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Abstract: Essential for human development, water is increasingly polluted by diverse anthropogenic
activities, containing contaminants like organic dyes, acids, antibiotics, inorganic salts, and heavy
metals. Conventional methods fall short, prompting the exploration of advanced, cost-effective
remediation. Recent research focuses on sustainable adsorption, with nano-modifications enhancing
adsorbent efficacy against persistent waterborne pollutants. This review delves into recent advance-
ments (2020–2023) in sustainable biopolymeric nanocomposites, spotlighting the applications of
biopolymers like chitosan in wastewater remediation, particularly as adsorbents and filtration mem-
branes along with their mechanism. The advantages and drawbacks of various biopolymers have
also been discussed along with their modification in synthesizing biopolymeric nanocomposites by
combining the benefits of biodegradable polymers and nanomaterials for enhanced physiochemical
and mechanical properties for their application in wastewater treatment. The important functions
of biopolymeric nanocomposites by adsorbing, removing, and selectively targeting contaminants,
contributing to the purification and sustainable management of water resources, have also been elab-
orated on. Furthermore, it outlines the reusability and current challenges for the further exploration
of biopolymers in this burgeoning field for environmental applications.
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1. Introduction

Globally, human beings are facing two basic challenges, namely, the dearth of clean
water and its contamination. Water is a fundamental need to sustain life. Natural and
anthropogenic activities produce large quantities of micropollutants in water [1]. Industrial
development and advancements in agricultural techniques accelerate the accumulation
of non-degradable pollutants in aquatic life [2]. Organic and inorganic impurities end
up in lakes, rivers, or oceans, and the oxygen content in these is then affected [3]. The
organic content immediately starts consuming oxygen in the water, resulting in oxygen
deficiency, which in turn leads to the death of fish and other aquatic animals. This is due
to the unnaturally high consumption of oxygen by pollutants [4]. If inorganic nutrients
such as nitrogen and phosphorus are discharged into the water, they provide a food source
for algae and plankton. This new biomass is organic matter, and when it decomposes, it
consumes additional amounts of oxygen [4]. Small quantities of nutrients can create a large
amount of biomass and result in substantial oxygen depletion and extensive damage to the
aquatic system. The impact of effluents from the specified wastewater is contingent upon
the characteristics of the receiving water [5]. Discharges containing organic matter may
pose harm in certain contexts. Conversely, in other areas, the release of phosphorus and
nitrogen could lead to significant environmental harm by fostering biological growth [6].
Thus, it is imperative that the issuance of discharge permits and the selection of purification
methods aligns with the ecological requirements of the region [2]. The rapid surge in global
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population and widespread industrialization poses significant challenges in ensuring access
to safe drinking water [7]. This pressing issue underscores the urgency for the exploration
of effective and cost-efficient water treatment methods. Addressing this need is crucial for
sustaining the well-being of communities and ecosystems in the face of escalating demands
on freshwater resources [7,8].

Different techniques and methods are used to treat wastewater purposely to maintain
the quality and quantity of water contaminated by natural or anthropogenic activities [9].
Non-futuristic approaches like unplanned industrialization and urbanization and the use of
pesticides, synthetic fertilizers, and antibiotics or medical waste play a significant role in pol-
luting water; thus, the availability of freshwater is still a challenge [10]. Antifouling is one
of the critical problems for treating wastewater [11]. Conventionally, different modifications
have been observed in polysulfone membranes by adding poly(2-acrylamido-2-methyl-1-
propanesulfonic acid) and Cu2O for the ultrafiltration of proteins, BSA, and humic acid
from the water by increasing the antifouling properties [12,13]. A water treatment process
typically involves many important steps, which may vary in order and complexity, depend-
ing upon the kind of contamination present in water. For the elimination of contaminants,
different physical, chemical, and biological methods are recommended. The conventional
methods of water treatment involve the use of strong chemicals and organic media. The
main steps of water treatment are coagulation and flocculation [14,15]. Coagulation implies
the addition of coagulants like alum or ferric chloride to the water, which neutralizes
the electrical charges of particles present in wastewater, and flocculation implies soft stir-
ring to promote the formation of substantial particles that settle down easily [14,16]. The
process is followed by sedimentation, filtration, disinfection, and pH adjustment. The
introduction of membranes in water treatment upgraded the process by reducing its cost
and making it an eco-friendly approach [17]. To fulfil the demands of fresh water, recycling
and reusing contaminated water were adopted. The tertiary step in the water treatment
process concentrates on the removal of floating organic contaminants with phosphorus and
nitrogen [18]. Advance treatment includes advanced oxidation processes (AOPs), which
use strong oxidation reactions to break down complex and tenacious pollutants, membrane
bioreactors; use membrane filtration and constructed wetlands; and use wetlands to treat
wastewater [19–21]. Out of the throng of wastewater treatment processes, adsorption is
the most recommended process because of its comprehensibility, efficiency, regeneration
capacity, and cost-effectiveness [22]. The degree of adsorption is calculated using suitable
adsorbents for components; it is essential to elucidate the physical and chemical aspects of
the adsorbent and the related mechanism [23]. Since the effectiveness of each technique
depends on the specific characteristics of the wastewater and the targeted contaminants,
the choice of method often involves a combination of techniques to achieve optimal re-
sults. Table 1 depicts the advantages and disadvantages of different techniques utilized for
treating varying types of wastewaters.

Nanomaterials are practical and efficient solutions to get through major roadblocks in
creating effective remedial technologies for wastewater treatment [24]. The large surface-
to-volume ratio and numerous reactive sites of nanomaterials make them highly reactive
toward quick and efficient removal of water pollutants [25]. Nanostructured adsorbents can
be specifically designed to target pollutants and possess a substantial capability for address-
ing contaminated water [26,27]. There is also growing research focusing on the synthesis
of biodegradable polymers for wastewater remediation. Natural polymers called biopoly-
mers are either produced from sustainable natural resources or biosynthesized by living
organisms [28]. Biopolymers are mostly composed of polysaccharides, and polypeptides.
Biopolymers can be divided into three categories: nature-derived, chemically produced,
and microbial biopolymers [28,29]. Renewability, biocompatibility, environmental com-
patibility, biodegradability, and antimicrobial activity are only a few of the impressive
interrelated biological, physical, and chemical characteristics of biopolymers [29,30]. Re-
active functional groups such as carbonyl, amide, carboxyl, and hydroxyl are present in
the skeleton of biopolymers, which make them suitable for wastewater treatment [31].
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However, the cost inefficiency of the synthesis and purification procedures is a significant
problem that has been noticed throughout the scaling up of biopolymers [32]. Recently,
there has been a surge in the scientific significance of biopolymer nanocomposites owing
to their versatile applications in addressing environmental issues and remediation chal-
lenges [33]. Biopolymeric nanocomposites have been used to remove heavy metals, natural
organic matter, dyes, antibiotics, and other water pollutants such as coagulants, adsorbents,
flocculants, membranes, and photocatalytic agents [11,34]. Biopolymeric nanocomposites
have enhanced physiochemical, thermophysical, and mechanical properties compared to
nanomaterials and polymers [35]. Inorganic nanofillers such as metal and metal oxide
nanoparticles, nanoclays, and carbon nanomaterials can be included in a biopolymer matrix
to produce biopolymeric nanocomposites [36–38].

The primary objective of this comprehensive review is to conduct a thorough analysis
of the current status and progress in the field of biopolymeric nanocomposites, with a
specific focus on their utilization for water remediation. This review explores production
methods, properties, and applications of various biopolymeric nanocomposites, empha-
sizing particularly their role as filtration membranes and adsorbents in the context of
wastewater treatment. Beginning with a brief introduction and discussion of the ad-
vantages associated with biopolymeric nanocomposites, this review then covers diverse
synthesis methods, their properties, and recent advancements in applications and mod-
ifications in the composition of a biopolymeric nanocomposite. Furthermore, this paper
openly discusses the functions, mechanism, reusability, limitations, and challenges of these
materials, emphasizing their significant potential for further exploration and refinement in
the field of water remediation. Moreover, this review article supports and advances the
UN’s sustainable development goals, in particular, SDG 7 (Affordable and clean energy)
and SDG 13 (Climate Action). Figure 1 shows a comprehensive overview of global water
scarcity, the diverse array of pollutants impacting water quality, and stages of wastewater
treatment—primary, secondary, and tertiary—aimed at removing inorganic, organic, and
biological contaminants for effective water purification.
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Figure 1. General illustration of polluted water and technologies available. (A) Global scarcity of
water and pollution caused by (B) different pollutants, and (C) different stages of technologies for
wastewater treatment [39].
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Table 1. Advantages and disadvantages of different wastewater remediation techniques.

Technique Type of Wastewater Advantages Disadvantages Refs.

Filtration Pharmaceutical industry
Fish processing

Simple and widely applicable
Effective removal of

suspended solids

Limited removal of contaminants
Filter media can get clogged, require

frequent maintenance
[40,41]

Coagulation

Domestic sewage
Oil

Surface water
Algae-laden

Efficient removal of
colloidal particles

Enhances subsequent
filtration processes

Formation of sludge imposes on
proper disposal

Requires careful control of
coagulant dosage

[42]

Precipitation
Acidic decontamination of

radioactive concrete
Digested swine

Can reduce water hardness
Effective for the removal of

dissolved heavy metals

pH control is crucial for
precipitation reactions
Sludge production and

disposal challenges

[43,44]

Adsorption
Urban

Pharmaceutical
Organic

High efficiency in removing
organic pollutants

Versatile with various
adsorbent materials

Saturation of adsorption sites
over time

Regeneration of adsorbents
can be complex

[45–47]

Flocculation Pb (II)-polluted
groundwater

Aggregation of particles for
easier removal

Enhanced sedimentation
and filtration

Requires careful control of
flocculant dosage

Potential carryover of fine particles
[48]

Electrodialysis
N and P

High-salt organic
Carbocysteine

Selective removal of ions
Continuous operation with

minimal chemical usage

High energy consumption
Scaling on membranes may occur [49–51]

Membranes Textile
Microelectronic

Effective removal of particles,
microorganisms, and ions

Applicable for various
contaminants

High operational and
maintenance costs

Membrane fouling can
reduce efficiency

[52,53]

Ion
exchange

Cu (II), Ni (II)
Cu (II), Pb (II)

Municipal
Mining

Selective removal of specific ions
Regeneration allows for

extended use

Limited to ion-specific removal
High regeneration chemical usage [54–57]

2. Why Biopolymeric Nanocomposites?

In water remediation processes, biopolymeric nanocomposites serve several important
functions and advantages. Firstly, biopolymeric nanocomposites are often derived from
natural sources, making them environmentally friendly. Their use in water remediation
aligns with sustainable practices, contributing to eco-friendly and green approaches for
water treatment [58]. The adsorption capacity of biopolymeric nanocomposites enables
them to effectively remove pollutants from water. Biopolymeric nanocomposites, due to
their high surface area and functional groups, can adsorb or attract contaminants present in
water. Contaminants adhere to the surface or interact with the nanocomposite’s structure,
facilitating their separation from the water. This includes pollutants such as heavy metals,
dyes, organic compounds, antibiotics, and other impurities [59]. Additionally, biopolymeric
nanocomposites can act as filtration agents. They can be designed with specific properties
to trap or filter out particulate matter, microorganisms, microplastics, or other undesirable
components from water, contributing to improved water quality [60]. Some biopolymeric
nanocomposites possess ion exchange capabilities. This means they can exchange ions with
contaminants in water, effectively reducing the concentration of harmful substances [61,62].
Furthermore, a notable feature of certain biopolymeric nanocomposites is their ability to be
regenerated and reused. After adsorbing contaminants, these nanocomposites can undergo
a regeneration process, allowing them to maintain their adsorption capacity for multiple
treatment cycles [63]. Interestingly, some biopolymeric nanocomposites can be tailored
for selective binding to specific contaminants, such as antibiotics or other chemical com-
pounds. This selectivity enhances their efficiency in targeting particular pollutants without
affecting the overall composition of water [64,65]. In summary, biopolymeric nanocom-
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posites play a pivotal role in water remediation by adsorbing, removing, and selectively
targeting contaminants, contributing to the purification and sustainable management of
water resources.

3. Biopolymeric Nanocomposites

Biopolymers are defined as degradable polymers derived from natural sources such
as chitosan, alginate, pectin, lignin, starch, cellulose, etc., along with some biodegradable
synthetic polymers such as polylactic acid, polyhydroxybutyrate, polyhydroxyalkanoates,
etc., and play a vital role in the formation of biopolymeric nanocomposites [28,66–70].
Those derived from synthetic sources, however, are not renewable and do not entirely
adhere to the notions of renewability and degradability. Biopolymer-based nanocomposites
are also known as bionanocomposites by some researchers [71]. The unique structure,
physiochemical characteristics, chemical stability, and high reactivity of biopolymers make
them attractive candidates. The presence of functional groups on biopolymers facilitates
the absorption of water pollutants, and hence, biopolymers are suitable for wastewater
treatment. Polysaccharides are one of the biopolymers that are frequently used because of
their eco-friendliness, biodegradability, nontoxicity, etc. Through physical and chemical
interactions, they can also bind to various substances [28]. They are the perfect choice
for water treatment because of their adsorption capabilities [72]. Due to the growing
societal concern for the environment, environmentally friendly and sustainable concerns
have a wide spectrum of appeal. As a result, materials are created according to their life
cycle between extraction and disposal. In the cycle, it is also necessary to assess their
negative effects on the environment. The utilization of renewable sources rather than
synthetic ones to make environmentally friendly polymeric nanocomposites, known as
biopolymeric nanocomposites, avoids the challenges associated with plastic waste. These
materials are entirely renewable in terms of energy and biodegradable, in addition to being
environmentally benign. As a result, these materials can be disposed of at the end of
their useful lives without endangering the environment. Biopolymeric nanocomposites
use inorganic nanoparticles as nanofillers distributed in an organic biopolymer matrix
to combine the advantages of both [33]. Nanofillers are classified as zero-dimensional
(0D), one-dimensional (1D), and two-dimensional (2D) nanofillers depending on their
dimensions in the nanoscale region. Fillers with all dimensions less than 100 nm are
referred to as 0D nanofillers. Similarly, fillers with one or two dimensions less than 100 nm
are called 2D and 1D nanofillers, respectively [73,74]. The morphology of the produced
biopolymeric nanocomposites, the size of the nanomaterials, and the class of the polymers
are some parameters to categorize biopolymeric nanocomposites [75,76].

Among the array of biopolymers, chitosan stands out due to its notable antimicrobial
attributes, biodegradability, and impressive gelation properties [77]. These qualities posi-
tion it as an exemplary material with versatile applications, extending beyond wastewater
treatment to various scientific and technological fields. Non-toxicity, biodegradability,
antimicrobial, antioxidant, and biocompatibility properties are significant beneficial proper-
ties of chitosan, which make it a universal biopolymeric nanocomposite candidate [66]. The
positively charged amino groups present on the surface of chitosan enable its interaction
with negatively charged contaminants or ions. Due to this reason, the application of chi-
tosan is not only confined to environmental applications but also emerges in different fields
of science and technology. Biopolymers such as chitosan with its distinctive gel-forming
capacity, particularly when coupled with nanoparticles like Ag ZnO, TiO2, etc., [73,74,78]
in bionanocomposites or nanocomposites, hold great promise in food packaging [79],
biomedical [78,80,81], and textile applications [82,83], in addition to environmental applica-
tions [84,85]. Accompanied by interesting characteristics, chitosan has some drawbacks as
well including limited selectivity for certain contaminants.

Alginate, derived from seaweed, has gel-forming ability in the presence of divalent
cations and therefore it has good affinity toward metal ions and organic pollutants. It is
biocompatible and suitable for encapsulation. However, it lacks in maintaining mechanical
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strength, stability, and preventing disintegration in aggressive chemical environments,
which can affect its performance. Similarly, all the biopolymers have some pros and
cons for their utilization in wastewater treatment. Table 2 describes the advantageous
characteristics and limitations of biopolymers in wastewater treatment.

Table 2. Advantages and limitations of biopolymers in wastewater remediation.

Biopolymers Advantages Limitations Refs.

Chitosan

High surface area and porosity
High cationic charge density enables effective

adsorption of anionic contaminants
Biodegradable and environmentally friendly

Versatile in various forms (powder, beads,
membranes) for diverse
wastewater applications

Limited stability in acidic conditions,
impacting its performance in

low-pH environments
Relatively high production cost compared to

some other biopolymers
Regeneration for reuse can be challenging and

may affect adsorption efficiency

[86–90]

Cellulose

Abundant and renewable, derived from
plant sources

Chemically modifiable for enhanced
adsorption properties

High surface area and porosity contribute to
effective pollutant removal

Limited solubility in common solvents,
affecting its processability

May require chemical modification to tailor
adsorption characteristics

Production processes may involve
energy-intensive treatments

[91–95]

Starch

Abundant, renewable, and cost-effective
Chemically modifiable to enhance

adsorption capacity
Biodegradable and environmentally friendly

Relatively low mechanical strength in its
native form

Requires processing to improve stability
and functionality

Limited in applications requiring
high-temperature stability

[96,97]

Alginate

Gel-forming properties in the presence of
divalent cations

Good affinity for metal ions and certain
organic pollutants

Biocompatible and suitable for
encapsulation applications

Limited mechanical strength, which can affect
its performance in certain applications
Challenges in maintaining stability and
preventing disintegration in aggressive

chemical environments
Possibility of cation exchange with divalent
cations in water, leading to gel breakdown

[98–101]

Xanthan gum

High viscosity and excellent
water-holding capacity

Anionic nature facilitates interaction with
cationic contaminants

Rheological properties make it suitable for
gel formation

High viscosity, which may hinder its
dispersion and mixing in certain wastewater

treatment processes
Susceptibility to microbial degradation,

affecting its long-term stability
Limited adsorption capacity for certain types

of contaminants compared to
other biopolymers

[102–104]

Lignin

High aromatic content and complex structure
Adsorption capacity for various pollutants due

to functional groups
Renewable and abundant, contributing

to sustainability

Complex and heterogeneous structure, making
it challenging to control and optimize for

specific applications
Limited solubility in water, which can impact

its effectiveness in certain wastewater
treatment scenarios

The presence of impurities in lignin from
various sources may affect its performance

and reliability

[105–107]

Pectin

Biodegradable and environment-friendly
Effective for the removal of specific pollutants

from wastewater
Structural feasibility for chemical modification

to enhance adsorption

Limited biodegradability in certain wastewater
treatment conditions, potentially leading to

persistence in the environment
Challenging processing while converting

pectin into effective adsorbent forms
Specific adsorption capabilities for

certain pollutants

[108,109]
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Table 2. Cont.

Biopolymers Advantages Limitations Refs.

Carrageenan

Sulfated polysaccharide derived from
red seaweed

High binding affinity for metal ions and dyes
Gel-forming properties enhance encapsulation

of contaminants

Limited adsorption capacity for certain
heavy metals

The cost of production can be higher compared
to other biopolymers

May exhibit variability in performance based
on carrageenan subtype

[108,110]

Pullulan

Water-soluble polysaccharide produced
by yeast

Forms inclusion complexes with
various pollutants

Biodegradable and suitable for
controlled-release applications

Limited applicability to specific pollutants
Relatively higher production costs

Susceptible to microbial degradation under
certain conditions

[111–113]

Cyclodextrin

Cyclic oligosaccharides with a hydrophobic
core and hydrophilic exterior

Forms host–guest inclusion complexes with
organic pollutants

Enhances solubility and bioavailability of
certain contaminants

Limited adsorption capacity for
larger molecules

Higher cost compared to some
other biopolymers

Release of captured pollutants may require
additional processes

[114–116]

Polylactic acid
(PLA)

Biodegradable and eco-friendly
Chemically modified PLA exhibits improved

adsorption of pollutants
Versatility in pollutant removal

Processing challenges for adsorbent forms
High implementation costs

Adsorbing specific pollutants may vary,
requiring consideration of

targeted contaminants

[117–119]

Polyvinyl
alcohol (PVA)

Biodegradable and eco-friendly
Adaptable for various forms, such as films,

fibers, and gels
Allows for chemical modification to tailor

its properties

Biodegradation of PVA is influenced by
specific environmental conditions, and

complete degradation may require
extended periods

Incomplete degradation of PVA in wastewater
treatment systems may lead to the

accumulation of residuals, raising concerns
about long-term environmental impact

[120–122]

4. Synthesis of Biopolymeric Nanocomposites

Biopolymeric or polymeric nanocomposites, in general, have been synthesized using
various methods, such as the template synthesis method, melt intercalation, polymer
intercalation from a solution, and the in situ polymerization method as mentioned in
Figure 2.
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In the template method, filler material is synthesized in the presence of a polymer
matrix at high temperatures. Consequently, the polymer facilitates the initiation and
expansion of the inorganic host crystals while ensnaring them within its layers. Although
it has the potential to produce exfoliated nanocomposites, filler aggregation cannot be
neglected [123].

In the melt intercalation process, the high-molecular-weight polymer is heated to a
high melting point and combined with the filler as the polymer melts. As a result, neither a
solvent nor a chemical synthesis is required in this procedure. However, this procedure
can be difficult for high-molecular-weight polymer chains in the filler interlayers owing to
the thermodynamic and kinetic impacts on intercalation. Therefore, filler modification is
necessary for exfoliating the polymer matrix under shear action [123].

In polymer intercalation using the solution method, the polymer is soluble in a solvent
while the nanoparticles are dispersed in a solvent. In the aftermath, the polymer adheres to
the delaminated sheets, with subsequent solvent evaporation. As the sheets reassemble
during solvent evaporation, they entrap the polymer chains within their layers. This
process results in the formation of a multilayered structure [124].

In the in situ intercalation method, the layered particle undergoes swelling in the
monomer, initiating monomer polymerization thereafter. The resulting structure is consid-
erably intercalated or exfoliated because of the monomer being present both inside and
outside of the filler interlayers. This procedure results in the formation of stable nanocom-
posites [125,126]. To produce polymer nanocomposite materials, the selection of precursors,
design, and synthetic techniques is crucial. Producing polymeric nanocomposites with
specified properties involves a meticulous selection of monomers, fillers, and other com-
posite materials, along with the application of distinct synthesis techniques. This highlights
how important the design and synthesis processes are in the production of polymeric
nanocomposites [127].

Chemical and mechanical methods are mostly efficient techniques for improving the
dispersion of nanoparticles in polymeric nanocomposites. Enhancing the interaction or sur-
face area between polymer matrices and nanoparticles is crucial in the design of polymeric
nanocomposites [128]. The utilization of a surfactant is thought to be a useful method for en-
hancing the interaction between the organic phase of the polymer matrix and the inorganic
phase of the nanoparticles. Several studies demonstrated the use of silane as a surfactant for
inorganic phase surface modification and increasing their dispersion in the polymer matrix.
The esterification process of hydrolyzed vinyltrimethoxysilane in an alcoholic solution
was used to successfully silanize nanodiamonds [129]. Nanoparticles are compelled to
disperse across the polymer matrix through agitation, one of the mechanical procedures.
Ultrasonic or high-frequency sonication dispersion is also beneficial in this area since it
offers more uniform dispersion as opposed to agitation approaches [130]. Nanoparticle
aggregation problems can also be resolved via atomic layer deposition and plasma-assisted
mechanochemistry [130]. There are various surfactants used for inorganic phase surface
modification in polymer matrices. However, depending on the specific materials and
applications, different surfactants may be employed. For the wastewater remediation pro-
cess, the surfactants can either be cationic, for example, cetyltrimethylammonium bromide
(CTAB) [131], used for the surface modification of negatively charged inorganic particles,
or anionic (sodium dodecyl sulfate, sodium lauryl ether sulphate) [132,133] with vice versa
surface modification, or non-ionic surfactants (Triton X-100, polyoxyethylene glycerol es-
ter) [134], which do not possess a charged head, and are generally used for the dispersion of
hydrophobic pollutants and oil droplets in wastewater. Additionally, triblock copolymers
such as pluronic surfactants are used in wastewater treatment for the stabilization and
dispersion of nanoparticles or colloids [135,136]. Furthermore, fluorinated surfactants, for
example, perfluorooctanoic acid (PFOA), are also employed for the treatment of fluorinated
compounds of industrial wastewater [137].
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5. Properties of Polymeric and Biopolymeric Nanocomposites

The advancement of suitable polymer nanocomposites has significantly augmented
the advantageous attributes of polymers, potentially introducing a novel set of features
for the resultant materials, as depicted in Figure 3. The extent of improvement, however,
hinges on factors such as the nanomaterial’s shape, size, aspect ratio, dispersion state,
and interfacial interactions with the polymer matrix. The enhancement of mechanical
properties, including the tensile strength, modulus, or stiffness, is often a primary motive for
incorporating nanoparticles into polymer matrices. Nonetheless, achieving even dispersion
is crucial, as poor compatibility between polymer matrices and inorganic particles can
lead to flaws that adversely affect the mechanical properties of polymer nanocomposites.
Utilizing nanoparticles has proven effective in addressing the dimensional stability of neat
polymers at elevated temperatures, attributed to their high thermal expansion coefficient,
contributing to the overall improvement in thermal stability [71]. Polymer materials often
have low electrical conductivity. Conductive polymeric nanocomposites are made possible
by combining polymer matrices with conductive nanoparticles and are useful in electronic
circuits. These goods exhibit not just electrical conductivity but also particular polymeric
component characteristics, including flexibility and cheap production costs [126,138].
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In another aspect, biopolymeric nanocomposites exhibit a range of properties that
make them advantageous for various applications, particularly in wastewater treatment.
Some key properties include the following: Enhanced mechanical strength—biopolymeric
nanocomposites often display improved mechanical properties compared to their indi-
vidual components. The addition of nanomaterials reinforces the structural integrity of
the biopolymer, enhancing its overall strength. High surface area—the nanoscale fea-
tures of these composites contribute to a large surface-to-volume ratio. This property
increases the available surface area for interactions, making them effective in adsorp-
tion processes. Biodegradability—biopolymeric components, such as chitosan, are inher-
ently biodegradable. When combined with nanomaterials, the resulting nanocompos-
ites often maintain biodegradability, making them environmentally friendly. Tailored
porosity—nanocomposites can be engineered to have specific porosity levels. This tunable
porosity enhances their adsorption capacity, making them suitable for capturing pollutants
in wastewater. Chemical stability—the combination of biopolymers and nanomaterials
can lead to enhanced chemical stability, ensuring the composite remains robust in various
environmental conditions. Selective adsorption—the presence of nanomaterials provides
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selective adsorption capabilities, allowing the nanocomposites to target specific pollutants
or contaminants in wastewater. Thermal stability—the incorporation of nanomaterials
often improves the thermal stability of biopolymeric nanocomposites, making them suit-
able for applications involving varying temperature conditions. Versatility—biopolymeric
nanocomposites can be versatile in terms of composition and structure, allowing for cus-
tomization based on specific wastewater treatment requirements. Understanding and
leveraging these properties contribute to the effectiveness of biopolymeric nanocomposites
in addressing challenges related to water pollution and wastewater treatment.

6. Applications of Biopolymeric Nanocomposites in Wastewater Remediation

One of the significant hurdles to achieving sustainability and an eco-friendly world
is protecting the existing water resources. Less than 1% of the world’s water supply is
considered clean, while the remaining water is polluted as per international standards [139].
Municipal wastewater, industrial waste, and agricultural practices are the main causes of
water contamination. Among the diverse categories of pollutants, including organic acids,
heavy metals, pesticides, fertilizers, dyes, phenolic compounds, halogenated chemicals,
and microorganisms, it is noteworthy that certain examples within each category exhibit
dual characteristics of toxicity and non-biodegradability [34,84,140–144]. The intake of
contaminated water also contributes to several ailments, such as cancer, fever, diarrhea,
nasal septum rupture, skin irritation, chills, ulcers, organ damage, headache, abdominal
pain, appetite loss, and a lot more. To ensure that all living species have access to clean
water, these pollutants must be removed. In this respect, multiple cutting-edge technologies
for water purification have since been created.

Conventional wastewater treatment plants mitigate water pollution by eliminating or-
ganic and suspended solids. However, with evolving standards and treatment approaches,
there is a growing emphasis on the removal of both hazardous substances and organic
matter. The methods used to remove these pollutants from sewage can be divided into
three groups: physical, biological, and mechanical. There are several methods for treating
contaminated water, including filtration, coagulation, precipitation, adsorption, floccula-
tion, electrodialysis, membrane technologies, and ion exchange. Each of these procedures
has both advantages and disadvantages. For instance, the precipitation process produces
waste, which must be treated before disposal. The ion exchangers are quickly contam-
inated, lowering their capability for exchanging ions. However, considerable amounts
of non-recyclable waste are produced during the flocculation and coagulation processes.
Electrodialysis has limited application owing to its high operating costs and energy needs,
while photocatalytic techniques require a lengthy reaction time to be effective. Adsorption
and membrane technologies have gained a lot of attention in the past few years for water
treatment. These techniques are also lacking in several areas that need to be addressed to
make them an inexpensive and suitable solution for industrial use [145]. Recently, biopoly-
meric nanocomposites have become popular as filtration membranes and adsorbents for
wastewater treatment.

6.1. Biopolymeric Nanocomposites as Filtration Membranes

Biopolymer-nanocomposite-based filtration membranes leverage the unique prop-
erties of nanomaterials integrated into biopolymer matrices, offering enhanced filtration
performance, improved mechanical strength, and heightened resistance to fouling. These
membranes hold great promise for diverse applications in water purification, separation
processes, and environmental remediation. Both academia and industry have paid signifi-
cant attention to water filtration membranes for desalination, microbial treatment, and ion
permeation. Membrane-based separation technologies represent a pinnacle in advanced
separation methodologies, lauded for their simplicity, adaptability, and cost-effectiveness.
Operating as selective barriers, membranes facilitate the passage of desired materials while
detaining undesired substances on their surface. Offering a diverse array of separation
techniques, including ultrafiltration, reverse osmosis, and nanofiltration, these membranes
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stand out for their energy efficiency by eliminating the need for phase change and exhibit
exceptional selectivity in removing trace pollutants from water [146].

Various membrane technologies cater to specific separation requirements, such as
ultrafiltration, microfiltration, nanofiltration, forward and reverse osmosis, gas separa-
tion, membrane distillation, pervaporation, membrane bioreactors, and separation using
liquid membranes, as represented in Figure 4. Reverse osmosis (RO) and nanofiltration
membranes are especially extensively employed due to their high-water permeability,
low-pressure requirements, and cost-effectiveness.
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In the realm of wastewater treatment using adsorptive membranes, two fundamental
approaches come into play: adsorption and rejection. When water-borne solutes encounter
the membrane’s active layer, molecular sieving and filtration work collaboratively to reject
solutes larger than the pore size. Simultaneously, smaller solutes penetrate the support
layer, which acts as an adsorption microsphere. As these smaller solutes pass through the
active layer, they form complexes, ultimately resulting in the production of filtered water
through the absorptive membrane. This multifaceted process showcases the versatility and
efficacy of membrane-based separation technologies in addressing the challenges of water
purification and pollutant removal [34,84].

Inorganic membranes offer strong mechanical, structural, and thermal resistance. De-
spite their great selectivity, they are not suited for a wide range of applications due to
their limited permeability. On the other hand, polymeric membranes have a low cost, easy
manufacturing, excellent flexibility, chemical stability, and mechanical strength. Polyvinyl
alcohol (PVA), polyether sulfone (PES), polyamide (PA), polyethylene (PE), polyvinylidene
fluoride (PVDF), polyvinyl chloride (PVC), polypropylene (PP), polyacrylonitrile (PAN),
polyimide (PI), chitosan, and alginate [147] are among the materials used to make poly-
meric membranes. Poly(ethylene glycol) (PEG), a non-biodegradable yet non-toxic polymer,
undergoes modification with poly(vinylidene fluoride-co-hexafluoropropylene), incorporat-
ing methoxy PEG. This modification results in a material achieving a 99% rejection of humic
acid and displaying robust antifouling properties, albeit with environmental considerations
due to its non-biodegradable nature [28]. There are various reports on the use of polymeric
membranes as filtration membranes for removing pollutants. However, there are several
issues with the thermal and mechanical characteristics of current polymeric membranes
used in water treatment techniques [148]. Filtration can be improved by using nanocom-
posite membranes, mixtures of nanofillers, and polymeric membranes. Nanofillers, which
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comprise metal/metal oxide nanoparticles and carbon-based nanoparticles, have received
a lot of interest. It has been demonstrated that biopolymeric nanocomposites may success-
fully remove a variety of contaminants from wastewater to acceptable levels. Polymeric
adsorptive membranes are powerful water pollution remediation solutions. Various kinds
of persistent and developing chemical contaminants that are resistant to current approaches
can be removed from wastewater using cellulosic and other polymeric membranes. Biopoly-
meric membranes captivate attention through their compelling integration of adsorption
and filtration mechanisms. These membranes not only enhance membrane permeability
but also elevate selectivity, rejection rates, and adsorption capacity. In addition to these
performance improvements, the utilization of adsorptive membranes effectively tackles
fouling issues, contributes to reduced operational costs, and enhances the reusability of the
adsorbent. This harmonious synergy of adsorption and filtration mechanisms positions
biopolymeric membranes as a promising avenue for advanced separation technologies.
Several studies have been conducted to investigate the efficacy of biopolymeric nanocom-
posites in the removal of antibiotics from water sources. These investigations reveal the
pivotal role played by these nanocomposites in the removal process.

In a study, Moradi et al. developed a high-performance thin-film composite nanofiltra-
tion membrane for antibiotic removal in pharmaceutical wastewater treatment. Utilizing
furosemide-modified chitosan (CS@FS) composite-assisted pectin (PC) functionalization,
the polyethersulfone (PES) nanofiltration membrane is enhanced in physicochemical char-
acteristics, such as a smoother membrane surface and a reduced water contact angle. The
optimized TFC membrane, TFC-0.5, achieves a 47.8 L/m2 h pure water flux, 94.2% flux
recovery ratio, and 5.8% irreversible fouling ratio. Additionally, the CS@FS-co-PC nanofil-
tration membranes excel in pharmaceutical wastewater treatment, with a 92.0% ± 1.1
COD removal efficiency, 56.1 ± 1.0% TDS removal, and whole turbidity removal. The
membrane’s high antibiotic rejection and antifouling abilities make it promising for phar-
maceutical wastewater treatment applications [149]. Similarly, Gopal et al. have developed
a nanocomposite for the removal of antibiotics from water, employing clay-nanosheets
supported with an Fe-Cu nanocomposite. This innovative approach involves immobilizing
the composite in a biodegradable chitosan-coated alginate–carboxymethyl chitosan matrix,
forming nanocomposite beads suitable for use in column reactors. The study demonstrates
effective ciprofloxacin (CIPRO) removal, achieving approximately 90% under optimal con-
ditions in the batch mode, with a maximum removal capacity of 485.58 mg/g according to
the Langmuir isotherm. Additionally, the nanocomposite’s performance is assessed against
various environmental factors, including salts (NaCl and CaCl2) and micro-contaminants
(humic acid and polyethylene), providing valuable insights into its robustness. The research
explores reaction parameters in column reactors, such as the flow rate, initial CIPRO con-
centration, and bed height. The study also evaluates the residual toxicity of the composite
beads, confirming a substantial reduction in toxic effects on environmentally relevant algae
(Chlorella sp. and Scenedesmus obliquus) [150]. Palacio et al. tackled the global challenge
of antibiotic contaminants in water, focusing on nalidixic acid removal using two cationic
polymers: poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan.
The removal processes are governed by electrostatic interactions, π–π interactions, and
hydrogen bonding, as revealed by their effectiveness under varying conditions, with dis-
tinct removal rates—75.0% at pH 9 for poly[(4-vinylbenzyl) trimethylammonium chloride]
and 65.0% at pH 7 for alkylated N-chitosan [151]. Valizadeh et al. innovatively tackled
tetracycline (TC) antibiotic pollution by introducing a zinc ferrite/chitosan–curdlan mag-
netic composite. This environmentally friendly adsorbent proved to be highly efficient in
TC removal, with optimal conditions at pH 6 and a composite dosage of 0.65 g/L. The
adsorption process adhered to pseudo-first-order kinetics and Langmuir isotherm models,
revealing a maximum adsorption capacity of 371.42 mg/g at 328 K. A thermodynamic
analysis suggested a spontaneous endothermic result and adsorption. The magnetic com-
posite demonstrated easy separation, regeneration capability, and consistent stability over
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successive cycles, and was a cost-effective solution for removing pharmaceutical pollutants
from water [152].

Rawat et al. have recently developed chitosan-based beads by using an iron oxyhy-
droxide metal nanocomposite for the ultrafiltration of contaminated water and removing
arsenic. Their study revealed that a dose of 2 g/L of IICBs can remove arsenic to <10 µg/L
permissible limits (Figure 5) [153]. Similarly, an alginate-based nanocomposite has been
developed by Ehsan et al. in association with a graphene oxide (GO) carbon network for the
separation of oil from water, as depicted in Figure 6 [154]. The utilization of biopolymeric
materials, combined with nanotechnology, presents a promising avenue for addressing the
environmental concern of antibiotic contamination in water.

Polymers 2024, 16, x FOR PEER REVIEW 14 of 37 
 

 

the separation of oil from water, as depicted in Figure 6 [154]. The utilization of biopoly-
meric materials, combined with nanotechnology, presents a promising avenue for ad-
dressing the environmental concern of antibiotic contamination in water. 

 
Figure 5. Schematic representation of conventional treatment of contaminated water with adsorp-
tion (left) and with ultrafiltration membranes (right) by using iron oxyhydroxide chitosan beads 
(IICBs) as the biopolymeric-chitosan-based bionanocomposite [153]. 

 

Figure 5. Schematic representation of conventional treatment of contaminated water with adsorption
(left) and with ultrafiltration membranes (right) by using iron oxyhydroxide chitosan beads (IICBs)
as the biopolymeric-chitosan-based bionanocomposite [153].

Mechanism

The size exclusion mechanism operates by permitting molecules with dimensions
smaller than the pore size to traverse the membrane, while larger species are impeded.
Membranes featuring an accumulation of surface electric charge repel species carrying the
same surface charges, facilitating the passage of neutral species as shown in Figure 7. The
performance of membrane separation processes is significantly influenced by the physical
and chemical interactions between chemicals and the membrane [58].

For instance, hydrophobic pollutants can engage in interactions with hydrophobic
membrane surfaces through hydrophobic interactions, leading to the adsorption and
retention of these species on the solid membrane. Conversely, the formation of biofilm
on the membrane enhances the hydrophilicity of the surface, resulting in the rejection
of hydrophobic pollutant species [58]. The mechanism of the separation of the rejection
of pollutants such as inorganic salts, organic dyes, and heavy metal ions by using the
biopolymeric nanocomposite membranes for nanofiltration is depicted in Figure 7 [155].
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The exceptional nanofiltration performance and stability of the thin-film composite
nanofiltration membrane composed of a chitosan hydrogel covalent organic framework
interlayered with tannic acid-Fe3+ involve the establishment of stable chemical bonding
interaction between the substrate and polyamide layer and an increase in the degree of cross-
linking within the polyamide layer, along with reduced thickness. The water permeability
reached 16.17 L m−2 h−1 bar−1, marking a substantial increase to 185% compared to the
TFC-control membrane’s 8.74 L m−2 h−1 bar−1. Furthermore, the membrane exhibited high
rejections for norfloxacin (94.89%), ciprofloxacin (99.07%), and ofloxacin (99.10%). Notably,
the flux recovery rate was impressive at 98.32% (alginate) and 97.99% (BSA), indicating
remarkable antifouling performance (Figure 8) [156].
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In recent years, the escalating global need for lithium resources has been fueled by
the rapid expansion of the new energy sector. Regarding this, Zhang et al. have designed
nanofiltration membranes, specifically with a positive charge, by utilizing modified chitosan
as hydroxypropyltrimethyl ammonium chloride chitosan (HACC). The study revealed
decreased thickness and increased hydrophilicity due to the interfacial polymerization
process with HACC. Moreover, pore size remained unchanged, while the incorporation
of the quaternary ammonium group in HACC significantly enhanced the antibacterial
efficacy of the nanofiltration membranes. The optimized nanofiltration membrane, NF-
HACC-0.3, significantly improved the separation factor and doubled the flux compared to
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the original membrane. This innovative approach of modified biopolymeric membranes
shows high-performance capabilities in effectively separating magnesium ions (Mg2+) and
lithium ions (Li+), and therefore serves as a valuable solution for the extraction as well as
recovery of lithium resources from brine, addressing the growing demand in a sustainable
manner [157]. Table 3 represents several biopolymer nanocomposite membranes that have
been employed to filter out various types of water contaminants, along with treatment
technology and their advantages.
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Figure 8. Pictorial representation of a thin-film composite nanofiltration membrane composed
of chitosan hydrogel covalent organic framework interlayered with tannic acid-Fe3+ to remove
norfloxacin, ciprofloxacin, and ofloxacin antibiotics from water [156].

Table 3. Recent studies on wastewater remediation by several biopolymeric nanocomposites as
filtration membranes.

Nanocomposite Type of
Membrane Pollutant Flux Recovery

Ratio/Rate Advantages Application Refs.

Chitosan–iron
oxyhydroxide

beads
Ultrafiltration Arsenic -

Removal of toxic
arsenic, reduction in
fouling by 32 ± 2%

Portable
drinking water [153]

Alginate-GO Nanocomposite Oil >88%

93.26% oil removal
efficiency, good

antifouling with 90%
protein rejection rate

Oil–water
separation [154]

Chitosan-
Fe3O4-SiO2

Nanofiltration

Na2SO4, MgSO4,
NaCl MgCl2, Pb2+,
Cu2+, Cd2+, dyes

(MB, CR, RB5)

Water flux:
70.6 L m–2 h−1

High performance,
high efficiency of
heavy metal ion

removal (98%), high
rate of desalination,

high retention of
anionic dyes (BR5
and CR; ~98.2%)

Wastewater
treatment [155]
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Table 3. Cont.

Nanocomposite Type of
Membrane Pollutant Flux Recovery

Ratio/Rate Advantages Application Refs.

Chitosan-CNT Nanofiltration Brackish water Water flux:
80.26 L/m2·h

95.5% salt rejection at
40 ◦C, remarkable

water flux

Safe drinking
water [158]

Chitosan-PLA-
Ag nanowires Nanofibrous E. coli and S. aureus

bacteria
Ag leach out:

0.003 ppm, 36 h

Excellent
antibacterial activity
and removal of heavy

ion contaminants

Potable
drinking water [159]

Chitosan Ultrafiltration Organic matter,
inorganic salt 95%

Enhanced separation
efficiencies,

antifouling, and
hydrophilicity, and
reduced pore size

High-quality
drinking water [160]

Chitosan-GO Nanocomposite Bathroom
greywater

Permeation:
23.43 kg/m2 h

at 4 bars

High greywater
treatment efficiency,
improved porosity

and water flux
permeation,

non-detectable
pathogen inhibition

Reuse in
non-potable
application

[161]

Chitosan-Mil-
125Ti

nanoparticles
Nanofiltration

Organic dye,
antibiotic, NaCl,

Na2SO4, and heavy
metal

98% in bovine
serum albumin
(BSA) filtration

Enhanced
performance for

antifouling and high
separation efficiency

Performance
improvement in

polyethersul-
fone (PES)

membranes

[162]

Chitosan-MoS2-
GO Nanocomposite Organic matter

(dye, humic acid)
5.1 L m−2 h−1

bar−1

High porosity,
95–100% color

removal, fast kinetics
per filtration cycle,
100% (1 ppm) total

organic content
(TOC) removal

Separation and
catalytic

degradation of
methyl orange

organic dye

[163]

Chitosan-
aminopropy-
lsilane-GO

Nanocomposite
Pb (II) ion, C.I.

Reactive Blue 50
and Green 19

>90%, water
flux:

123.8 L/m2 h

98% BSA rejection,
high removal

efficiency (82%,
Pb(II); 90.5%,

Reactive Blue 50; and
98.5%, Reactive

Green 19), and good
antifouling
properties

Filutration and
separation [164]

Chitosan-
benzalkonium
chloride-CNT

Ultrafiltration BSA
Water flux: 88
(2 bars) to 138

L/m2 h (4 bars)

Increased porosity,
minimized

biofouling, decreased
hydrophilicity,
increased BSA

rejection

Wastewater
treatment

[165]

Alginate-PVA-
GO Nanofiltration Lanasol blue 3R 88.7%

Improved
permeability,
porosity, and

antifouling ability,
>83% dye rejection

Water
purification [166]

Cellulose
nanocrystal Nanocomposite

Natural organic
matter (humic
acid, sodium

alginate, BSA)

93.6% total
fouling

resistance

Increased
performance of

polyethersulfone
membrane, improved
antifouling ability and

cleaning efficiency

Water treatment [167]
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Table 3. Cont.

Nanocomposite Type of
Membrane Pollutant Flux Recovery

Ratio/Rate Advantages Application Refs.

Cellulose–
chitosan-
biomass-
activated

carbon
nanoparticles

Molecularly
imprinted
membrane

Tetracycline
antibiotic -

High
biodegradability,
adsorption, and

separation
performance,
15.99 mg g−1

adsorption capacity,
4.91 perm-selectivity

factor

Pollutant
separation [168]

N-phthaloyl-
chitosan–

nanocrystalline
cellulose

Mixed matrix
membrane

Nano-silica
and NaCl -

Increase in
hydrophilicity, 98%

rejection of
produced water

Produced water
treatment [169]

6.2. Biopolymeric Nanocomposites as Adsorbents

For many years, biopolymers by themselves were utilized in the water purification
process. Heavy metals, oil spills, and other particulates are successfully removed from
wastewater using biopolymers. Furthermore, biopolymers and their derivatives can adsorb
or capture heavy metals and have stronger adsorbing and chelating effects. The main
contributors to water contamination are dyes, which are used in a variety of sectors,
including printing, textiles, and painting. Most dyes that are released into water are
poisonous and may have an adverse effect on photosynthetic activity by lowering sunlight
penetration, which would therefore have an adverse effect on aquatic as well as human life.
Therefore, it is crucial to get rid of these harmful dyes and save the environment. A variety
of methods, including physical, chemical, and biological techniques, are employed for this
purpose. The most popular physiochemical technique for achieving this goal is adsorption.
Recently, MXene has been incorporated with chitosan/lignosulfonate nanospheres for
removing heavy metals, viz., Cu(II), Co(II), Ni(II), Pb(II), and Cr(VI), from wastewater [170].

Biopolymers have been used extensively to eliminate harmful dyes and heavy toxic
metal ions from aqueous solutions owing to their biodegradability, biocompatibility, and
presence of multiple functional groups. However, their low thermal stability, poor mechan-
ical properties, and small surface area limit their applications.

GO/polyamidoamine nanocomposites have been investigated for the adsorption
of Pb, Cu, Mn, and Cd heavy metal ions [171]. Magnetite nanoparticles were used to
modify GO nanosheets before covalently attaching a dithiocarbamate-terminated highly
branched polyamidoamine dendrimer to their surface. This study utilizes ultrasound-
assisted magnetic solid-phase extraction for concentrating Ni(II), Cr(III), Cu(II), Pb(II),
and Cd(II) to demonstrate their sorbent efficacy [172]. Hayati et al. demonstrated that
the PAMAM/CNT nanocomposite is a super-adsorbent capable of absorbing unusually
large amounts of heavy metals from single- and binary-component liquid phases [173].
ZnO nanoparticles were immobilized on the chitosan/silica hybrid to form an effective
chitosan/silica/ZnO nanocomposite, which was used to remove methylene blue (MB)
from wastewater using an adsorption process with a 293.3 mg/g adsorption capacity [85].
Similarly, a stable chitosan-TiO2 nanocomposite (CTNC) was synthesized for the quan-
titative and selective elimination of Rose Bengal dye from industrial wastewater with a
79.365 mg/g adsorption capacity [174]. A polyamidoamine dendrimer was successfully
mounted on titania nanoparticles to create a novel nanohybrid with encapsulation potential
for phenol removal from industrial wastewater [175]. Paleos and coworkers produced and
characterized a variety of poly(propylene imine) dendrimers functionalized with extended
aliphatic chains. These dendrimers have been shown to encapsulate polycyclic aromatic
hydrocarbons from water down to the few-ppb level [176]. Huang et al. recently introduced
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carbon microspheres as an outstanding adsorbent by utilizing a chitosan biopolymer as
depicted in Figure 9. A series of Cu/Al-doped nitrogen-containing carbon microspheres
(Cu/Al@NC-x, x = 1, 2, 3) were then synthesized via a facile one-pot hydrothermal strategy.
In experimental batch adsorption studies, these microspheres exhibited exceptional efficacy
in removing oxytetracycline contaminants, contributing to water quality improvement.
The subsequent thermodynamic analysis revealed a spontaneous endothermic process
for Cu/Al@NC-2 adsorbing oxytetracycline (∆H◦ > 0, ∆G◦ < 0). Notably, even after five
adsorption cycles, Cu/Al@NC-2 maintained an excellent 92.25% removal efficiency for
oxytetracycline [177]. Similarly, chitosan- and alginate-modified carbonized fibers have
been recently developed by Li et al. to remove Zn(II), Pb(II), and Cd(II) heavy metal ions at
pH = 6 and an optimized 30 ◦C temperature with a 0.1 mol/L ionic strength for maximum
adsorption (Figure 10) [178]. Shan et al. delineated the mechanism for As(III) removal,
emphasizing chemisorption as the predominant process. An Fe/Mn-doped chitosan-GO
granular adsorbent facilitates the adsorption of most As(III) through inner-sphere complex-
ation, specifically with Fe-O groups associated with ferrihydrite and goethite. This process
coincides with the oxidation of As(III) to As(V), catalyzed by O2 and MnO2, followed by
complexation with Fe-O groups. Additionally, a minor fraction of As is adsorbed through
complexation with oxygen-containing functional groups, such as -OH and single -COOH,
present in the chitosan-GO-based nanocomposite (Figure 11) [179]. Similarly, Zheng et al.
has developed the composite nanofiber membrane based on the modified chitosan as car-
boxymethyl chitosan with a synthetic biodegradable polymer, polyvinyl alcohol, PVA, and
GO by using the electrospinning method for the adsorption of heavy metal ions (Ni2+, Cu2+,
Ag+, and Pb2+). The study shows the reduction in the nanofiber diameter and increased
crystallinity through the addition of GO with improved intermolecular hydrogen bonding
with the polymeric matrix. The improved adsorption capacity of the biopolymeric mem-
brane for Ni2+, Cu2+, Ag+, and Pb2+ was observed at 262.1, 237.9, 319.3, and 413.6 mg/g,
respectively [180]. Similar results have been observed by Thakur et al. with more than a
90% removal efficiency [181]. Chitosan and dialdehyde cellulose have also been explored
for the removal of heavy metal ions using a Schiff base reaction and followed by the graft
copolymerization of acrylic acid [182].
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Figure 10. Schematic illustration of the preparation of semi-carbonized plant fiber (Spf) and chemical
fiber (Scf) using dodecyl dimethyl betaine (BS) and chitosan (CS) as modifiers to enhance Sfs. Sodium
alginate (SA) served as the composite modifier to further modify BS-Sf and CS-Sf (dodecyl dimethyl
betaine and chitosan-modified semi-carbonized fibers), resulting in the preparation of BS/SA-Sf and
CS/SA-Sf (sodium-alginate-composite-modified BS-Sf and CS-Sf) to remove Zn(II), Pb(II), and Cd(II)
heavy metal ions from polluted water [178].
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Li et al. formulated a bifunctional composite microsphere adsorbent, CS/DS@ZIF-8,
resulting from the combination of a zeolite imidazolate framework (ZIF-8) with chitosan
microspheres doped with silica (CS/DS), utilizing the electrospraying method. Characteri-
zation analyses indicated a superior crystallinity, increased specific surface area, diverse
distribution of pore size, heightened thermal stability. Adsorption studies revealed that
CS/DS@ZIF-8 adhered to the Langmuir model as well as the pseudo-second-order ki-
netics model, displaying maximal capacities of 340.94 mg/g for Pb2+ and 308.27 mg/g
for Cu2+. These results demonstrated sustained adsorption rates of 81.3% for Pb2+ and
72.9% for Cu2+ over five cycles. This innovative microsphere effectively addresses both
chemical and biological pollutants for water remediation (Figure 12) [183]. Wang et al.
utilized advanced techniques, specifically freeze–drying and 3D printing, to fabricate a
chitosan/hydroxyapatite, CS/HAP, composite adsorbent and a series of monolithic poly-
lactic acid (PLA), PLA@CS/HAP, filters. This innovative method imparted distinctive
macroscopic microchannel structures to the monolithic PLA@CS/HAP filters, significantly
enhancing their Cu2+ removal capacity. The study revealed that the adsorption process
aligned with Freundlich and pseudo-second-order models, suggesting a multi-layer ad-
sorption with chemisorption characteristics for the CS/HAP composite adsorbent. Cu2+

reusability experiments demonstrated the resilience of PLA@CS/HAP filters, maintaining
consistent Cu2+ removal capacity over five consecutive adsorption–desorption cycles, with
a significant removal efficiency of 97.17% [184].
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Figure 12. Schematic illustration of silica-doped chitosan with zeolite imidazolate framework (ZIF-8)
composite microsphere for Pb2+ and Cu2+ heavy metal ion removal with significant antibacterial
activity [183].

In another study, Ghiorghita et al. utilized a chitosan biopolymer, revealing the poten-
tial of ultra-lightweight thiourea–chitosan (CSTU) aerogels. These aerogels, with low densi-
ties (0.0021–0.0103 g/cm3) and high specific surface areas (416.64–447.26 m2/g), excelled
in swiftly removing heavy metal ions. CSTU aerogels demonstrated impressive recycling
stability (up to 80% removal efficiency after five cycles) and potent antimicrobial properties
against bacterial strains. These findings underscore the CSTU aerogels’ potential in wastew-
ater treatment and circular economy practices through biological decontamination [185].
Aspartame is a low-calorie artificial sweetener that has faced controversy and concerns due
to potential health risks associated with its consumption. Khan et al. developed a green
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hydrogel nanocomposite, GTBCH, via free-radical polymerization for efficient removal
of aspartame from wastewater. The robust adsorption capacity (392.04 mg g−1), as deter-
mined using the Langmuir model, can be ascribed to the enhanced interactions between
AS and GTBCH. Their diffusion studies revealed aspartame uptake occurring through
surface adsorption, liquid film, and intraparticle diffusion mechanisms, respectively [186].
In another study, Kebria et al. investigated the efficacy of a chitosan/polyethyleneimine
composite xerogel for removing perfluorobutanesulfonic acid (PFBS) from aqueous solu-
tions via static adsorption. The study covered a wide concentration range (ppb to ppm),
revealing a maximum PFBS adsorption capacity of 305 mg/g within 24 h. Chemical charac-
terization indicated electrostatic interactions and hydrogen bond formation between the
xerogels’ amine groups and PFBS molecules; findings were confirmed using molecular
dynamics simulations. This research offers a viable solution for PFBS removal, highlighting
the composite xerogel’s potential in water treatment [187]. Basirun et al. synthesized a
polymeric hydrogel, [HIMP][TS], through the functionalization of thiosalicylate-based ionic
liquids, and integrated it into polyvinyl alcohol (PVA)–alginate beads for solid biomaterial
support. The study focused on an effective treatment method for the removal of toxic
manganese (Mn) heavy metal from industrial wastewater, employing an adsorption-based
approach with an alginate adsorbent, incorporating the functionalized thiosalicylate-based
ionic liquid [188]. Several innovative composite materials have been explored to tailor their
mechanical characteristics and surface area, crucial for augmenting adsorption capacity, as
outlined in Table 4.

Table 4. Recent studies on wastewater remediation using several biopolymeric nanocomposites
as adsorbents.

Nanocomposite Pollutant
Adsorption
Equilibrium
Time (min)

Isotherm Model
and Kinetics

Removal Efficiency/
Adsorption Capacity Refs.

GO/polyamidoamine

Pb (II),
Cd (II),
Cu (II),
Mn (II)

60 Langmuir and
pseudo-second-order

568.18, 253.81, 68.68,
18.29 mg/g [171]

Chitosan/silica/ZnO Methylene blue - Langmuir and
pseudo-second-order 293.3 mg/g [85]

Molecularly imprinted
polymer (MIP)
chitosan-TIO2

Rose Bengal - Langmuir and
pseudo-second-order 79.365 mg/g [174]

PAMAM–
titaniananohybrid Phenol -

Langmuir and
pseudo-second-order

model
77 mg/g [175]

PPI dendrimers
functionalized with
long aliphatic chains

Fluoranthene,
phenanthrene, pyrene - -

19,
67,

57 (mg/g)
[176]

Chitosan-MnO2 Cr (VI) 120 Langmuir and
intra-diffusion 61.56 mg/g [189]

NTiO2-chitosan@NZrO2-
chitosan

Gd (III)
Sm (III)

30
20

Langmuir–Freundlich
and pseudo-first-order

450
650 µmol/g [190]

Chitoson-MoS2

Cr (IV)
U (VI)
Eu (III)

180
120
240

Langmuir
3.05
0.71

0.86 mmol/g
[191]

Chitosan-benzil/zinc
oxide/Fe3O4

Remazol brilliant blue - Freundlich and
pseudo-second-order 620.5 mg/g [192]

Chitosan-PVA@CuO Acidblue 25 - Langmuir and
pseudo-second-order 171.4 mg/g [193]

Chitosan/zero-valent iron Direct red 81 - Freundlich and
pseudo-first-order 61.35 mg/g [194]
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Table 4. Cont.

Nanocomposite Pollutant
Adsorption
Equilibrium
Time (min)

Isotherm Model
and Kinetics

Removal Efficiency/
Adsorption Capacity Refs.

ZnO/chitosan
nanocomposite Congo red - Langmuir 227.3 mg/g [195]

Chitosan-ZnO Malachite green - Langmuir and
pseudo-second-order 11 mg/g [196]

Chitosan–silica Methyl orange - Langmuir 7 mg/g [197]

Chitosan/SiO2/CNTs
Direct blue 71 (DB71)

Reactive blue 19
(RB19)

- Langmuir and
pseudo-second-order

61.35 mg/g
97.08 mg/g [198]

Polyacrylonitrile/PAMAM
composite nanofibers

Direct red 80, Direct
red 23 -

Langmuir and
pseudo-second-order

kinetics
2000 mg/g [199]

GO-PPI dendrimer Acid red 14,
Acid blue 92 -

Langmuir and
pseudo-second-order

kinetics

434.78,
196.08 mg/g [200]

Chitosan-Cu/Al@N-C
microspheres

Oxytetracycline
antibiotics -

Langmuir and
pseudo-second-order

kinetics

92.25%, 1727.65 mg/g
(25 ◦C) [177]

O-carboxymethyl chitosan
(O-CMC)/oxidized pectin
hydrogel-EDTA acid-LDH

Benzylpenicillin -
Langmuir and

pseudo-second-order
kinetics

250 mg/L [201]

7. Reusability of Biopolymeric Nanocomposites

Biopolymeric nanocomposites, a blend of natural polymers and nano-dimensional
particles, are composed of eco-friendly components, proven to be remarkably useful in
treating wastewater. Biopolymeric nanocomposites have crucial reusability. Their reusable
nature means that after being used once to remove contaminants from water, they can
undergo regeneration or be reintroduced into the treatment process multiple times [63].
This eco-friendly approach showcases the potential of biopolymeric nanocomposites as
valuable tools in addressing water pollution challenges.

Reusability acts as a gauge for determining the stability of photocatalysts within
environmental remediation systems. In another study, Salehi et al. demonstrated the elimi-
nation of organophosphorus pesticides, viz., chlorpyrifos and diazinon, from an aquatic
region by using a MOF-based biopolymeric nanocomposite as a nanoadsorbent hydrogel.
The adsorbent hydrogel was composed of xanthan gum, acrylamide, HKUST-1 as MOF
material, and Fe3O4 magnetic nanoparticles. The reusability and cost-effective stability or
sustainability of the fabricated hydrogel were best after four repeated cycles [202]. Sim-
ilarly, Sudarmono et al. have evaluated the reusability of a chitosan-Fe3O4 nanoparticle
(4:1)-based biopolymeric nanocomposite for the photodegradation of methylene blue. This
study revealed high stability and reusability, in a respective 4:1 ratio, up to five cycles with
an initial increase in photocatalytic degradation ability (13%) with a simultaneous decrease
in the mass of the nanocomposite, which subsequently acts as a photocatalyst by 40%, as
shown in Figure 13a,b [203].

Recently, Rehan et al. have developed a chitosan-based ternary biopolymeric nanocom-
posite with TiO2 and Ag nanoparticles, which were further deposited on cellulose fabric to
evaluate the wastewater treatment efficacy in terms of removing methyl orange and methyl
blue dye contaminants and Cu (II) ions from polluted water. Since the effectiveness of
biopolymeric nanocomposites lies in their capacity to capture and eliminate pollutants from
wastewater, their reusable feature enhances the sustainability of the treatment process, con-
tributing to both environmental and economic advantages. Therefore, to demonstrate the
stability and practical application of the cellulose-fabric-deposited chitosan nanocomposite,
it was evaluated for reusability. In this regard, disodium ethylenediamine tetraacetate
(Na2EDTA) was used as an eluent for the desorption test with the implication of five re-
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peated cycles, and the test revealed a very reduced amount of loss (19%) in the adsorption
ability of the nanocomposite fabric with the removal percentage of Cu (II) ions decreasing
from 95% to 77% as depicted in Figure 13c. The reason for this decrement is due to the
decrease in the number of actives responsible for the metal ion removal. Similarly, the
stability and reusability of the nanocomposite cellulose fabric have been evaluated for the
degradation of methyl orange and methylene blue organic dyes. The results revealed a 73%
and 76% photocatalytic degradation of methyl orange and methylene blue dye, respectively,
after five repeated cycles, as depicted in Figure 13d [204]. The main reasons for the decrease
in the degradation activity are (i) a reduced mass after washing and drying, (ii) blockage of
pores and active sites due to the accumulation of intermediate particles, and (iii) adherence
of dye molecules to the surface of the photocatalyst after the fifth cycle [203].
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8. Limitations and Challenges

Biopolymeric nanocomposites, while holding great promise for wastewater remedia-
tion, do have certain limitations that need to be considered. One of the primary challenges
is the adaptation of biopolymeric nanocomposites for large-scale industrial applications.
Ensuring scalability of synthesis methods and their integration into existing wastewater
treatment systems is a complex task. Some biopolymeric nanocomposites may exhibit
specificity in adsorption, limiting their effectiveness to certain types of contaminants. Ensur-
ing broad-spectrum applicability requires addressing the specificity of adsorption. While
some biopolymeric nanocomposites can be regenerated and reused, the efficiency of re-



Polymers 2024, 16, 294 25 of 34

generation processes is either low or may vary. Enhancing the regeneration efficiency is
crucial for maximizing the lifespan of these materials. Moreover, the cost of the production
and implementation of biopolymeric nanocomposites can be a limiting factor. Ensuring
cost-effectiveness compared to alternative treatment methods is essential for widespread
adoption. The durability and stability of biopolymeric nanocomposites under different
environmental conditions need thorough consideration. Long-term stability and resistance
to degradation are crucial for sustained performance. The synthesis of certain biopolymeric
nanocomposites may involve intricate processes. Simplifying and optimizing synthesis
methods are essential for reducing complexity and enhancing efficiency. While selectivity
can be an advantage, it may also limit the applicability of biopolymeric nanocomposites to
specific types of contaminants. Achieving a balance between selectivity and versatility is
a key challenge. The lack of standardized protocols for the synthesis and application of
biopolymeric nanocomposites can hinder widespread adoption. Establishing standardized
procedures is important for ensuring consistency and reliability. The availability of modi-
fied or functionalized biopolymeric nanocomposites tailored for specific contaminants may
be limited. Expanding the range of available materials is crucial for addressing diverse
water quality challenges. The environmental impact of synthesis processes for biopolymeric
nanocomposites needs consideration. Ensuring that these processes align with sustainable
and eco-friendly practices is essential.

9. Conclusions and Future Perspective

In conclusion, the synthesis and application of biopolymeric nanocomposites represent
a promising avenue for advancing wastewater remediation strategies. Despite the signif-
icant advantages offered by these materials, including eco-friendliness, high adsorption
capacity, filtration capabilities, ion exchange properties, and selective binding, several
challenges and limitations must be addressed to fully realize their potential. The primary
hurdle lies in adapting biopolymeric nanocomposites for large-scale industrial applications,
requiring scalable synthesis methods and integration into existing wastewater treatment
systems. Specificity in adsorption, regeneration efficiency, production costs, and the lack
of standardized protocols further underscore the need for comprehensive research and
development in this field.

To overcome challenges, future research efforts should prioritize enhancing the scal-
ability of synthesis methods to facilitate seamless integration into industrial processes.
Developing efficient regeneration protocols is imperative to prolong the lifespan of these
materials and maximize their reusability. Additionally, optimizing production processes
and exploring cost-effective alternatives are essential to ensure the economic viability of
biopolymeric nanocomposites in comparison to conventional treatment methods. The
balance between selectivity and versatility is crucial, and future studies should aim to
strike this equilibrium, broadening the applicability of biopolymeric nanocomposites to
diverse contaminants without sacrificing specificity. Standardized protocols for synthesis
and application are paramount to ensure consistency and reliability across different studies,
fostering widespread adoption and comparability of results. Looking ahead, the explo-
ration of modified or functionalized biopolymeric nanocomposites tailored for specific
contaminants should be a priority. Expanding the range of available materials will con-
tribute to addressing diverse water quality challenges, catering to the unique characteristics
of different pollutants. Moreover, a concerted effort toward sustainable and eco-friendly
synthesis processes is necessary to align with global environmental goals and ensure the
long-term viability of biopolymeric nanocomposites in water remediation.

In summary, this review provides an in-depth analysis of the current state of biopoly-
meric nanocomposites in wastewater remediation, offering insights into their advantages,
functions, limitations, and challenges. Future perspectives outlined herein aim to guide
and inspire further research endeavors, ultimately contributing to the evolution of and
improvement in biopolymeric nanocomposites for sustainable and effective water treat-
ment solutions.
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