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Abstract: The synergistic effect between different fillers plays a crucial role in determining the
performance of composites. In this work, spherical boron nitride (BN) and flaky BN are used
as hybrid fillers to improve the thermal conductivity (TC) of high-density polyethylene (HDPE)
composites. A series of HDPE composites were prepared by adjusting the mass ratio (1:0, 4:1, 2:1, 1:1,
1:2, 1:4, and 0:1) of spherical BN and flaky BN. The SEM results indicate that the spherical BN (with a
particle size of 3 µm) effectively filled the gaps between the flaky BN (with a particle size of 30 µm),
leading to the formation of more continuous heat conduction paths with the composite. Remarkably,
when the mass ratio of spherical BN to flaky BN was set to 1:4 (with a total BN filling amount of
30 wt%), the TC of the composite could reach up to 1.648 Wm−1K−1, which is obviously higher than
that of the composite containing a single filler, realizing the synergistic effect of the hybrid fillers. In
addition, the synergistic effect of fillers also affects the thermal stability and crystallization behavior
of composites. This work is of great significance for optimizing the application of hybrid BN fillers in
the field of thermal management.

Keywords: high-density polyethylene; synergistic effect; hybrid fillers; boron nitride; thermal
conductivity; electron microscopy; crystallinity

1. Introduction

In recent years, with the progress of science and technology, microelectronic packaging
technology and integration technology have developed rapidly [1–3]. The output power
of electronic components is increasing, but its volume is becoming smaller, resulting in a
large amount of heat generated during use [4]. Heat accumulation reduces the reliability of
electronic components and shortens their working life, so the requirements for the thermal
conductivity (TC) of packaging materials are also increasing [5–7]. Polymer materials are
widely used in fields such as mechanical manufacturing, electronic devices, and aerospace
due to their light weight, corrosion resistance, high specific strength, easy processing,
and excellent insulation performance [8–11]. However, the intrinsic TC of most polymer
materials is very low (0.1~0.5 Wm−1K−1), which limits their application as thermally
conductive materials [12–15]. In order to expand the application scope of polymer materials
in heat conduction, it is necessary to improve their TC. At present, there are mainly
two methods used to improve the TC of polymer materials [16–18]. The first method
involves improving the crystallinity of polymer materials, increasing the orientation of
molecular chain arrangements, and strengthening the interactions between molecular
chains [19,20]. Although some progress has been made toward researching this method,
its suitability for large-scale industrial production is limited by its harsh preparation
conditions, refractory, the difficulty of forming and processing, and high cost [21]. The
second method involves introducing a high-TC metal or inorganic fillers into the polymer
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matrix to prepare polymer-based thermally conductive composites and improve the TC
of the material [22–25]. According to the thermal conductivity theory, when the filling
amount is low, the fillers are not fully in contact with each other, a good heat conduction
path is not formed, and heat transfer occurs mainly through the polymer matrix with a
low TC. Upon further increasing the filling amount, the effective contact between the filler
forms a connected heat conduction path and the heat is mainly passed through the high-TC
filler. This method has the advantages of a simple production process, low preparation
cost, and easy processing, so it has become the main method to improve the TC of polymer
materials [26–29]. The fillers of polymer-based thermally conductive composites are mainly
divided into metal nanomaterials such as silver, copper, aluminum nanoparticles, and
nanowire [30–33]; ceramic nanomaterials such as BN [34,35], aluminum oxide (Al2O3) [36],
silicon carbide (SiC) [37], etc.; and carbon nanomaterials such as graphite, graphene, carbon
nanotubes (CNTs), and diamond [38–40].

To our knowledge, the influence of some thermally conductive fillers on the TC of
composites has been studied. For example, Yu et al. [41] prepared composite microspheres
by depositing copper particles on polystyrene microspheres. Compared with simple blends,
the addition of 23 vol% copper particles had a TC of up to 26.14 Wm−1K−1 and the
conductivity was also improved by eight orders of magnitude. Park et al. [42] prepared
composites using long CNTs and short CNTs as fillers and EP (epoxy) as a matrix. The
results show that long CNTs can improve the TC of composites more efficiently than short
CNTs at the same content. When the mass fraction of a long CNT reaches 60%, the TC of
the composite is as high as 55 Wm−1K−1. Among these fillers, carbon materials or metals
often have high conductivity, which hinders their application in fields with insulating
requirements like electronic packaging. In contrast, ceramic fillers are frequently utilized
to prepare thermally conductive polymer composites due to their excellent insulation
performance and high TC [43]. In ceramic fillers, BN has been widely used due to its high
TC, good insulation, excellent thermal stability, and low price [44,45]. For example, Lin
et al. [46] prepared composites by filling BNNs (boron nitride nanosheets) into EP. The
experimental results show that when the mass fraction of BNNs is 30%, the TC of the
composites increases by 316% compared to the pure EP matrix. Xie et al. [47] prepared
composites by making BN distribute orientation in the PVA (polyvinyl alcohol) matrix
under the action of external forces. The research shows that the higher the orientation
degree of BN in the matrix, the higher the in-plane TC of the composites, and the in-plane
TC of 30 wt% BN/PVA is 4.41 Wm−1K−1.

Although the introduction of BN can improve the TC of a material, a single filler
requires a higher content to construct more heat conduction paths and improve the TC
of the composites. According to the relevant literature, the TC of composites can be
improved more efficiently by adding multi-shape thermally conductive fillers into the
polymer matrix [48]. For example, Jung et al. [49] used spherical AlN (aluminum nitride)
and two-dimensional BN as fillers and an EPDM (ethylene–propylene–diene monomer)
rubber as matrix to prepare composites and studied the effects of differently shaped fillers
on the TC of materials. The results show that when the filler volume fraction is 70% and
the volume ratio of AlN to BN is 1:1, the TC of the composites is 4.76 Wm−1K−1, which
is 57.10% higher than that of the AlN composites with the same volume fraction. Xiao
et al. [24] prepared the composites with CNT and BN as fillers and PVDF (poly(vinylidene
fluoride)) as a matrix. The results show that when the mass fraction of BN is 20% and the
mass fraction of CNT is 2%, the TC of the composite increases to 1.30 Wm−1K−1, which
is 34% higher than that of a single BN composite. The above results indicate that hybrid
fillers are more effective in improving the TC of composites, which is mainly because the
synergistic effect of hybrid fillers (commonly known as the “bridge-link effect”) promotes
the formation of heat conduction paths in the polymer matrix [35]. Although the influence
of hybrid fillers on the TCs of composites has been widely studied, there are few studies on
the TC, thermal stability, and crystallinity behavior of composites that involve adjusting
the mass ratio of fillers with different shapes.
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In this work, spherical BN (3 µm) and flaky BN (30 µm) are filled into the HDPE
matrix with different mass ratios. The spherical BN may fill the gap between the flaky
BN particles, forming more heat conduction paths, and a synergistic effect between the
hybrid fillers on the TC of HDPE composites is expected. The fracture morphologies of
the HDPE composites were observed by SEM and the crystallinity behavior was analyzed
using WAXD (wide-angle X-ray diffraction) and DSC (differential scanning calorimetry).
The TC of HDPE composites was measured by Hot Disk and the heat conduction rate was
simulated using the finite element method. The thermal stability of HDPE composites
was also studied. To our knowledge, this is the first time that the effects of mass ratios
of differently shaped BN on the thermal stability, crystallization properties, and TC of
composites have been studied simultaneously. This is of great significance for optimizing
the application of BN fillers in the field of heat conduction.

2. Experimental Approach
2.1. Materials

HDPE 2911 with a density of 0.960 g/cm3 and a melt flow rate of 20.0 g/10 min
was supplied by Fushun Petrochemical, Fushun, China. The maleic anhydride grafted
high-density polyethylene (HDPE-g-MAH1040) with a graft ratio of 1.2 wt.% was supplied
by ExxonMobil Chemical Company, Shanghai, China. HDPE-g-MAH as a compatibilizer
can reduce the agglomeration of filler and contribute to the dispersion of filler in the matrix.
Spherical BN (particle size of 3 µm) and flaky BN (particle size of 30 µm) were provided by
Tianyuan Technology Group, Shenzhen, China. Among them, BN has the characteristics of
high TC (250–300 Wm−1K−1), strong thermal stability, and excellent insulation.

2.2. Sample Preparation

In order to remove moisture, the matrix and filler were dried in a vacuum oven at
60 ◦C for 24 h before the melt blending. HDPE and HDPE-g-MAH with mass fractions
of 65 wt.% and 5 wt.% were added to the internal mixer (Haake Minilab Π) at 180 ◦C for
3 min with a rotational speed of 30 rpm. Then, the BN with a mass fraction of 30 wt.% (two
different shapes of BN mixed, mass ratios of 1:0, 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1) was added
to the mixer and blended for 7 min under the same conditions to obtain the composites.
The matrix and the solubilizer were pretreated in a high-speed dry mixer before feeding.
Samples for the characterization of various properties were molded at a temperature of
180 ◦C and a pressure of 10 MPa for 10 min. The obtained composites were named S3/F30
X:Y, where S (F) represents spherical (flaky) BN and X:Y denotes the mass fraction ratio of
3 µm to 30 µm BN. The naming of the samples is shown in Table 1.

Table 1. The naming of samples.

Mass Ratio
of S3/F30 1:0 4:1 2:1 1:1 1:2 1:4 0:1

Sample S3/F30 1:0 S3/F30 4:1 S3/F30 2:1 S3/F30 1:1 S3/F30 1:2 S3/F30 1:4 S3/F30 0:1

2.3. Characterization

Scanning electron microscopy (SEM, JSM-6380, JEOL, Tokyo, Japan) was used to
characterize the dispersion of BN in the composites under 30 kV accelerating voltage. The
fracture surfaces of all samples were coated with Au prior to characterization. A thermal
gravimetric analyzer (TGA, Pyris 1, Perkinelmer, Waltham, MA, USA) was used from
30 to 900 ◦C in a N2 atmosphere at a heating rate of 10 ◦C/min to compare the thermal
stability of all samples. Differential scanning calorimetry (DSC, Q2000, TA, New Castle, DE,
USA) was performed to investigate the melting and crystallization behaviors of all samples.
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Samples of about 5 mg were heated from 25 ◦C to 190 ◦C at a rate of 10 ◦C/min under a N2
atmosphere and the crystallinity (Xc) of the samples was calculated using Equation (1):

Xc =
∆Hm

Φ∆H0
m

(1)

where ∆Hm is the melting enthalpy of the sample and ∆H0
m is the melting enthalpy of

HDPE 100% crystallization with a value of 289.9 J/g. The Φ is the relative mass fraction
of HDPE in the composite. An X-ray setup (Bruker D8 Discover, Bruker, Saarbrucken,
Germany) equipped with a Cu Kα (λ = 1.54 Å) X-ray source was used to record the WAXD
measurements at room temperature. The TC of all samples was measured with a Transient
Hot Disk TPS 2500S instrument (Hot Disk AB, Gothenburg, Sweden). Before measurement,
the probe and sample surface were carefully cleaned with ethanol.

3. Results and Discussion

Figure 1 shows the fracture morphologies obtained using SEM after the brittle fracture
of hybrid BN-filled HDPE composites, and the total filling amount of BN was 30 wt%.
According to previous studies, the formation of the heat conduction path is related to the
overlap between the fillers. That is to say, the better the overlap between the thermally
conductive fillers, the better the thermal conductivity performance. Figure 1a,g show the
fracture morphologies of S3/F30 1:0 and S3/F30 0:1, respectively. It can be seen that the
latter shows much better overlapping of fillers than the former, which means that the TC is
also better. Figure 1b,c show the fracture morphologies of samples S3/F30 4:1 and S3/F30
2:1, respectively. In this case, the content of BN with a small particle size is greater than that
with a large particle size. It can be seen that the overlap between fillers is not ideal, and
not many heat conduction paths are formed. The reason is that small-particle-size BN is
not conducive to the formation of heat conduction paths, and large-particle-size BN is not
conducive to filling the gap between small particle size BNs. Figure 1d shows the fracture
morphology of sample S3/F30 1:1. At this time, the content of small-particle-size BN is the
same as that of large-particle-size BN, and it can be seen that the heat conduction paths
of the composite are obviously improved. Figure 1e,f show the fracture morphologies of
samples S3/F30 1:2 and S3/F30 1:4, respectively. It can be seen that the overlap between
fillers is good and more heat conduction paths are formed, especially for sample S3/F30
1:4. This is because the large-size BN shortens the distance between the fillers, and the
small-size BN more easily fills the gap between the large-size BN, thus forming more heat
conduction paths. Figure 1h,i show the micromorphologies of spherical BN and flaky BN,
respectively. In addition, the BN in all composites is uniformly distributed in the HDPE
matrix, and there is no large area of aggregated filler or a large number of pores left due to
BN shedding, which is attributed to the effect of solubilizer HDPE g-MAH [35]. According
to our previous work, the addition of HDPE-g-MAH plays a key role in reducing filler
aggregation, which helps to build up the thermal conduction paths in the matrix.

In order to study the influence of hybrid BN on the thermal stability of composites,
the thermal stability of all samples was characterized by TGA. The results are shown in
Figure 2 and Table 2. T5% (the temperature at which 5% weight loss occurs) and TMAX
(the peak of the DTA curve) were used to analyze the TGA curves. As can be seen from
Figure 2a, the composites with a single BN filler exhibit one-step decomposition behavior
in a nitrogen atmosphere, which corresponds to the decomposition of HDPE and HDPE-g-
MAH (400–550 ◦C). With a change in mass ratio of hybrid BN, the composites still present
one-step decomposition behavior, which indicates that the mass ratio of the two types of
BN does not affect the thermal decomposition behavior of the HDPE matrix. After complete
pyrolysis, HDPE becomes a gas single-phase, while BN (even when mixed with two types
of BN) does not decompose in a nitrogen atmosphere at 900 ◦C. Therefore, the remaining
material at the end of a TG experiment is BN. It can be seen that the mass fraction of the
remaining material is around 30%, which is consistent with the actual BN mass fraction
filled. It can be seen from Table 2 that the T5% value of sample S3/F30 1:0 is the largest
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at 446.14 ◦C. With the introduction of flaky BN, the T5% value of the composite decreases
slightly, but the T5% value of sample S3/F30 1:4 is consistent with that of S3/F30 1:0. This
may be due to the dense network structure formed by the hybrid BN in the composite
S3/F30 1:4, which effectively prevents the evaporation and diffusion of matrix degradation
products. In addition, the TMAX of composites with hybrid BN is higher than that of
composites with single BN. For example, the TMAX of sample S3/F30 1:4 is 6.07 ◦C higher
than that of S3/F30 1:0 and 10.85 ◦C higher than that of S3/F30 0:1.
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Table 2. Thermal properties and melting and crystallization parameters of HDPE composites.

Sample HDPE S3/F30 1:0 S3/F30 4:1 S3/F30 2:1 S3/F30 1:1 S3/F30 1:2 S3/F30 1:4 S3/F30 0:1

T5%/◦C 424.79 446.14 443.58 441.09 443.58 444.04 446.10 438.58
TMAX/◦C 467.35 479.85 484.68 482.72 484.71 485.03 485.92 475.07

TM/◦C 134.73 132.77 131.16 132.62 132.70 132.53 132.25 130.97
TC/◦C 117.79 123.02 124.16 122.69 122.14 122.37 122.25 122.76

XC/% (WAXD) 66.9 68.9 73.6 72.7 71.3 72.4 73.9 69.5
XC/% (DSC) 67.3 71.1 74.8 73.6 72.5 71.8 74.1 71.4

HDPE is a commonly used semi-crystalline polymer. In order to study the crystalline
structure of HDPE and HDPE/BN composites, WAXD tests were conducted. Figure 3a
displays the 1D-WAXD curves of HDPE composites with different mass ratios of hybrid
BN. The semi-crystalline phase of HDPE and the single crystalline phase of BN can be
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seen, where the two characteristic peaks of 2θ = 21.37◦ and 2θ = 23.51◦ represent diffraction
in the HDPE (110) and (200) planes, and the characteristic peaks of 2θ = 26.13◦ represent
diffraction in the BN (002) plane. When the mass ratio of hybrid BN changes, no other
diffraction peaks appear, indicating that the mass ratio of hybrid BN has no effect on the
crystal form.
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The melting and crystallization behaviors of the composites were characterized by
differential scanning calorimetry (DSC). The heating and cooling curves of all samples are
displayed in Figure 3b,c. It can be seen from the results in Figure 3b and Table 2 that the
melting temperature (TM) of all the composites ranges from 130.97 to 132.77 ◦C, which
is lower than that of pure HDPE (134.73 ◦C). However, the TMs of all the composites
are similar, indicating that the mass ratio of hybrid BN has little effect on the TM of the
composites. From the results in Figure 3c and Table 2, it can be found that the crystallization
temperature (TC) of all the composites ranges from 122.14 to 124.16 ◦C, which is higher
than that of pure HDPE (117.79 ◦C). However, the TCs of all the composites are similar,
indicating that the mass ratio of hybrid BN has little influence. In addition, the crystallinity
(XC) of hybrid BN composites is higher than that of single BN composites. For example,
the crystallinity calculated by DSC shows that the XC of sample S3/F30 1:4 is 74.1%,
while the XCs of samples S3/F30 1:0 and S3/F30 0:1 are 71.1% and 71.4%, respectively.
The results of the WAXD calculations have the same rule. This is mainly because BN
has heterogeneous nucleation and hybrid BN provides more nucleation points for the
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crystallization of HDPE [50], which is beneficial for improving the XC of the composites.
Generally speaking, the TC of polymers is directly proportional to their crystallinity, as the
chain arrangement in the crystallization region is more regular and can form more heat
conduction paths. However, in this study, the change in crystallinity is not the only factor
that affects the change in TC, so it is necessary to explore other factors that lead to changes
in the TC of composites.

The TC of the composites in the direction of thickness was measured by the Hot Disk,
as shown in Figure 4. Figure 4a shows the relationship between the TC of the composites
and the mass ratio of the hybrid BN. It can be seen that the TC of sample S3/F30 1:0 is the
lowest, and with the addition of flaky BN, the TC of the composites first increases and then
decreases with the increase in flaky BN mass ratio. For example, when the mass ratio of
S3/F30 changes from 1:0 to 1:4, the TCs of the composites increase from 0.736 Wm−1K−1

to 1.648 Wm−1K−1, which is 282.27% higher than that of pure HDPE (0.431 Wm−1K−1).
However, when all the fillers in the composite are flaky BN, the TC of the composite
decreases to 1.479 Wm−1K−1. The reason for this phenomenon is that when there are more
large-particle-size flaky BNs in the composite, which shortens the distance between the
fillers in the matrix, and a few small-particle-size spherical BNs can fill the gap between
the large-particle-size fillers, forming more heat conduction paths, the average free path of
phonons is increased and heat loss in the heat flow process is reduced [44]. Therefore, the
TC of the composites has been greatly improved. In addition, in order to compare the TC
of composites with that of pure HDPE, the thermal enhancement factor (φ) was introduced
in this study. It was defined as follows:

φ =
λ1 − λ0

λ0
× 100% (2)

where λ1 and λ0 represent the TCs of the composites and pure HDPE, respectively. The
variation in the thermal enhancement factor (φ) is shown in Figure 4b. It can be seen that φ
increases first and then decreases with increases in the mass ratio of flaky BN.
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In order to verify the above results, the finite element method was used to simulate
the influence of the hybrid BN mass ratio on the heat conduction rate of the composite [44].
Here, a three-dimensional model of HDPE/BN composite with the size of 80 × 80 × 80 µm
was established. We have listed the three-dimensional models of samples S3/F30 1:4 and
S3/F30 4:1, as shown in Figure 5a,b. From the model, it can be seen that spherical BN and
flaky BN are randomly distributed in the HDPE matrix, similar to solid blocks. Firstly, the
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content of hybrid BN and the size of the matrix were determined, and then, the influence
of BN with different mass ratios on the thermal conductivity was simulated by changing
the parameters of injected particles. In this work, the total BN content of the composite is
30 wt%, and we set the mass ratio of spherical BN to flaky BN to 4:1, 2:1, 1:1, 1:2, and 1:4.
Therefore, the corresponding mass fractions of flaky BN are 6 wt%, 10 wt%, 15 wt%, 20 wt%,
and 24 wt%, respectively. For all models, a heating table with a constant temperature was
set on the bottom surface, and five time nodes (t = 0 ms, t = 0.6 ms, t = 1.2 ms, t = 1.8 ms,
and t = 2.4 ms) were selected to observe the temperature distribution of the whole model.
It can be seen from Figure 5c that the heat conduction rate of the composite increases when
the mass fraction of flaky BN increases within the same time interval. Among them, the
upper surface temperature of S3/F30 1:4 is higher than that of any other model, indicating
that when the mass ratio of S3 to F30 is 1:4, the thermal conductivity of the composite is the
best, which is consistent with the measured results.
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4. Conclusions

In this work, a series of HDPE/BN composites were prepared by melt blending. The
effects of the mass ratio of hybrid BN on the microstructure, thermal stability, crystallization
properties, and TC of the composites were systematically investigated. The dispersion and
microstructure of fillers in the composite were studied through SEM. The results show
that BN particles were uniformly dispersed in the HDPE matrix, and there was no large
area of filler aggregation or a large number of pores. Studies on the crystal structure of the
matrix show that the hybrid BN contributes to the improvement of the crystallinity of the
composite because the hybrid BN provides more nucleation points for the crystallization of
HDPE. Thermogravimetric analysis shows that hybrid BN is beneficial for the improvement
of the thermal stability of the composites. In addition, the hybrid BN is beneficial for the
improvement of the TC of the composite, and the maximum increment of the thermal
conductivity relative to the matrix (1.648 Wm−1K−1) is 282.37%. This is because a few
small-particle-size spherical BN can fill the gaps between the large-particle-size fillers,
forming more heat conduction paths, thus increasing the average free path of phonons and
reducing heat loss in the heat flow process. The results of the finite element conduction
simulation are also consistent with the experimental results.
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