomic oxygen resistant study of a transparent polyimide film containing phosphorus and fluorine. Appl. Surf. Sci. 2023, 631, 157562. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, K.; Zhan, M.S. Atomic oxygen resistant phosphorus-containing polyimides for LEO environment. J. Mater. Sci. 2012, 47, 4904–4913. [Google Scholar] [CrossRef]
- Yokota, K.; Abe, S.; Tagawa, M.; Iwata, M.; Miyazaki, E.; Ishizawa, J.; Kimoto, Y.; Yokota, R. Degradation property of commercially available Si-containing polyimide in simulated atomic oxygen environments for low earth orbit. High Perform. Polym. 2010, 22, 237–251. [Google Scholar] [CrossRef]
- Lei, X.F.; Chen, Y.; Zhang, H.P.; Li, X.J.; Yao, P.; Zhang, Q.Y. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater. Interfaces 2013, 5, 10207–10220. [Google Scholar] [CrossRef]
- Lv, M.; Wang, Q.; Wang, T.; Liang, Y. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Compos. Part B Eng. 2015, 77, 215–222. [Google Scholar] [CrossRef]
- Gong, Y.; Tian, H.; Niu, B.; Xing, Y. Molecular design of polyimide films for combining atomic oxygen erosion through combing experiments with simulations: A state-of-the-art review. Polym. Degrad. Stab. 2024, 220, 110645. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, L.; Zou, L.; Ayubi, B.I.; Wang, Y. Mechanism analysis and potential applications of atomic oxygen erosion protection for Kapton-type polyimide based on molecular dynamics simulations. Polymers 2024, 16, 1687. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, S.J.; Vij, V.; Marchant, D.; Minton, T.K.; Brunsvold, A.L.; Wright, M.E.; Petteys, B.J.; Guenthner, A.J.; Yandek, G.R.; Mabry, J.M. Polyhedral oligomeric silsesquioxane (POSS) polyimides as space-survivable materials. Proc. SPIE 2006, 6308, 630804. [Google Scholar]
- De Groh, K.K.; Banks, B.A.; Mccarthy, C.E.; Rucker, R.N.; Robert, L.M.; Berger, L.A. MISSE 2 PEACE polymers atomic oxygen erosion experiment on the international space station. High Perform. Polym. 2008, 20, 388–409. [Google Scholar] [CrossRef]
- Tomczak, S.J.; Vij, V.; Minton, T.K.; Brunsvold, A.L.; Marchant, D.; Wright, M.E.; Petteys, B.J.; Guenthner, A.J.; Yandek, G.R.; Mabry, J.M. Comparisons of polyhedral oligomeric silsesquioxane polyimides as space-survivable materials. In Polymer Durability and Radiation Effects; Celina, M.C., Assink, R.A., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 140–152. [Google Scholar]
- Tomczak, S.J.; Wright, M.E.; Guenthner, A.J.; Pettys, B.J.; Brunsvold, A.L.; Knight, C.; Minton, T.K.; Vij, V.; McGrath, L.M.; Mabry, J.M. Space survivability of main-chain and side-chain POSS-Kapton polyimides. AIP Conf. Proc. 2009, 1087, 505–518. [Google Scholar]
- Minton, T.K.; Wright, M.E.; Tomczak, S.J.; Marquez, S.A.; Shen, L.; Brunsvold, A.L.; Cooper, R.; Zhang, J.; Vij, V.; Guenthner, A.J.; et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interf. 2012, 4, 492–502. [Google Scholar] [CrossRef]
- Qian, M.; Murray, V.J.; Wei, W.; Marshall, B.C.; Minton, T.K. Resistance of POSS polyimide blends to hyperthermal atomic oxygen attack. ACS Appl. Mater. Interf. 2016, 8, 33982–33992. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Xuan, X.Y. Hyperthermal atomic oxygen durable transparent silicon-reinforced polyimide. High Perform. Polym. 2019, 31, 831–842. [Google Scholar] [CrossRef]
- Wright, M.E.; Petteys, B.J.; Guenthner, A.J.; Fallis, S.; Yandek, G.R.; Tomczak, S.J.; Minton, T.K.; Brunsvold, A. Chemical modification of fluorinated polyimides: New thermally curing hybrid polymers with POSS. Macromolecules 2006, 39, 4710–4718. [Google Scholar] [CrossRef]
- Brandhorst, H.W., Jr. Polyhedral oligomeric silsesquioxanes in space applications. In Applications of Polyhedral Oligomeric Silsesquioxanes; Hartmann-Thompson, C., Ed.; Springer Science+Business Media: New York, NY, USA, 2011; pp. 327–361. [Google Scholar]
- Poe, G.; Farmer, B. Polyimide Polymer with Oligomeric Silsesquioxane. US Patent 7619042, 17 November 2009. [Google Scholar]
- Wright, J.S.; Jones, A.; Farmer, B.; Rodman, D.L.; Minton, T.K. POSS-enhanced colorless organic/inorganic nanocomposite (CORIN®) for atomic oxygen resistance in low earth orbit. CEAS Space J. 2021, 13, 399–413. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Guo, Y.; Yang, Y.; Yu, Q.; Liu, J.; Wu, B.; Lv, F. Atomic oxygen-resistant polyimide composite films containing nanocaged polyhedral oligomeric silsesquioxane components in matrix and fillers. Polymers 2021, 11, 141. [Google Scholar] [CrossRef]
- Miyazaki, E.; Tagawa, M.; Yokota, K.; Yokota, R.; Kimoto, Y.; Ishizawa, J. Investigation into tolerance of polysiloxane-block-polyimide film against atomic oxygen. Acta Astronaut. 2010, 66, 922–928. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, X.; Zhang, Y.; Yang, C.; Han, S.; Qi, Y.; Liu, J. Preparation and properties of atomic-oxygen resistant polyimide films based on multi-ring fluoro-containing dianhydride and phosphorus-containing diamine. Polymers 2024, 16, 343. [Google Scholar] [CrossRef] [PubMed]
- Auman, B.C.; Higley, D.P.; Scherer, K.V., Jr.; McCord, E.F.; Shaw, W.H., Jr. Synthesis of a new fluoroalkylated diamine, 5-[1H,1 H-2-bis(trifluoromethyl)- heptafluoropentyl]-1,3-phenylenediamine, and polyimides prepared therefrom. Polymer 1995, 36, 651–656. [Google Scholar] [CrossRef]
- Song, G.; Zhang, X.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C.; Dang, G. Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior. Polymer 2014, 55, 3242–3246. [Google Scholar] [CrossRef]
- Park, H.; Choi, H.; Kim, J.; Yoo, S.; Mun, H.J.; Shin, T.J.; Won, J.C.; Kim, H.Y.; Kim, Y.H. Density functional theory-based approach for dielectric constant estimation of soluble polyimide insulators. J. Phys. Chem. B 2024, 128, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Terui, Y.; Ando, S. Coefficients of molecular packing and intrinsic birefringence of aromatic polyimides estimated using refractive indices and molecular polarizabilities. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 2354–2366. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Guo, Y.D.; Qi, H.R.; An, Y.C.; Jia, Y.J.; Tan, Y.Y.; Liu, J.G.; Wu, B.H. Preparation and properties of intrinsically atomic-oxygen resistant polyimide films containing polyhedral oligomeric silsesquioxane (POSS) in the side chains. Polymers 2020, 12, 2865. [Google Scholar] [CrossRef]
- Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corro. Sci. 2015, 98, 560–572. [Google Scholar] [CrossRef]
- Li, X.; Al-Ostaz, A.; Jaradat, M.; Rahmani, F.; Nouranian, S.; Rushing, G.; Manasrah, A.; Alkhateb, H.; Finckenor, M.; Lichtenhan, J. Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur. Polym. J. 2017, 92, 233–249. [Google Scholar] [CrossRef]
PI | 6FDA (g, mol) | 6FCDA (g, mol) | BDAF (g, mol) | DABA-POSS (g, mol) | NMP (g) | Ac2O (g) | Py (g) |
---|---|---|---|---|---|---|---|
6FPI-1 | 22.2120, 0.05 | NA a | 23.3303, 0.045 | 5.0436, 0.005 | 151.8 | 30.6 | 19.8 |
6FPI-2 | 22.2120, 0.05 | NA | 20.7380, 0.04 | 10.0871, 0.01 | 158.8 | 30.6 | 19.8 |
6FPI-3 | 22.2120, 0.05 | NA | 17.3681, 0.0335 | 16.6437, 0.0165 | 168.7 | 30.6 | 19.8 |
6FCPI-1 | NA | 22.9110, 0.05 | 23.3303, 0.045 | 5.0436, 0.005 | 153.9 | 30.6 | 19.8 |
6FCPI-2 | NA | 22.9110, 0.05 | 20.7380, 0.04 | 10.0871, 0.01 | 161.2 | 30.6 | 19.8 |
6FCPI-3 | NA | 22.9110, 0.05 | 17.3681, 0.0335 | 16.6437, 0.0165 | 170.8 | 30.6 | 19.8 |
PI-ref1 | 22.2120, 0.05 | NA | 25.9225, 0.05 | NA | 144.4 | 30.6 | 19.8 |
PI-ref2 | NA | 22.9110, 0.05 | 25.9225, 0.05 | NA | 146.5 | 30.6 | 19.8 |
PI | Molecular Weight a | Solubility b | ||||||
---|---|---|---|---|---|---|---|---|
Mn (×104 g/mol) | Mw (×104 g/mol) | PDI | NMP | DMAc | DMF | DMSO | CPA | |
6FPI-1 | 8.47 | 14.67 | 1.73 | ++ | ++ | ++ | ++ | + |
6FPI-2 | 5.05 | 9.51 | 1.88 | ++ | ++ | ++ | ++ | + |
6FPI-3 | 3.30 | 6.09 | 1.84 | ++ | ++ | ++ | ++ | − |
6FCPI-1 | 7.93 | 14.34 | 1.81 | ++ | ++ | ++ | + | − |
6FCPI-2 | 6.75 | 12.59 | 1.86 | ++ | ++ | ++ | + | − |
6FCPI-3 | 4.60 | 9.05 | 1.97 | ++ | ++ | ++ | − | − |
PI-ref1 | 29.64 | 37.59 | 1.27 | ++ | ++ | ++ | ++ | ++ |
PI-ref2 | 9.92 | 15.30 | 1.54 | ++ | ++ | ++ | + | − |
Samples | Tg,DSC a (°C) | Tg,DMA a (°C) | T5% a (°C) | Tmax a (°C) | Rw750 a (%) | CTE a (×10−6/K) | Dk c | Df c |
---|---|---|---|---|---|---|---|---|
6FPI-1 | 261.7 | 257.4 | 509.7 | 560.3 | 54.3 | 69.2 | 2.84 | 0.0076 |
6FPI-2 | 242.1 | 246.8 | 483.0 | 553.0 | 50.2 | 90.9 | 2.71 | 0.0068 |
6FPI-3 | 222.0 | 235.2 | 485.3 | 552.3 | 46.1 | 94.5 | 2.68 | 0.0068 |
6FCPI-1 | 297.3 | 300.9 | 477.4 | 502.5 (555.0 b) | 54.2 | 58.6 | 2.86 | 0.0099 |
6FCPI-2 | 280.6 | 288.5 | 472.5 | 505.4 (560.5) | 51.2 | 62.2 | 2.83 | 0.0085 |
6FCPI-3 | 260.7 | 282.3 | 463.3 | 502.2 (560.0) | 50.6 | 91.9 | 2.80 | 0.0083 |
PI-ref1 | 264.6 | 273.5 | 544.5 | 566.2 | 55.3 | 55.4 | 2.77 | 0.0071 |
PI-ref2 | 311.5 | 312.4 | 516.8 | 569.0 | 55.4 | 50.5 | 2.92 | 0.0140 |
Samples | λcut a (nm) | T450 a (%) | nTE a | nTM a | nav a | Δn a | L* a | a* a | b* a | Haze (%) |
---|---|---|---|---|---|---|---|---|---|---|
6FPI-1 | 348 | 78.5 | 1.5578 | 1.5514 | 1.5557 | 0.0064 | 95.16 | −1.76 | 7.81 | 1.01 |
6FPI-2 | 342 | 70.7 | 1.5454 | 1.5399 | 1.5436 | 0.0055 | 94.66 | −1.50 | 9.47 | 3.44 |
6FPI-3 | 357 | 52.5 | 1.5376 | 1.5364 | 1.5372 | 0.0012 | 92.43 | −1.70 | 19.92 | 5.34 |
6FCPI-1 | 369 | 74.9 | 1.5738 | 1.5453 | 1.5644 | 0.0285 | 94.86 | −1.93 | 8.64 | 2.05 |
6FCPI-2 | 367 | 69.3 | 1.5638 | 1.5420 | 1.5566 | 0.0218 | 94.44 | −1.68 | 11.51 | 2.86 |
6FCPI-3 | 367 | 62.6 | 1.5504 | 1.5364 | 1.5457 | 0.0140 | 93.54 | −1.18 | 13.76 | 3.98 |
PI-ref1 | 350 | 85.5 | 1.5701 | 1.5520 | 1.5641 | 0.0181 | 95.89 | −2.29 | 5.37 | 0.24 |
PI-ref2 | 370 | 84.3 | 1.5873 | 1.5516 | 1.5755 | 0.0357 | 95.71 | −2.54 | 6.00 | 0.78 |
Samples | Relative Atomic Concentration (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Unexposed Samples | AO Exposed Samples | |||||||||
C1s | N1s | O1s | F1s | Si2p | C1s | N1s | O1s | F1s | Si2p | |
6FDA-1 | 66.38 | 3.85 | 12.37 | 14.7 | 2.14 | 14.27 | 1.38 | 56.37 | 3.21 | 23.53 |
6FDA-2 | 63.37 | 3.39 | 13.57 | 16.73 | 2.93 | 13.7 | 1.36 | 56.67 | 2.95 | 23.32 |
6FDA-3 | 64.15 | 4.12 | 17.84 | 6.20 | 7.69 | 15.68 | 2.20 | 55.58 | 2.79 | 20.45 |
6FCDA-1 | 67.64 | 3.75 | 16.00 | 8.5 | 3.54 | 15.03 | 1.45 | 55.46 | 3.76 | 21.27 |
6FCDA-2 | 68.85 | 2.64 | 18.26 | 3.97 | 4.81 | 15.96 | 0.95 | 56.06 | 2.60 | 22.66 |
6FCDA-3 | 71.97 | 2.27 | 15.66 | 4.72 | 2.33 | 18.07 | 1.28 | 52.37 | 3.73 | 20.20 |
Samples | W1 a (mg) | W2 a (mg) | ΔW a (mg) | Ey b (10−24 cm3/Atom) |
---|---|---|---|---|
6FPI-1 | 16.48 | 15.21 | 1.27 | 0.51 |
6FPI-2 | 14.40 | 13.56 | 0.84 | 0.34 |
6FPI-3 | 22.31 | 21.89 | 0.42 | 0.17 |
6FCPI-1 | 14.08 | 12.57 | 1.51 | 0.61 |
6FCPI-2 | 14.66 | 13.56 | 1.10 | 0.44 |
6FCPI-3 | 11.60 | 11.18 | 0.42 | 0.17 |
PI-ref1 | NA c | NA | NA | 2.88 |
PI-ref2 | NA | NA | NA | 2.77 |
Kapton® | NA | NA | NA | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, X.; Yuan, S.; Ren, X.; Yang, C.; Han, S.; Qi, Y.; Li, D.; Liu, J. Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine. Polymers 2024, 16, 2845. https://doi.org/10.3390/polym16192845
Wang Z, Wang X, Yuan S, Ren X, Yang C, Han S, Qi Y, Li D, Liu J. Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine. Polymers. 2024; 16(19):2845. https://doi.org/10.3390/polym16192845
Chicago/Turabian StyleWang, Zhenzhong, Xiaolei Wang, Shunqi Yuan, Xi Ren, Changxu Yang, Shujun Han, Yuexin Qi, Duanyi Li, and Jingang Liu. 2024. "Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine" Polymers 16, no. 19: 2845. https://doi.org/10.3390/polym16192845
APA StyleWang, Z., Wang, X., Yuan, S., Ren, X., Yang, C., Han, S., Qi, Y., Li, D., & Liu, J. (2024). Preparation and Characterization of Atomic Oxygen-Resistant, Optically Transparent and Dimensionally Stable Copolyimide Films from Fluorinated Monomers and POSS-Substituted Diamine. Polymers, 16(19), 2845. https://doi.org/10.3390/polym16192845