Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fibers and Asphalt Mortars
2.2.1. Preparation of Bamboo Bark Fibers
2.2.2. Preparation of Modified Bamboo Bark Fibers
2.2.3. Preparation of Asphalt Mortar
2.3. Microstructure and Fiber Composition Tests
2.3.1. Scanning Electron Microscopy (SEM)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Basic Fiber Performance Tests
2.4.1. Hydrophobicity
2.4.2. Oil Absorption
2.4.3. Thermal Stability
2.5. Fiber-Reinforced Asphalt Mortar Performance Tests
2.5.1. Cone Penetration
2.5.2. Softening Point and Ductility
2.5.3. Dynamic Shear Rheological (DSR) Test
2.5.4. Multiple Stress Creep Recovery (MSCR)
3. Results
3.1. Microstructure and Composition of Modified Bamboo Bark Fibers
3.1.1. Micro-Topography
3.1.2. FTIR Analysis
3.2. Basic Performance of Modified Bamboo Bark Fibers
3.2.1. Hydrophobicity Analysis
3.2.2. Oil Absorption Analysis
3.2.3. Thermal Stability Analysis
3.3. Performance of Asphalt Mortar with Modified Bamboo Bark Fibers
3.3.1. Shear Strength
3.3.2. Softening Point
3.3.3. Ductility
3.3.4. Optimal Fiber Dosage
3.3.5. Dynamic Shear Rheological (DSR) Characteristics
3.3.6. Multiple Stress Creep Recovery (MSCR)
4. Conclusions
- (1)
- The surface roughness and specific surface area of the bamboo bark fibers were enhanced following modification with NaOH, KH570 silane coupling agent, and nano-SiO2. The hydrolysis of KH570 produced Si–OH groups, which subsequently condensed with the -OH groups on the bamboo bark fibers and nano-SiO2 to form Si–O–C and Si–O–Si bonds. This covalent bonding improved the attachment of nano-SiO2 to the fibers and subsequently enhanced their asphalt adsorption performance.
- (2)
- At an asphalt mixture mixing temperature of 160 °C, modifications with NaOH and KH570 reduced the oil absorption of bamboo bark fibers, whereas grafting with nano-SiO2 increased it. The NKSBFs exhibited the highest oil absorption, with a 0.9% increase compared to UBF after 2 h of heating. The modified fibers demonstrated more stable asphalt adsorption performance. NaOH modification significantly improved thermal stability, and KH570 modification and nano-SiO2 grafting also enhanced it. After 5 h of heating, NKSBF showed the best thermal stability, with a 49.6% reduction in the mass loss rate compared to UBF.
- (3)
- NaOH modification slightly improved the hydrophobicity of the fibers, and KH570 modification significantly enhanced it, whereas grafting with nano-SiO2 slightly reduced the hydrophobicity due to the incomplete reaction between KH570 and nano-SiO2. Nevertheless, the hydrophobic performance remained strong. NKSBF exhibited a 10.1% higher water contact angle compared to UBF, indicating enhanced hydrophobicity and reduced water absorption.
- (4)
- Incorporating both modified and unmodified bamboo bark fibers enhanced the shear strength and softening point of asphalt mortar but reduced its ductility. The modified fibers exhibited superior performance, with a 3% content being optimal. At this concentration, the NKSBF asphalt mortar demonstrated a 96.4% increase in shear strength and a 7.1% increase in the softening point compared to the base asphalt, with its ductility surpassing that of lignin fibers by 1%.
- (5)
- At a 3% fiber content, the UBF asphalt mortar showed significantly better high-temperature rutting resistance compared to the base asphalt across all tested temperatures. UBF also outperformed lignin fiber asphalt mortar at lower temperatures. However, at higher temperatures, the lignin fiber asphalt mortar outperformed UBF. NKSBF exhibited the best overall high-temperature rutting resistance, although it was slightly lower than that of the lignin fibers at the highest temperature.
- (6)
- Bamboo bark fibers at a 3% content significantly improved the high-temperature deformation resistance and short-term aging durability of asphalt mortar. NaOH modification and nano-SiO2 grafting further enhanced these improvements. Among the modified fibers, NKSBFs exhibited the greatest enhancement, with reductions in non-recoverable creep compliance of 34.7% and 29.3% at stress levels of 0.1 kPa and 3.2 kPa, respectively, compared to the base asphalt.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fakhri, M.; Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, Y.; Guo, P.; Underwood, S.; Chen, H.; Kim, Y.R.; Li, Y.; Ma, Q. Effect of synthetic fibers on the mechanical performance of asphalt mixture: A review. J. Traffic Transp. Eng. 2023, 10, 331–348. [Google Scholar] [CrossRef]
- Wu, S.; Haji, A.; Adkins, I. State of art review on the incorporation of fibres in asphalt pavements. Road Mater. Pavement Des. 2023, 24, 1559–1594. [Google Scholar] [CrossRef]
- Guo, Y.; Tataranni, P.; Sangiorgi, C. The use of fibres in asphalt mixtures: A state of the art review. Constr. Build. Mater. 2023, 390, 131754. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Z.; Jiang, C.; Yang, Y.; Sun, Z.; Yuang, J.; Xiao, F. Recent development and application of natural fiber in asphalt pavement. J. Clean. Prod. 2024, 449, 141832. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Lyu, L.; Li, Y.; Tan, X.; Li, Z.; Pei, J. Durable and environmental asphalt pavement with plant fiber: A state-of-the-art review. J. Mater. Civ. Eng. 2024, 36, 03123003. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Singh, N.S.S.; Alawag, A.M. Applications of synthetic, natural, and waste fibers in asphalt mixtures: A citation-based review. Polymers 2023, 15, 1004. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Yue, Y.; Khater, A.; Luo, D.; Musanyufu, J.; Qin, X. Laboratory study on the performance of asphalt mixes modified with a novel composite of diatomite powder and lignin fiber. Appl. Sci. 2020, 10, 5517. [Google Scholar] [CrossRef]
- Khater, A.; Luo, D.; Abdelsalam, M.; Yue, Y.; Hou, Y.; Ghazy, M. Laboratory evaluation of asphalt mixture performance using composite admixtures of lignin and glass fibers. Appl. Sci. 2021, 11, 364. [Google Scholar] [CrossRef]
- Ai, X.; Yi, J.; Pei, Z.; Zhong, J.; Zhou, W.; Feng, D. Application of waste rice straw as fibre or filler in asphalt mixtures: Materials characterisation and performance evaluation. Int. J. Pavement Eng. 2024, 25, 2334307. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Chen, H.; Guan, B.; Liu, K. Investigation of cotton straw fibers for asphalt mixtures. J. Mater. Civ. Eng. 2020, 32, 04020105. [Google Scholar] [CrossRef]
- Chen, Z.; Yi, J.; Chen, Z.; Feng, D. Properties of asphalt binder modified by corn stalk fiber. Constr. Build. Mater. 2019, 212, 225–235. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Dauletbek, A.; Shen, F.; Hui, D.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Ashraf, M. Properties and applications of bamboo fiber-A current-state-of-the art. J. Renew. Mater. 2022, 10, 605–624. [Google Scholar] [CrossRef]
- Li, Z.; Luan, Y.; Hu, J.; Fang, C.; Liu, L.; Ma, Y.; Liu, Y.; Fei, B. Bamboo heat treatments and their effects on bamboo properties. Constr. Build. Mater. 2022, 331, 127320. [Google Scholar] [CrossRef]
- Lopes, M.D.M.; de Souza Pádua, M.; de Carvalho, J.P.R.G.; Simonassi, N.T.; Lopez, F.P.D.; Colorado, H.A.; Vieira, C.M.F. Natural based polyurethane matrix composites reinforced with bamboo fiber waste for use as oriented strand board. J. Mater. Res. Technol. 2021, 12, 2317–2324. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Liu, C.; Ge, D.; You, Z.; Yu, M. High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Constr. Build. Mater. 2020, 230, 117063. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, Y.; Lv, H.; Kim, Y.R.; Zhao, X.; Meng, J.; Xiong, R. Effects of bamboo fiber on the mechanical properties of asphalt mixtures. Constr. Build. Mater. 2021, 289, 123196. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Sheng, Y.; Meng, J.; Cui, S.; Kim, Y.R.; Huang, S.; Qin, H. Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber. J. Clean. Prod. 2022, 333, 130120. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, B.; Yan, Y.; Li, H.; Chen, Z.; Chen, H. Laboratory investigation on the use of bamboo fiber in asphalt mixtures for enhanced performance. Arab. J. Sci. Eng. 2019, 44, 4629–4638. [Google Scholar] [CrossRef]
- Ahmed, K.U.; Geremew, A.; Jemal, A. The comparative study on the performance of bamboo fiber and sugarcane bagasse fiber as modifiers in asphalt concrete production. Heliyon 2022, 8, e09842. [Google Scholar] [CrossRef]
- Das, B.R.; Banerjee, P.K. Interface bond and compatibility of jute with asphalt. Compos. Part B Eng. 2013, 53, 69–75. [Google Scholar] [CrossRef]
- Cui, S.; Sheng, Y.; Wang, Z.; Jia, H.; Qiu, W.; Temitope, A.A.; Xu, Z. Effect of the fiber surface treatment on the mechanical performance of bamboo fiber modified asphalt binder. Constr. Build. Mater. 2022, 347, 128453. [Google Scholar] [CrossRef]
- Hasan, A.; Rabbi, M.S.; Billah, M.M. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Clean. Mater. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Ezeamaku, U.L.; Onukwuli, O.D.; Ezeh, M.E.; Eze, I.O.; Odimegwu, N.E.; Agu, C.P. Experimental investigation on influence of selected chemical treatment on banana fibre. Ind. Crops Prod. 2022, 185, 115135. [Google Scholar] [CrossRef]
- Ernest, E.M.; Peter, A.C. Application of selected chemical modification agents on banana fibre for enhanced composite production. Clean. Mater. 2022, 5, 100131. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Y.; Sun, H.; Liu, W.; Luan, C.; Yuan, L.; Wang, J.; Du, P.; Zhou, Z.; Cheng, X. The effect of silane surface treatment on the mechanical properties of UHPFRC. Constr. Build. Mater. 2021, 304, 124580. [Google Scholar] [CrossRef]
- Yu, X.; Li, G.; Zhao, H.; Ma, Y.; Li, Q.; Chen, Y.; Li, W. Influence of chemically-modified cotton straw fibers on the properties of asphalt mortar. Case Stud. Constr. Mater. 2023, 18, e01787. [Google Scholar] [CrossRef]
- Xie, H.; Jia, Y.; Zhu, C.; Liu, W.; Li, Z.; Huang, Z. Investigation of Surface Modification of Bagasse Fibers: Performance of Asphalt Binders/Mixtures with Bagasse Fibers. Buildings 2024, 14, 1352. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Hu, P.; Zhu, Y.; Xu, H.; Qu, L. Influence of Modified Stalk Fibers on the Fatigue Performance of Asphalt Binder. Coatings 2023, 13, 1912. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Gao, Y.; Kang, H. Laboratory evaluation of the effect of kapok fibers on the rheological and fatigue properties of bitumen. Constr. Build. Mater. 2021, 272, 121819. [Google Scholar] [CrossRef]
- Tang, Z.; Gan, Y.; Yu, T.; Li, C. Study on betel nut fiber enhancing water stability of asphalt mixture based on response surface method. Case Stud. Constr. Mater. 2022, 16, e00870. [Google Scholar] [CrossRef]
- Gallo, P.; Belhaj, M.; Valentin, J. Laboratory Study of Asphalt Concrete for Base Course with Reclaimed Asphalt, Recycling Agents, and Jute Fibres. Appl. Sci. 2023, 14, 239. [Google Scholar] [CrossRef]
- Xiang, L.; Sheng, Y.; Xu, D.; Duan, X.; Jia, H.; Cui, S.; Sheng, B. Effect of alkali-treated bamboo fibers on the properties of asphalt mixture. Compos. Interfaces 2024, 31, 641–663. [Google Scholar] [CrossRef]
- Xie, Z.; Tang, L.; Tao, M.; Yang, F.; Zhong, Q. The Properties of Modified Bagasse Fiber/Nano-TiO2 Composite Asphalt in a High-Temperature and High-Humidity Salt Environment. Materials 2023, 16, 5996. [Google Scholar] [CrossRef]
- Qasim, Z.I.; Al-Sahaf, N.A.; Al-Jameel, H.A. Effectiveness of micro- and nano-silica as modifiers in asphalt concrete-mixture. J. Eng. Sci. Technol. 2022, 17, 820–838. [Google Scholar]
- Sukhija, M.; Saboo, N.; Yadav, A.K.; Rath, C. Laboratory study on the suitability of nano-silica as a modifier for asphalt binders. Constr. Build. Mater. 2021, 302, 124406. [Google Scholar] [CrossRef]
- Bhat, F.S.; Mir, M.S. Rheological investigation of asphalt binder modified with nanosilica. Int. J. Pavement Res. 2021, 14, 276–287. [Google Scholar] [CrossRef]
- Alothman, D.; Gökçekuş, H.; Ali, S.I.A. Rheological Properties of Hot and Warm Asphalt Binder Modified with Nanosilica. J. Mater. Sci. 2022, 28, 496–505. [Google Scholar] [CrossRef]
- Hu, M.; Wang, C.; Lu, C. Investigation on the classified extraction of the bamboo fiber and its properties. J. Nat. Fibers 2020, 17, 1798–1808. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Wu, C.; Jiang, K.; Shi, X. Bamboo fiber has engineering properties and performance suitable as reinforcement for asphalt mixture. Constr. Build. Mater. 2021, 290, 123240. [Google Scholar] [CrossRef]
- Balreddy, M.S.; Nethra, P.; Naganna, S.R. Performance evaluation of open-graded bituminous concrete modified with natural fibers. Sustainability 2023, 15, 11952. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transportation: Beijing, China, 2011.
- Amroune, S.; Bezazi, A.; Belaadi, A.; Zhu, C.; Scarpa, F.; Rahatekar, S.; Imad, A. Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Compos. Part A Appl. Sci. Manuf. 2015, 71, 95–106. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militky, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2018, 47, 2153–2183. [Google Scholar] [CrossRef]
- Balla, V.K.; Das, M.; Mohammad, A.; AI-Ahmari, A.M. Additive Manufacturing of γ-TiAl: Processing, Microstructure, and Properties. Adv. Eng. Mater. 2016, 18, 1208–1215. [Google Scholar] [CrossRef]
- Sun, B.; Huang, A.; Wang, Y.; Liu, J. Natural bamboo (Neosinocalamus affinis Keng) fiber identification using FT-IR and 2D-IR correlation spectroscopy. J. Nat. Fibers 2015, 12, 1–11. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Starzycki, M.; Zebrowski, J.; Oszmiański, J.; Szopa, J. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J. Biotechnol. 2007, 128, 919–934. [Google Scholar] [CrossRef] [PubMed]
- Sonia, A.; Dasan, K.P. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr. Polym. 2013, 92, 668–674. [Google Scholar] [CrossRef]
- Abdullah, M.A.; Rahmah, A.U.; Man, Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard. Mater. 2010, 177, 683–691. [Google Scholar] [CrossRef]
- Rana, A.K.; Basak, R.K.; Mitra, B.C.; Lawther, M.; Banerjee, A.N. Studies of acetylation of jute using simplified procedure and its characterization. J. Appl. Polym. Sci. 1997, 64, 1517–1523. [Google Scholar] [CrossRef]
- Chen, K.; Li, P.; Li, X.; Liao, C.; Li, X.; Zuo, Y. Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. Int. J. Biol. Macromol. 2021, 182, 2108–2116. [Google Scholar] [CrossRef]
- Li, Z.; Li, K.; Chen, W.; Liu, W.; Yin, Y.; Cong, P. Investigation on the characteristics and effect of plant fibers on the properties of asphalt binders. Constr. Build. Mater. 2022, 338, 127652. [Google Scholar] [CrossRef]
- Wu, B.; Pei, Z.; Luo, C.; Xia, J.; Chen, C.; Kang, A. Effect of different basalt fibers on the rheological behavior of asphalt mastic. Constr. Build. Mater. 2022, 318, 125718. [Google Scholar] [CrossRef]
- Guo, D. Impact of rheological properties of fiber asphalt mortar on mixture road performance. Adv. Mater. Res. 2013, 734, 2287–2291. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Lv, J. Effect of basalt fiber distribution on the flexural–tensile rheological performance of asphalt mortar. Constr. Build. Mater. 2018, 179, 307–314. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Tang, Q.; Wu, Y.; Wu, Z.; Pan, X. Research on the micro-nano characteristic of basalt fiber and its impact on the performance of relevant asphalt mastic. Constr. Build. Mater. 2022, 318, 126048. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tan, L.; Xu, Y.; Wang, C.; Liu, P.; Yu, H.; Oeser, M. Laboratory evaluation of emulsified asphalt reinforced with glass fiber treated with different methods. J. Clean. Prod. 2020, 274, 123116. [Google Scholar] [CrossRef]
- Bian, G.; Qi, L.; Liu, J.; Wang, X.; Xu, X.; Wang, Z. Effects of tetraethyl orthosilicate on rheological behaviors of crumb rubber modified asphalt. Constr. Build. Mater. 2022, 325, 126807. [Google Scholar] [CrossRef]
- Nazari, H.; Naderi, K.; Nejad, F.M. Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Constr. Build. Mater. 2018, 170, 591–602. [Google Scholar] [CrossRef]
Material Name | Length, mm | Color | Ash Content, % | pH | Density, g/cm3 |
---|---|---|---|---|---|
Lignin fibers | 1 (Average) | Gray | 18.1 | 7.2 | 1.28 |
Bamboo bark fibers | 6–8 | Brown-yellow | 13.7 | 7.0 | 1.33 |
Material Name | Mean Particle Size, nm | Specific Surface Area, m2/g | Bulk Density, g/L | pH |
---|---|---|---|---|
nano-SiO2 | 20 | 240 | 150 | 7.5 |
Tested Property | Detection Result | Standard |
---|---|---|
Penetration (25 °C), 0.1 mm | 67 | 60~80 |
Cone penetration (25 °C), 0.1 mm | 55.8 | Measured value |
Shear strength, kPa | 52.5 | Measured value |
Softening point, °C | 47.6 ≥ 46 | |
Ductility (10 °C), cm | 24 | ≥15 |
Dynamic viscosity (60 °C), Pa·s | 231 | ≥180 |
Wax content (distillation method), % | 2 | ≤2.2 |
Flash point, °C | 292 | ≥260 |
Solubility, % | 99.81 | ≥99.5 |
Density (15 °C), g/cm3 | 1.032 | Measured value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Wang, X.; Sun, P.; Zheng, N.; Sun, A. Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2. Polymers 2024, 16, 2850. https://doi.org/10.3390/polym16192850
Zhang N, Wang X, Sun P, Zheng N, Sun A. Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2. Polymers. 2024; 16(19):2850. https://doi.org/10.3390/polym16192850
Chicago/Turabian StyleZhang, Nan, Xichen Wang, Pei Sun, Nanxiang Zheng, and Aodi Sun. 2024. "Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2" Polymers 16, no. 19: 2850. https://doi.org/10.3390/polym16192850
APA StyleZhang, N., Wang, X., Sun, P., Zheng, N., & Sun, A. (2024). Performance of Bamboo Bark Fiber Asphalt Mortar Modified with Surface-Grafted Nano-SiO2. Polymers, 16(19), 2850. https://doi.org/10.3390/polym16192850