The Role of Lanthanum Stearate on Strain-Induced Crystallization and the Mechanical Properties of Whole Field Latex Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Methods
3. Results and Discussion
3.1. Cure Characteristics of SCR-WF with Different LaSt Loadings
3.2. Crosslink Density Measurements of SCR-WF with Different LaSt Loadings
3.3. Mechanical Properties of Vulcanized SCR-WF with Different LaSt Loadings
3.4. Strain-Induced Crystallization of Vulcanized SCR-WF with 2 phr LaSt and without LaSt
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Tang, Z.; Huang, J.; Guo, B.C.; Huang, G.S. Promoted strain-induced-crystallization in synthetic cis-1, 4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580–588. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yasuda, Y.; Makino, S.; Yamamoto, S.; Tosaka, M.; Senoo, K.; Kohjiya, S. Strain-induced crystallization of peroxide-crosslinked natural rubber. Polymer 2007, 48, 1171–1175. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liao, L.; Wang, R.; Yu, H.P.; Zheng, T.; Lian, Y.; Luo, M.C.; Liao, S.Q.; Liu, H.C.; Peng, Z. Research of strain induced crystallization and tensile properties of vulcanized natural rubber based on crosslink densities. Ind. Crop. Prod. 2023, 2, 117070. [Google Scholar] [CrossRef]
- Kitamura, Y.; Okada, K.; Masunaga, H.; Hikosaka, M. Role of strain rate in the strain-induced crystallization (SIC) of natural and synthetic isoprene rubber. Polym. J. 2019, 51, 221–226. [Google Scholar] [CrossRef]
- Katz, J.R. Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 1925, 13, 410–416. [Google Scholar] [CrossRef]
- Healey, A.M.; Hendra, P.J.; West, Y.D. A Fourier-transform Raman study of the strain-induced crystallization and cold crystallization of natural rubber. Polymer 1996, 37, 4009–4024. [Google Scholar] [CrossRef]
- Tanaka, Y. Structural characterization of natural polyisoprenes: Solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001, 74, 355–375. [Google Scholar] [CrossRef]
- Rault, J.; Marchal, J.; Judeinstein, P.; Albouy, P.A. Chain orientation in natural rubber, Part II: 2H-NMR study. Eur. Phys. J. E Soft Matter 2006, 21, 243–261. [Google Scholar] [CrossRef]
- Bekkedahl, N.; Wood, L.A. Crystallization of vulcanized rubber. Ind. Eng. Chem. 1941, 33, 381–384. [Google Scholar] [CrossRef]
- Cam, J.-B.L. A review of volume changes in rubbers: The effect of stretching. Rubber Chem. Technol. 2010, 83, 247–269. [Google Scholar] [CrossRef]
- Tosaka, M.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Hsiao, B.S. Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber. Polymer 2010, 42, 474–481. [Google Scholar] [CrossRef]
- Trabelsi, S.; Albouy, P.-A.; Rault, J. Crystallization and melting processes in vulcanized stretched natural rubber. Macromolecules 2003, 36, 7624–7639. [Google Scholar] [CrossRef]
- Candau, N.; Chazeau, L.; Chenal, J.-M.; Gauthier, C.; Ferreira, J.; Munch, E. Strain induced crystallization and melting of natural rubber during dynamic cycles. Phys. Chem. Chem. Phys. 2015, 17, 15331–15338. [Google Scholar] [CrossRef] [PubMed]
- Toki, S.; Che, J.; Rong, L.; Hsiao, B.S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress–strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 2013, 46, 5238–5248. [Google Scholar] [CrossRef]
- Candau, N.; Chazeau, L.; Chenal, J.M.; Gauthier, C.; Munch, E. A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates. Phys. Chem. Chem. Phys. 2016, 18, 3472–3481. [Google Scholar] [CrossRef]
- Yang, C.J.; Luo, Y.Y.; Peng, Z.; Xu, K.; Zhong, J. Comparison effects of lanthanum stearate and antioxidants in epoxidized natural rubber. J. Rare Earths 2015, 33, 1236–1240. [Google Scholar] [CrossRef]
- Qiu, G.M.; Zhou, L.X.; Zhang, M.; Nakakita, S.; Inoue, S.; Okamoto, H. Thermal oxidation resistance of rare earth containing composite Elastomer. J. Chin. Soc. Rare Earths 2001, 19, 192–197. (In Chinese) [Google Scholar]
- Qiu, G.M.; Zhou, L.X.; Zhang, M. Preparation and mechanical performance of rare earth- containing composite elastomer. J. Rare Earths 2001, 19, 260–265. [Google Scholar]
- Xie, C.; Jia, Z.X.; Jia, D.M.; Luo, Y.F.; You, C.J. The effect of Dy(III) complex with 2-mercaptobenzimidazole on the thermo-oxidation aging behavior of natural rubber vulcanizates. Int. J. Polym. Mater. 2010, 59, 663–679. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, L.; Zhao, X.; He, J.; Wang, A.; Chan, T.W.; Wu, S.Z. Effects of lanthanum complex on the thermo-oxidative aging of natural rubber. Polym. Degrad. Stabil. 2015, 120, 377–383. [Google Scholar] [CrossRef]
- Fang, L.; Song, Y.; Zhu, X.; Zheng, Q. Influence of lanthanum stearate as a co-stabilizer on stabilization efficiency of calcium/zinc stabilizers to polyvinyl chloride. Polym. Degrad. Stabil. 2009, 94, 845–850. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Yang, C.J.; Wang, Y.Q.; He, C.Z.; Zhong, J.P.; Liao, S.Q.; Peng, Z.; Liu, X.X. Effect of neodymium stearate on cure and mechanical properties of epoxidized natural rubber. J. Rare Earth 2012, 30, 721–724. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Yang, C.J.; Chen, B.Q.; Xu, K.; Zhong, J.P.; Peng, Z.; Lü, Z.; Wang, Q.H. Thermal degradation of epoxidized natural rubber in presence of neodymium stearate. J. Rare Earths 2013, 31, 526–530. [Google Scholar] [CrossRef]
- Bin Othman, A.; Chan, B.L. Effect of pH coagulation and sulphuric acid as a coagulant on natural rubber properties. J. Rubber Res. Inst. Malays. 1980, 28, 109–118. [Google Scholar]
- Chukwu, M.N.; Idiagha, J.A.; Ihuezor, M.O. Effect of acid coagulation level on the plasticity retention index (PRI) of natural rubber. Multidiscip. J. Res. Dev. 2010, 15, 1–4. [Google Scholar]
- Ng, J.W.; Othman, N.; Yusof, N.H. Various coagulation techniques and their impacts towards the properties of natural rubber latex from Hevea brasiliensis—A comprehensive review related to type application. Ind. Crops Prod. 2022, 181, 114835. [Google Scholar] [CrossRef]
- Li, S.D.; Chen, J.; Li, L.F.; Wang, Z.F.; Zhong, J.P.; Yang, L. Vulcanization characteristics of natural rubber coagulated by microorganisms. Rubber Chem. Technol. 2018, 91, 64–78. [Google Scholar] [CrossRef]
- ASTM D2084-01; Standard Test Method for Rubber Property—Vulcanization Using Oscillating Disk Cure Meter. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D412-06; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International: West Conshohocken, PA, USA, 2017.
- Greensmith, H.W. Rupture of rubber. X. The change in stored energy on making a small cut in a test piece held in simple extension. J. Appl. Polym. Sci. 1963, 7, 993–1002. [Google Scholar] [CrossRef]
- Ellis, B.; Welding, G. Estimation, from swelling, of the structural contribution of chemical reactions to the vulcanization of natural rubber. Part II. Estimation of equilibrium degree of swelling. Rubber Chem. Technol. 1964, 37, 571–575. [Google Scholar] [CrossRef]
- Albouy, P.-A.; Guillier, G.; Petermann, D.; Vieyres, A.; Sanseau, O.; Sotta, P. A stroboscopic X-ray apparatus for the study of the kinetics of strain-induced crystallization in natural rubber. Polymer 2012, 53, 3313–3324. [Google Scholar] [CrossRef]
- Albouy, P.-A.; Vieyres, A.; Pérez-Aparicio, R.; Sanséau, O.; Sotta, P. The impact of strain-induced crystallization on strain during mechanical cycling of cross-linked natural rubber. Polymer 2014, 55, 4022–4031. [Google Scholar] [CrossRef]
- Mitchell, G. A wide-angle X-ray study of the development of molecular orientation in crosslinked natural rubber. Polymer 1984, 25, 1562–1572. [Google Scholar] [CrossRef]
- Ismail, H.; Poh, B.T. Cure and tear properties of ENR 25/SMR L and ENR 50/SMR L blends. Eur. Polym. J. 2000, 36, 2403–2408. [Google Scholar] [CrossRef]
- Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Bamba, T.; Fukusaki, E.; Kobayashi, A.; Tanaka, Y. Structural characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 2005, 6, 1851–1857. [Google Scholar] [CrossRef]
- Huang, Y.; King, D.R.; Sun, T.L.; Nonoyama, T.; Kurokawa, T.; Nakajima, T.; Gong, J.P. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater. 2017, 27, 1605350–1605359. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, K.J.; Song, W.X.; Yan, S.K.; Zhao, X.Y.; Lu, Y.L.; Zhang, L.Q. The effect of epoxidation on strain-induced crystallization of epoxidized natural rubber. Macromol. Rapid. Comm. 2019, 40, 1900042. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J.; Xu, Z.Q.; Yue, D.M.; Wu, S.Z.; Yan, S.K.; Lu, Y.L.; Zhang, L.Q. Comparative study on the molecular chain orientation and strain-induced crystallization behaviors of HNBR with different acrylonitrile content under uniaxial stretching. Polymer 2021, 219, 123520. [Google Scholar] [CrossRef]
- Imbernon, L.; Pauchet, R.; Pire, M.; Albouy, P.-A.; Tencé-Girault, S.; Norvez, S. Strain-induced crystallization in sustainably crosslinked epoxidized natural rubber. Polymer 2016, 3, 189–197. [Google Scholar] [CrossRef]
- Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B.S. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 2004, 37, 3299–3309. [Google Scholar] [CrossRef]
- Fu, X.; Huang, G.; Xie, Z.; Xing, W. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv. 2015, 5, 25171–25182. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Chen, X.; Wang, Y.; Zhao, F.; Luo, M.; Liao, S. The role of non-rubber components on molecular network of natural rubber during accelerated storage. Polymers 2020, 12, 2880. [Google Scholar] [CrossRef]
- Heinrich, G.; Vilgis, T. Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 1993, 26, 1109–1119. [Google Scholar] [CrossRef]
- Nie, Y.; Huang, G.; Qu, L.; Wang, X.; Weng, G.; Wu, J. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52, 3234–3242. [Google Scholar] [CrossRef]
LaSt Loading | 0 | 0.5 | 1.0 | 1.5 | 2 |
---|---|---|---|---|---|
ML (dNm) | 0.801 | 0.409 | 0.451 | 0.461 | 0.515 |
MH (dNm) | 4.706 | 4.741 | 5.242 | 5.297 | 5.299 |
MH − ML (dNm) | 3.905 | 4.332 | 4.791 | 4.836 | 4.784 |
TS1 (min) | 3.84 | 3.13 | 3.05 | 2.87 | 2.95 |
T90 (min) | 22.03 | 21.67 | 21.77 | 22.07 | 21.97 |
CRI | 5.49 | 5.39 | 5.34 | 5.20 | 5.25 |
LaSt Loading | 0 | 0.5 | 1.0 | 1.5 | 2 |
---|---|---|---|---|---|
Swelling rate | 5.73 ± 0.04 | 5.57 ± 0.01 | 5.54 ± 0.04 | 5.38 ± 0.01 | 5.25 ± 0.03 |
Crosslink density (×10−5 mol·cm−3) | 10.56 ± 0.17 | 11.25 ± 0.05 | 11.44 ± 0.18 | 12.18 ± 0.06 | 12.90 ± 0.16 |
LaSt Loading | 0 | 0.5 | 1.0 | 1.5 | 2 |
---|---|---|---|---|---|
Tensile strength (MPa) | 18.12 ± 0.85 | 18.98 ± 1.18 | 20.61 ± 1.04 | 22.78 ± 1.04 | 23.01 ± 0.36 |
Elongation at break (%) | 813 ± 20 | 805 ± 14 | 797 ± 14 | 816 ± 16 | 809 ± 25 |
Modulus (100%) (MPa) | 0.51 ± 0.03 | 0.52 ± 0.02 | 0.55 ± 0.03 | 0.58 ± 0.03 | 0.59 ± 0.04 |
Modulus (300%) (MPa) | 1.24 ± 0.04 | 1.24 ± 0.01 | 1.33 ± 0.03 | 1.38 ± 0.04 | 1.40 ± 0.03 |
Modulus (500%) (MPa) | 2.84 ± 0.17 | 2.97 ± 0.03 | 3.32 ± 0.12 | 3.39 ± 0.21 | 3.44 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Luo, Y.; Li, Z.; Wei, C.; Liao, S. The Role of Lanthanum Stearate on Strain-Induced Crystallization and the Mechanical Properties of Whole Field Latex Rubber. Polymers 2024, 16, 276. https://doi.org/10.3390/polym16020276
Yang C, Luo Y, Li Z, Wei C, Liao S. The Role of Lanthanum Stearate on Strain-Induced Crystallization and the Mechanical Properties of Whole Field Latex Rubber. Polymers. 2024; 16(2):276. https://doi.org/10.3390/polym16020276
Chicago/Turabian StyleYang, Changjin, Yuhang Luo, Zechun Li, Chuanyu Wei, and Shuangquan Liao. 2024. "The Role of Lanthanum Stearate on Strain-Induced Crystallization and the Mechanical Properties of Whole Field Latex Rubber" Polymers 16, no. 2: 276. https://doi.org/10.3390/polym16020276
APA StyleYang, C., Luo, Y., Li, Z., Wei, C., & Liao, S. (2024). The Role of Lanthanum Stearate on Strain-Induced Crystallization and the Mechanical Properties of Whole Field Latex Rubber. Polymers, 16(2), 276. https://doi.org/10.3390/polym16020276