Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanocellulose
2.2. Preparation of Composite Materials
2.3. Material Characterization
2.4. Finite Element Method
2.5. Bone Model Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sabri, H.; Cowan, B.; Kapralos, B.; Porte, M.; Backstein, D.; Dubrowskie, A. Serious games for knee replacement surgery procedure education and training. Procedia Soc. Behav. Sci. 2010, 2, 3483–3488. [Google Scholar] [CrossRef]
- Plaskos, C.; Hodgson, A.J.; Inkpen, K.; McGraw, R.W. Bone cutting errors in total knee arthroplasty. J. Arthroplast. 2002, 17, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Kluess, D.; Bergschmidt, P.; Mueller, I.; Mittelmeier, W.; Bader, R. Influence of the distal femoral resection angle on the principal stresses in ceramic total knee components. Knee 2012, 19, 846–850. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.H.; Pope, M.H.; Berry, J.T.; Hoaglund, F. A study of the bone machining process—Orthogonal cutting. J. Biomech. 1974, 7, 131–136. [Google Scholar] [CrossRef]
- Shu, L.; Sugita, N. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. J. Mech. Behav. Biomed. Mater. 2020, 103, 103599. [Google Scholar] [CrossRef]
- Roberts, M.J. Electro Osteotome. US Patent 436804, 23 September 1890. [Google Scholar]
- Wang, H.; Satake, U.; Enomoto, T. Modeling of oscillating bone sawing forces with instantaneous cutting speed and depth of cut. J. Mater. Process. Technol. 2024, 324, 118225. [Google Scholar] [CrossRef]
- Zhang, Y.; Robles-Linares, J.A.; Chen, L.; Liao, Z.; Shih, A.J.; Wang, C. Advances in machining of hard tissues–From material removal mechanisms to tooling solutions. Int. J. Mach. Tool. Manuf. 2022, 172, 103838. [Google Scholar] [CrossRef]
- Kersh, M.E.; Zysset, P.K.; Pahr, D.H.; Wolfram, U.; Larsson, D.; Pandy, M.G. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J. Biomech. 2013, 46, 2659–2666. [Google Scholar] [CrossRef]
- Sugita, N.; Osa, T.; Aoki, R.; Mitsuishi, M. A new cutting method for bone based on its crack propagation characteristics. CIRP Ann. 2009, 58, 113–118. [Google Scholar] [CrossRef]
- Chengyong, W.; Chen, Z.; Chen, H.; Song, Q.; Ren, Y.; Sui, J.; Shu, L.; Chen, B.; Zheng, L. A review on cutting mechanism for bone material. Chin. J. Mech. Eng. 2021, 57, 2–32. [Google Scholar] [CrossRef]
- Liao, Z.; Axinte, D.A.; Gao, D. A novel cutting tool design to avoid surface damage in bone machining. Int. J. Mach. Tool. Manuf. 2017, 116, 52–59. [Google Scholar] [CrossRef]
- Shu, L.; Li, S.; Terashima, M.; Bai, W.; Hanami, T.; Hasegawa, R.; Sugita, N. A novel self-centring drill bit design for low-trauma bone drilling. Int. J. Mach. Tool. Manuf. 2020, 154, 103568. [Google Scholar] [CrossRef]
- Pluim, J.M.E.; Jimenez-Bou, L.; Gerretsen, R.R.R.; Loeve, A.J. Aerosol production during autopsies: The risk of sawing in bone. Forensic Sci. Int. 2018, 289, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Cuneo, A.; Timossi, F.; Musenich, L.; Stagni, A.; Wilhelm, F.; Libonati, F. Design and manufacturing of bone-like composites. Procedia CIRP 2022, 110, 287–292. [Google Scholar] [CrossRef]
- Huang, Q.-W.; Wang, L.-P.; Wang, J.-Y. Mechanical properties of artificial materials for bone repair. J. Shanghai Jiaotong Univ. 2014, 19, 675–680. [Google Scholar] [CrossRef]
- Li, X.; Saeed, S.-S.; Beni, M.H.; Morovvati, M.R.; Angili, S.N.; Toghraie, D.; Khandan, A.; Khan, A. Experimental measurement and simulation of mechanical strength and biological behavior of porous bony scaffold coated with alginate-hydroxyapatite for femoral applications. Compos. Sci. Technol. 2021, 214, 108973. [Google Scholar] [CrossRef]
- Wu, D.; Spanou, A.; Diez-Escudero, A.; Persson, C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J. Mech. Behav. Biomed. Mater. 2020, 103, 103608. [Google Scholar] [CrossRef]
- Atesok, K.; Mabrey, J.D.; Jazrawi, L.M.; Egol, K.A. Surgical simulation in orthopaedic skills training. J. Am. Acad. Orthop. Surg. 2012, 20, 410–422. [Google Scholar] [CrossRef]
- Ramulu, M.; Kramlich, J. Machining of fiber reinforced composites: Review of environmental and health effects. Int. J. Environ. Cons. 2004, 11, 1–19. [Google Scholar]
- Zustra, M.A. Evaluation of the Potential Health Hazards Associated with the Machining of Carbon Fiber Composites. Master’s Thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1987. [Google Scholar]
- Minamoto, K.; Nagano, M.; Inaoka, T.; Kitano, T.; Ushijima, K.; Fukuda, Y.; Futatsuka, M. Skin problems among fiber-glass reinforced plastics factory workers in Japan. Ind. Health 2002, 40, 42–50. [Google Scholar] [CrossRef]
- Gu, Y.; He, W.; Wang, Y.; Chen, J.; Wang, H.; Gao, P.; Yang, S.; Zhu, X.; Ma, W.; Li, T. Respiratory effects induced by occupational exposure to refractory ceramic fibers. J. Appl. Toxicol. 2021, 41, 421–441. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef]
- Lu, J.; Sun, C.; Yang, K.; Wang, K.; Jiang, Y.; Tusiime, R.; Yang, Y.; Fan, F.; Sun, Z.; Liu, Y.; et al. Properties of polylactic acid reinforced by hydroxyapatite modified nanocellulose. Polymers 2019, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Baek, J.W.; Jin, Z.; Jeon, H.C.; Han, M.W.; Lim, J.Y. Mechanical properties of a bone-like bioceramic–epoxy-based composite material with nanocellulose fibers. Materials 2023, 16, 739. [Google Scholar] [CrossRef]
- ASTM D5045-99; Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. ASTM: West Conshohocken, PA, USA, 2007.
- Wang, H.; Satake, U.; Enomoto, T. Surgical oscillating saw blade to suppress forces in bone cutting. CIRP Ann. 2022, 71, 73–76. [Google Scholar] [CrossRef]
- Ingole, V.H.; Vuherer, T.; Maver, U.; Vinchurkar, A.; Ghule, A.V.; Kokol, V. Mechanical properties and cytotoxicity of differently structured nanocellulose-hydroxyapatite based composites for bone regeneration application. Nanomaterials 2019, 10, 25. [Google Scholar] [CrossRef]
- Luo, Y.; Ren, Y.; Shu, Y.; Mao, C.; Zhou, Z.; Bi, Z.M. Cutting behavior of cortical bone in different bone osteon cutting angles and depths of cut. Chin. J. Mech. Eng. 2022, 35, 91. [Google Scholar] [CrossRef]
- Kamada, Y.; Yan, J. Machinability investigation for cellulose nanofiber-reinforced polymer composite by ultraprecision diamond turning. Int. J. Autom. Technol. 2021, 15, 475–482. [Google Scholar] [CrossRef]
- Yanping, L.; Dedong, Y.; Xiaojun, C.; Xudong, W.; Guofang, S.; Chengtao, W. Simulation and evaluation of a bone sawing procedure for orthognathic surgery based on an experimental force model. J. Biomech. Eng. 2014, 136, 034501. [Google Scholar] [CrossRef]
- Heřt, J.; Fiala, P.; Petrtýl, M. Osteon orientation of the diaphysis of the long bones in man. Bone 1994, 15, 269–277. [Google Scholar] [CrossRef]
- Wirtz, D.C.; Schiffers, N.; Pandorf, T.; Radermacher, K.; Weichert, D.; Forst, R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 2000, 33, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Abdel-Wahab, A.; Demirci, E.; Silberschmidt, V.V. Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour. J. Biomech. 2014, 47, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Huppke, C.M.; Fahlbusch, H.; Frosch, K.-H.; Krause, M.; von Rehlingen-Prinz, F. Cortical bone thickness on preoperative CT scans as predictor of bone quality in distal femur fractures: A retrospective study in Caucasians. Arch. Orthop. Trauma. Surg. 2024, 144, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Vilutis, A.; Jankauskas, V. Experimental and numerical investigation of the fracture behavior of extruded wood–plastic composites under bending. Polymers 2024, 16, 1485. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Satake, U.; Enomoto, T. Reduction of sawing forces in bone cutting: Innovative oscillating saw mechanism based on trajectory analysis. J. Mater. Process. Technol. 2024, 332, 118563. [Google Scholar] [CrossRef]
- Koester, K.J.; Ager, J.W., III; Ritchie, R.O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008, 7, 672–677. [Google Scholar] [CrossRef]
Composite Materials | Resin | Hardener | HAP | CNC |
---|---|---|---|---|
HAP 5 wt% | 71.25 | 23.75 | 5 | - |
HAP 5 wt% with CNC 1 wt% | 70.5 | 23.5 | 5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.-C.; Kim, Y.-S. Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training. Polymers 2024, 16, 2849. https://doi.org/10.3390/polym16192849
Jeon H-C, Kim Y-S. Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training. Polymers. 2024; 16(19):2849. https://doi.org/10.3390/polym16192849
Chicago/Turabian StyleJeon, Hee-Chang, and Young-Seong Kim. 2024. "Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training" Polymers 16, no. 19: 2849. https://doi.org/10.3390/polym16192849
APA StyleJeon, H. -C., & Kim, Y. -S. (2024). Mechanical Performance of Cellulose Nanocrystal and Bioceramic-Based Composites for Surgical Training. Polymers, 16(19), 2849. https://doi.org/10.3390/polym16192849