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Abstract: By using piezoelectric materials, it is possible to convert clean and renewable energy sources
into electrical energy. In this paper, the effect on the piezoelectro-elastic response of piezoelectric-fiber-
reinforced nanocomposites by adding silica nanoparticles into the polyimide matrix is investigated by
a micromechanical method. First, the Ji and Mori–Tanaka models are used to calculate the properties
of the nanoscale silica-filled polymer. The nanoparticle agglomeration and silica–polymer interphase
are considered in the micromechanical modeling. Then, considering the filled polymer as the matrix
and the piezoelectric fiber as the reinforcement, the Mori–Tanaka model is used to estimate the
elastic and piezoelectric constants of the piezoelectric fibrous nanocomposites. It was found that
adding silica nanoparticles into the polymer improves the elastic and piezoelectric properties of the
piezoelectric fibrous nanocomposites. When the fiber volume fraction is 60%, the nanocomposite
with the 3% silica-filled polyimide exhibits 39%, 31.8%, and 37% improvements in the transverse
Young’s modulus ET , transverse shear modulus GTL, and piezoelectric coefficient e31 in comparison
with the composite without nanoparticles. Furthermore, the piezoelectro-elastic properties such as
ET , GTL, and e31 can be improved as the nanoparticle diameter decreases. However, the elastic and
piezoelectric constants of the piezoelectric fibrous nanocomposites decrease once the nanoparticles
are agglomerated in the polymer matrix. A thick interphase with a high stiffness enhances the
nanocomposite’s piezoelectro-elastic performance. Also, the influence of volume fractions of the
silica nanoparticles and piezoelectric fibers on the nanocomposite properties is studied.

Keywords: PZT–polyimide composite; silica nanoparticle; piezoelectro-elastic properties; interphase;
micromechanics modeling

1. Introduction

Piezoelectric-fiber-reinforced polymer composites are used for various engineering
applications, such as in clean energy harvester devices from environmental sources and
in vibration control, structural health monitoring, and structural morphing [1–4]. The
improved mechanical flexibility, good stiffness/strength-to-weight ratio, reliability, and
tailorable properties have made piezoelectric fibrous composites more favorable for the
abovementioned applications as compared to neat piezoelectric materials [4–8]. Neverthe-
less, advances in electro-mechanical technologies have led to fast growth in the demand
for piezoelectric fibrous composites with better functionalities. So, the design of new
piezoelectric composites is an important issue for researchers and scientists.

The concept of using nano/micro-hybrid reinforcements in polymer composites has
emerged for the sake of improving their multifunctional properties. In these composites,
nano-sized reinforcements such as graphene nanoplatelets, carbon nanotubes (CNTs), and
silica nanoparticles are introduced alongside traditional micron-sized fibers [8–13]. For
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example, Cui et al. [13] observed that carbon fiber–silica nanoparticle composites have
better performance regarding interlaminar shear strength, impact strength, and flexural
strength compared with that of carbon fiber composites. Hwayyin et al. [14] indicated an
enhancement in the mechanical properties of carbon fiber–polyester composites at different
weights of nano-silicon dioxide. The outcomes showed an increment in the tensile stress
of 11.45% after an increase in the nanoparticle content from 0.16% wt. to 0.2% wt. [14].
Zheng et al. [15] studied the influence of silica nanoparticles on the mechanical properties
of glass-fiber-reinforced epoxy composites. It was observed that the increase in the silica
nanoparticle content yields an enhancement in the tensile modulus and compression
strength. Gang et al. [16] reported that an increase from 0% to 5% of the nanoparticle
volume fraction yielded an enhancement in the tensile modulus of a carbon fiber–silica
nanoparticle–polyimide composite from 2475 MPa to 2780 MPa. Tang et al. [17] measured
tensile properties in the transverse direction, interlaminar shear strength, and the mode I
and mode II interlaminar fracture toughness of carbon fiber composites with 10 wt% and
20 wt% silica nanoparticles dispersed into epoxy. The transverse tensile properties and
mode I interlaminar fracture toughness were improved by increasing the silica nanoparticle
content in the epoxy [17].

Such a concept has been employed to study the advantages of nanofiller-containing
matrices in improving the equivalent properties of piezoelectric fibrous composites. Kera-
mati et al. [12] analyzed a nanocomposite in which BaTiO3 fibers were placed inside a
graphene nanosheet (GNS)-filled polymer. The addition of GNSs inside the polymer matrix
led to an improvement in the elastic properties, transverse coefficient of thermal expansion,
and piezoelectric coefficients e31 and e15. The mechanical and piezoelectric characteristics
of piezoelectric fiber–CNT-reinforced nanocomposites were investigated by Hasanzadeh
et al. [18]. CNTs were randomly oriented into a polymer matrix. The mechanical proper-
ties and piezoelectric coefficient e31 of the piezoelectric nanocomposite containing CNTs
were improved over those of the piezoelectric composite without CNTs [18]. Godara
and Mahato [19] studied the elastic and piezoelectric coefficients of a nanocomposite in
which piezoelectric fibers were embedded into a CNT-reinforced polymer [19]. The use of
CNTs in piezoelectric-fiber-reinforced composites can enhance the structural/functional
properties [19].

Generally, evaluating the engineering constants of piezoelectric fibrous nanocom-
posites containing silica nanoparticles is crucial in designing structures constructed with
these materials. Many microstructural factors such as the amount, size, dispersion quality,
variation in properties, and nanoparticle–matrix interfacial interaction affect the overall
properties of silica-nanoparticle-containing composites [20–22]. Therefore, conducting
studies in this area is of significance [9,18,23–26].

To the best of the authors’ knowledge, the piezoelectro-elastic properties of piezoelec-
tric fiber–nanoparticle–polymer nanocomposites with regard to the agglomeration and size
of the silica nanoparticles and the silica–polymer interphase have not yet been sufficiently
investigated. The novelty of this work comes from developing a hierarchical microme-
chanical method to comprehensively investigate the elastic and piezoelectric constants of
PZT-7A–silica–polyimide nanocomposites with variables of important microstructures. So,
the current research aims to evaluate the properties of a piezoelectric nanocomposite made
of unidirectional piezoelectric fibers embedded in a polyimide matrix with silica nanopar-
ticles. To achieve this, we developed a model using Ji’s approach and the Mori–Tanaka
method. After confirming the accuracy of the model, we studied how the volume, size,
and clumping of nanoparticles, as well as the thickness and stiffness of the silica–polymer
interface, affect the composite’s elastic and shear moduli and piezoelectric coefficients (e31
and e33). One potential use for these nanocomposites is in energy-harvesting devices.

2. Micromechanical Analysis of Piezoelectric Fibrous Nanocomposites

The nanocomposite consists of unidirectional piezoelectric microfibers, silica nanopar-
ticles, and a polymer matrix. Figure 1 shows a representation of a lamina made of this
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piezoelectric fibrous nanocomposite. The configuration of such a nanocomposite is such
that piezoelectric fibers are embedded inside a nanoparticle-filled polymer. Note that the
piezoelectric fibers are aligned along the 3-direction. The dispersion of the silica nanoparti-
cles into the polymer matrix can be uniform or non-uniform. The interphase region shown
in this figure is considered due to the interaction between the nanoparticles and the polymer
matrix. In general, the representative volume element (RVE) of the nanocomposite system
may be treated as consisting of two phases, in which the reinforcement is the piezoelectric
fiber and the matrix is the nanoparticle-filled polymer. The micromechanical modeling
to predict the effective properties of piezoelectric fibrous nanocomposites is carried out
here in a two-step procedure. First, the elastic properties of the silica-nanoparticle-filled
polymer are calculated using the Ji and Mori–Tanaka models. Next, the Mori–Tanaka
model is employed to predict the overall piezoelectric coefficients and elastic moduli of the
piezoelectric fibrous nanocomposite.
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Figure 1. Demonstration of the piezoelectric fibrous nanocomposite with a silica-nanoparticle-filled
polymer matrix.

2.1. Silica-Nanoparticle-Filled Polymer

In this sub-section, a micromechanics approach is presented to estimate the effective
properties of the polymer matrix containing silica nanoparticles. Micromechanical models pre-
dict the composite properties in terms of the volume fraction, geometry of fillers, and material
properties of constituents [27–30]. Concerning the nanoparticle-filled polymer systems, it is
required to incorporate the interphase between the nanoparticle and the polymer matrix in the
simulation [20,29,31–33]. The interfacial region possesses material properties in between those
of the polymer matrix and those of the nanoparticle [20,22,31,32,34]. In the micromechanical
simulation, the interphase is considered as the third phase, which surrounds the silica
nanoparticles, as shown in Figure 1. The Young’s modulus of the silica-filled polymer
materials with the interphase can be estimated by the Ji model [35,36] as follows:

ENC = Em

(1 − λ) +
λ − β

(1 − λ) +
λ(k−1)

ln k

+
β

(1 − λ) +
(λ−β)(k+1)

2 + β ENP
Em

−1

(1)

in which Em and ENP are the Young’s moduli of the matrix and nanoparticle, respectively.
The values of λ, β, and k are given by

λ =

√(
2ti

dNP
+ 1
)3

φNP, β =
√

φNP, k =
Ei
Em

(2)

where φNP and dNP are the volume fraction and diameter of the nanoparticle, and Ei and
ti are the Young’s modulus and thickness of the interphase, respectively. The Young’s
modulus of the silica-filled polymer materials in the absence of the interphase, i.e., a
two-phase composite, is [36]
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ENC = Em

[
(1 − β) +

β

(1 − β) + β ENP
Em

]−1

(3)

Poisson’s ratio of a nanoparticle-filled polymer can be estimated by the rule of the
mixture as vNC = vNP φNP + vm(1 − φNP), in which vNP and vm are Poisson’s ratio of the
nanoparticle and matrix, respectively.

Silica nanoparticles tend to form agglomerates, which leads to poor distribution into
the polymer matrix during the fabrication process [20,37,38]. The non-uniform distribu-
tion and formation of nanoparticle agglomeration may be mostly attributed to their great
specific surface area and high surface energy [37,38]. A two-parameter micromechanical
technique is employed to investigate the effect of nanoparticle agglomeration on the ef-
fective properties of the nanoparticle-filled polymer [39–41]. A number of nanoparticles
are supposed to uniformly disperse into the polymer, and other nanoparticles appear in
the agglomeration state. The whole volume of the nanoparticles in the RVE of the filled
polymer specified by VNP is divided into the following two parts:

VNP = Vagg
NP + Vem

NP (4)

where Vagg
NP is the volume of nanoparticles inside the agglomerated phase and Vem

NP denotes
the volume of nanoparticles in the polymer matrix and outside the agglomerates. The
definition of these two parameters for the agglomeration is as follows:

ξ =
Vagg

V
, ζ =

Vagg
NP

VNP
(5)

where V is the volume of the filled polymer RVE and Vagg denotes the volume of the
agglomerate phase within the RVE [39–41]. Thus, the volume fraction of nanoparticles in
the agglomeration phase φ

agg
NP and in the polymer matrix and outside the agglomerates

φem
NP is determined as

φ
agg
NP =

Vagg
NP

Vagg
=

ζ

ξ
φNP, φem

NP =
VNP − Vagg

NP
V − Vagg

=
1 − ζ

1 − ξ
φNP (6)

We analyze the nanoparticle-filled polymer as a system consisting of agglomerates
of spherical shape embedded in a new matrix. We initially predict Young’s modulus
and Poisson’s ratio of the agglomerate and the new matrix phases by the Ji model and
the rule of mixture. The Young’s modulus and Poisson’s ratio are then used to calculate
the bulk modulus and shear modulus. Using the bulk moduli and shear moduli of the
agglomerate (Kagg, Gagg) and the new matrix (Kem, Gem), the equivalent bulk modulus (KNC)
and shear modulus (GNC) of the nanoparticle-filled polymer system with the nanoparticle
agglomeration are predicted by the Mori–Tanaka model [39–41], respectively,

KNC = Kem +
ξ
(

Kagg
Kem

− 1
)

1 + 1−ξ

1+ 4Gem
3Kem

(
Kagg
Kem

− 1
)Kem, (7)

GNC = Gem +
ξ
(

Gagg
Gem

− 1
)

1 + (6+12 Gem
Kem )

(15+20 Gem
Kem )

(1 − ξ)
(

Gagg
Gem

− 1
)Gem. (8)

Thus, the elastic properties of a nanoparticle-filled polymer considering the inter-
phase region and agglomeration of nanoparticles can be achieved by the micromechanical
technique developed in this section.
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2.2. Piezoelectric Fiber Composites

Now, a micromechanical model can be adopted to estimate the equivalent properties
of piezoelectric fibrous nanocomposites. By the means of the conventional indicial notation,
the constitutive equations of piezoelectric materials are as follows [42–44]:

σij = Cijmnεmn + enijEn
Di = eimnεmn − kinEn

(9)

where the repeated sub-scripts are summed over the range of i, j, m, n = 1, 2, 3, and σij and εmn
stand for the stress and strain tensors, respectively. En and Di stand for the electric field and
the electric displacement vectors, respectively. Cijmn, enij, and kin denote the elastic stiffness
and piezoelectric and permittivity tensors, respectively. Divergence equations expressing the
mechanical equilibrium and Gauss’ law can be given by Equation (10) [44], respectively:

σij,j = 0
Di,i = 0

(10)

Moreover, the gradient equations defining the strain displacement equations and
electric field potential are expressed, respectively:

εij =
1
2
(
ui,j + uj,i

)
Ei = −ϕ,i

(11)

in which ui and ϕ stand for the mechanical displacement and electric potential, respectively.
The components of piezoelectric fibrous nanocomposites are the nanoparticle-filled

polymer as the matrix phase and the piezoelectric fibers as the reinforcing phase. On
the basis of the Mori–Tanaka micromechanical approach and considering vm and vr as
the volume fraction of the matrix and fiber, respectively, the electro-elastic constants of
piezoelectric fibrous nanocomposites can be estimated as

∼
C

c
=

∼
C

m
+ vr

(∼
C

r
−

∼
C

m)
B (12)

in which
∼
C

r
and

∼
C

m
are the electro-elastic modulus matrices for the reinforcement and

matrix, respectively, and the piezoelectric concentration tensor is defined as follows:

B = A[vmI + vrA]−1, A =

[
I + Ŝ

(
∼
C

m)−1(∼
C

r
−

∼
C

m)]−1

, (13)

where Ŝ is the Eshelby tensor and its components can be found in the literature [18,24,27,44].
It is worth mentioning that all simulation procedures and numerical results obtained in this
research have been performed using codes written in MATLAB(R2024b) software. Also, it
should be noted that all formulations used for the simulations in MATLAB software are
analytical relations, and the finite element method has not been employed.

3. Results and Discussion

In this section, we first present the numerical results of the Young’s moduli, shear
moduli, and piezoelectric coefficients of PZT-7A fiber-reinforced nanocomposites with the
silica-nanoparticle-filled polyimide matrix. Then, some comparisons are made between the
present predictions and other results available in the literature [45,46].

3.1. Piezoelectro-Elastic Response of Piezoelectric Fibrous Nanocomposites

The micromechanical model consisting of Ji’s model, the rule of mixture, and the Mori–
Tanaka model is used to investigate the effective constants of the piezoelectric fibrous nanocom-
posite. The constituents of the composite are PZT-7A, polyimide, and silica nanoparticles. The
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Young’s modulus and Poisson’s ratio of the polyimide and silica nanoparticles are 3.78 GPa
and 0.4 and 73 GPa and 0.23 [20,22,44], respectively. Table 1 lists the properties of the PZT-7A
fiber. The piezoelectric fiber volume fraction is considered to be 60%. The diameter of the
silica nanoparticles and their volume fraction into the polyimide matrix are 30 nm and 3%,
respectively. Also, the Young’s modulus, Poisson’s ratio, and thickness of the interphase
region are taken as Ei = 10Em, 0.4, and ti = 0.5dNP [20,31], respectively.

Table 1. Material constants of PZT5 fiber, epoxy, and PZT-7A fiber [9,44].

Material PZT5 Epoxy PZT-7A

C11 (GPa) 121 8 148
C12 (GPa) 75.4 4.4 76.2
C13 (GPa) 75.2 4.4 74.2
C22 (GPa) 121 8 148
C23 (GPa) 75.2 4.4 74.2
C33 (GPa) 111 8 131
C44 (GPa) 21.1 1.8 25.4
C66 (GPa) 22.8 1.8 35.9
e31 (C/m2) −5.4 0 −2.1
e33 (C/m2) 9.5 0 9.5

Figure 2 shows the influence of adding silica nanoparticles on the material constants
of the piezoelectric fibrous nanocomposites. The numerical results are presented for two
values of nanoparticle volume fraction (NPVF), 3% and 5%. The material properties of
piezoelectric fibrous composites without nano-inclusions are also illustrated in the figure.
Figure 2a indicates the results of the longitudinal Young’s modulus versus piezoelectric
fiber volume fraction. Incorporating nano-inclusions into the polymer matrix insignifi-
cantly affects the longitudinal Young’s modulus. This is attributed to the fact that the
longitudinal properties of long fiber-reinforced composites are mostly dominated by the
material properties and content of fibers [9,18,47,48]. It can be seen in Figure 2a that Young’s
modulus in the direction parallel to the fiber direction linearly increases as the piezoelectric
fiber volume fraction increases. Figure 2b shows the variation in the transverse Young’s
modulus of the piezoelectric fibrous nanocomposites with the piezoelectric fiber volume
fraction. The transverse Young’s modulus notably depends on the nanoparticles in the
polyimide matrix. The value of ET of the silica-nanoparticle-containing nanocomposite
is greater than that of the composite without silica nanoparticles. When the piezoelectric
fiber volume fraction is 60%, the nanocomposite with a 3% silica-nanoparticle-containing
polyimide exhibits a 39% improvement in the transverse Young’s modulus in comparison
with the composite without nanoparticles. Adding silica nanoparticles within the poly-
imide provides a relatively stronger matrix that is potentially beneficial for the transverse
Young’s modulus of the piezoelectric fibrous nanocomposites. The increase in the silica
nanoparticle amount aids the nanocomposite in obtaining a higher value of the transverse
Young’s modulus. A similar trend has been found for other types of nanofillers [9,18,48].
It is shown in Figure 2b that the Young’s modulus in the direction perpendicular to the
piezoelectric fiber nonlinearly increases as the fiber volume fraction increases. Based on the
results observed in Figure 2c,d, adding silica nanoparticles is generally beneficial to shear
moduli in the longitudinal and transverse directions. Both shear moduli are enhanced by
increasing the piezoelectric fiber volume fraction. The values of the transverse shear modu-
lus of the 60% piezoelectric-fiber-reinforced composite without nanoparticles and with a
3% nanoparticle content are calculated as 6.04 GPa and 7.96 GPa, respectively. Figure 2e
depicts the piezoelectric coefficient e31 of the piezoelectric fibrous nanocomposites versus
the piezoelectric fiber volume fraction. The value of piezoelectric coefficient e31 can be
significantly improved as a result of the nanoparticle addition into the polyimide matrix. A
major contribution to the piezoelectric coefficient e31 is from the polymer matrix properties.
Compared to the piezoelectric fibrous composite, the piezoelectric coefficient e31 of the
piezoelectric fibrous nanocomposite containing a 3% silica-nanoparticle-filled polyimide
matrix exhibits an upward trend with an approximate 37% improvement. Therefore, in-
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corporating nanofillers into the polymer can enhance the in-plane actuation property of
piezoelectric fibrous nanocomposites over that of a traditional piezoelectric fibrous compos-
ite without nanofillers. This trend has been reported for other composite systems containing
CNTs [9,18,19]. The piezoelectric coefficient e31 of piezoelectric fibrous nanocomposites
exhibits an improvement through the increase in the piezoelectric fiber volume fraction.
Figure 2f displays the piezoelectric coefficient e33 versus the fiber volume fraction. There is
no effect of silica nanoparticles on the piezoelectric coefficient e33 because its value is mostly
dominated by the piezoelectric property of the fiber. A linear increase is obtained for the
piezoelectric coefficient e33 as the piezoelectric fiber volume fraction increases. Because the
piezoelectric constant e31 and the elastic properties such as ET and GTL of the piezoelectric
fibrous nanocomposite containing silica nanoparticles are improved, this composite has
good potential for use as a superior actuator material for intelligent structures with a great
in-plane actuation option [9,12].

The micromechanical results for investigating the role of the interfacial zone between
the silica nanoparticles and polyimide matrix in the material constants of the piezoelectric
fibrous nanocomposites are presented in Figure 3. It is worth pointing out that the interphase
does not have a notable contribution to the Young’s modulus in the longitudinal direction, as
seen in Figure 3a. It may be concluded from Figure 3b–d that the formation of the interfacial
region is beneficial to the transverse Young’s modulus and both shear moduli. Relative to
the composite system without the interphase, an increasing trend is observed for these three
elastic moduli of the nanocomposite with the interphase. The results of Figure 3e disclose that
the interphase tends to improve the piezoelectric coefficient e31. A literature survey shows
that the interphase between the polymer matrix and CNTs can contribute to the improvement
of the overall properties of piezoelectric–CNT nanocomposites [18]. As shown in Figure 3f, the
piezoelectric coefficient e33 exhibits no variation in the presence or absence of the interphase.

Generally, the interphase has properties in between those of the nanoparticle and
those of the polymer matrix [20,22,29,31,32,34]. To better evaluate the effect of interphase
characteristics on the material constants of piezoelectric fibrous nanocomposites, a microme-
chanical analysis is conducted with different values of interphase stiffness and thickness.
The results of the transverse Young’s modulus, longitudinal shear modulus, transverse
shear modulus, and piezoelectric coefficient e31 with changing the interphase elastic mod-
ulus are shown in Figure 4a–d, respectively. The effective properties of the piezoelectric
fibrous nanocomposite can be enhanced with increasing the interphase elastic modulus.
It is noted that a stiffer interphase can increase the mechanical properties of the polymer
matrix [18,20,22,29]. One of the ways to enhance the mechanical properties of the interfacial
region may be nanoparticle surface treatment.
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Figure 2. Influence of nanoparticle volume fraction on the (a) longitudinal Young’s modulus, (b) trans-
verse Young’s modulus, (c) longitudinal shear modulus, (d) transverse shear modulus, (e) piezo-
electric coefficient e31, and (f) piezoelectric coefficient e33 of the piezoelectric fibrous nanocomposite
containing silica nanoparticles.

The influence of changing the interphase thickness on the properties of nanocompos-
ites, including ET , GLT , GTL, and e31, is depicted in Figure 5a–d, respectively. The increase
in interphase thickness significantly improves the elastic and piezoelectric constants. Dif-
ferent methods for nanoparticle functionalization may produce interphases with variable
thicknesses. By increasing the interphase thickness from 1 nm to 15 nm, the improvement in
the transverse elastic modulus with a 3% silica-nanoparticle-containing polyimide matrix is
calculated to be about 20.5%. In turn, for the piezoelectric coefficient e31, the improvement
is about 26%. It is worth mentioning that the in-plane actuation caused by the piezoelectric
composite is increased by tailoring the piezoelectric constant e31 [9,47]. An important
conclusion from the above micromechanical studies is the production of a stiff and thick
interphase in the nanocomposite fabrication. This is due to the increased stiffness of the
polymer matrix by adding nanoparticles, as reported in previous studies [18,20,22,29].
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Figure 3. Influence of interphase region on the (a) longitudinal Young’s modulus, (b) transverse
Young’s modulus, (c) longitudinal shear modulus, (d) transverse shear modulus, (e) piezoelectric co-
efficient e31, and (f) piezoelectric coefficient e33 of the piezoelectric fibrous nanocomposite containing
silica nanoparticles.
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Figure 4. Variation in (a) transverse Young’s modulus, (b) longitudinal shear modulus, (c) transverse
shear modulus, and (d) piezoelectric coefficient e31 of piezoelectric fibrous nanocomposite with
interphase elastic modulus.

The influence of the silica nanoparticle diameter on the mechanical properties and
piezoelectric coefficients of piezoelectric fibrous nanocomposites is studied, and the results
are displayed in Figure 6. As seen in Figure 6a, the values for the longitudinal Young’s
modulus with different nanoparticle diameters are close to each other, indicating the in-
significant contribution of nanoparticle size to this elastic property. It is seen from Figure 6b
that the addition of uniformly dispersed silica nanoparticles with smaller sizes results in an
increase in the Young’s modulus in the transverse direction. This may be explained by the
interphase contribution to the final properties of nanocomposites becoming more promi-
nent as the nanoparticle size decreases [20,48]. A notable enhancement in the shear moduli
along both the longitudinal and transverse directions can be observed by the decrease in
nanoparticle size, as shown in Figure 6c,d. The results of Figure 6e disclose that a smaller
size of silica nanoparticles is required so as to further improve the piezoelectric coefficient
e31 of the nanocomposites. In the case of the nanocomposite with a 3% silica-nanoparticle-
containing polyimide matrix, the improvement is about 50% by decreasing the nanoparticle
diameter from 100 nm to 20 nm. As dNP > 100 nm, the change in nanoparticle diameter
does not affect the elastic moduli or the piezoelectric coefficient e31. The main reason for this
behavior may be the reduced effect of the interphase. As the size of the nanoscale particles
increases and goes to the microscale, the role of the interphase in the effective properties of
the nanocomposites decreases. According to the outcomes of Figure 6f, the piezoelectric
coefficient e33 of the nanocomposites does not depend on the nano-inclusion size since
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the piezoelectric fibers have the main role in this property. Thus, the hybridization of the
piezoelectric fibers with smaller nanoparticles induces better elastic moduli ET , GLT , and
GTL and a better piezoelectric coefficient e31.
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Figure 5. Variation in (a) transverse Young’s modulus, (b) longitudinal shear modulus, (c) transverse
shear modulus, and (d) piezoelectric coefficient e31 of piezoelectric fibrous nanocomposite with
interphase thickness.

To study the effect of dispersion quality of silica nanoparticles, the elastic moduli and
piezoelectric coefficients of the piezoelectric fibrous nanocomposites are calculated for two
conditions, including a uniform dispersion and an agglomerated state (ζ = 0.9, ξ = 0.1).
The numerical results of the micromechanical analysis are presented in Figure 7a–f. In this
sensitivity study, the nanoparticle volume fraction is 5%. It is observed from Figure 7a that
the longitudinal Young’s modulus is minimally affected by the non-uniform dispersion of the
nanoparticles. The other three elastic constants, the transverse Young’s modulus, longitudinal
shear modulus, and transverse shear modulus, appear to significantly decrease due to the
formation of silica nanoparticle agglomeration (Figure 7b–d). The agglomeration of the silica
nanoparticles produces a negative effect on the piezoelectric coefficient e31. As compared to
the uniformly dispersed case, a decrease of about 29.2% in the piezoelectric coefficient e31
is observed by forming the agglomeration. As mentioned in previous studies [20,37,38,48],
nanoparticle agglomeration leads to a reduction in the mechanical properties of polymer ma-
trix nanocomposites. The nanocomposite containing uniformly dispersed silica nanoparticles
exhibits a higher piezoelectric coefficient e31 than that containing agglomerated nanoparticles.
It is shown in Figure 7f that the dispersion quality does not affect the estimated piezoelectric
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coefficient e33. Uniformly dispersing and avoiding the agglomeration of nanoparticles into the
polymer matrix are critical for advanced composite materials to take the maximum material
constants, i.e., ET, GLT, GTL, and e31.
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Figure 6. Influence of silica nanoparticle diameter on the (a) longitudinal Young’s modulus, (b) trans-
verse Young’s modulus, (c) longitudinal shear modulus, (d) transverse shear modulus, (e) piezo-
electric coefficient e31, and (f) piezoelectric coefficient e33 of the piezoelectric fibrous nanocomposite
containing silica nanoparticles.
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Figure 7. Influence of silica nanoparticle dispersion quality on the (a) longitudinal Young’s modu-
lus, (b) transverse Young’s modulus, (c) longitudinal shear modulus, (d) transverse shear modulus,
(e) piezoelectric coefficient e31, and (f) piezoelectric coefficient e33 of the piezoelectric fibrous nanocom-
posite containing silica nanoparticles.

The results of the micromechanical analysis with silica and alumina nanoparticles
individually incorporated into the polyimide matrix are presented in Figure 8. The volume
fraction and diameter for both nanoparticles are identical. The influence of the interphase
stiffness on the effective properties of the piezoelectric fibrous nanocomposites is also
examined. The change in the interphase stiffness is taken in a range from the soft material
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to the stiff material. The soft interphase (Ei,so f t) can be categorized as the material having
very low stiffness in comparison with the reinforcement stiffness [49] as

Ei,so f t =
ENP + Em

20
(14)

The stiff interphase (Ei,sti f f ) can be categorized as the material having an average value of
reinforcement and matrix stiffness and is very high in comparison with the matrix stiffness [49] as

Ei,sti f f =
ENP + Em

2
(15)
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Figure 8. Influence of nanoparticle types on the (a) longitudinal Young’s modulus, (b) transverse Young’s
modulus, (c) longitudinal shear modulus, (d) transverse shear modulus, (e) piezoelectric coefficient e31,
and (f) piezoelectric coefficient e33 of the piezoelectric fibrous nanocomposite containing nanoparticles.
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On the basis of the outcomes shown in Figure 8a,f, the incorporation of different
types of nano-inclusions has a negligible effect on the longitudinal Young’s modulus and
piezoelectric coefficient e33. In contrast, changes in the nano-inclusion type embedded
within the matrix affect the elastic moduli ET , GLT , and GTL and the piezoelectric coefficient
e31 of the nanocomposites, as shown in Figure 8b–e. Compared to the silica nanoparticles,
the use of alumina nanoparticles in the polyimide matrix can further improve these material
properties. Again, nanocomposites with a stiff interphase show higher elastic moduli ET ,
GLT , and GTL and a higher piezoelectric coefficient e31 than those with a soft interphase. Due
to the good mechanical and piezoelectric properties, the piezoelectric fiber–nanoparticle–
polymer nanocomposites can find various industrial applications, such as in actuators,
sensors, and energy-harvesting devices [9,12,26].

3.2. Comparisons with Experimental and Numerical Results

Now, the predictions are compared with the available experimental data of some silica-
filled polymer composites for validating the micromechanical model. Figure 9 presents
a comparison between the present predictions and experimental data [45] of the Young’s
modulus of silica-nanoparticle-filled poly(ether-ether-ketone) (PEEK) nanocomposites.
Micromechanical tests are carried out in two different states: (1) in the presence of an
interphase with k = 5, ti = 0.25 × dNP and (2) in the absence of an interphase. The
silica nanoparticles with a mean diameter ~30 nm are uniformly dispersed in the polymer
matrix. The Young’s moduli of the silica nanoparticle and PEEK matrix are 73 GPa and
3.9 GPa, respectively. Figure 9 shows that the model without the interphase agrees better
with the experiments for lower values of nanoparticle volume fraction. However, at
higher nanoparticle contents, the model predictions with the interfacial region between the
nanoparticles and polymer matrix give a more reasonable agreement as compared to the
experiments [45]. The interphase region with a higher Young’s modulus than that of the
matrix material increases the Young’s modulus of the nanocomposites significantly.
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Figure 9. Present predictions for Young’s modulus of silica-nanoparticle-filled PEEK nanocomposites
compared to experimental data [45].

The Young’s modulus of the silica-nanoparticle-filled nylon-6 nanocomposites de-
termined by the present micromechanics method are compared with the experimental
data [46]. Figure 10 shows the outcome of this comparison. The effect of considering the
interphase in the micromechanical modeling on the final elastic modulus is also examined.
It is observed that the two sets of results evaluated by the micromechanical model by taking
the interphase region and the experimental route are in a good agreement.
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Figure 10. Present predictions for Young’s modulus of silica-nanoparticle-filled nylon-6 nanocompos-
ites compared to experimental data [46].

In another comparison, two effective properties of the PZT5-fiber-reinforced epoxy
composite including the elastic constant C33 and piezoelectric coefficient e31 predicted
by the present micromechanical model are compared with the Mori–Tanaka predictions
carried out in [9]. The material constants of the PZT5 fiber as well as the epoxy are given
in Table 1 [9,44]. It is shown in Figure 11a,b that the two sets of results are in a very good
agreement for both effective constants.
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Figure 11. Comparison between the results of the present model and results of [9] for (a) elastic
constant C33 and (b) piezoelectric coefficient e31 of PZT5-fiber-reinforced epoxy composites.

Wang et al. [50] used silica nanoparticles to produce a polymer nanocomposite: methyl
methacrylate (MMA) was chosen as the matrix and copolymerized with a low amount
of cationic functional comonomer 2-(methacryloyloxy)ethyltrimethylammonium chloride
(MTC). Figure 12 shows another comparison between the present predictions and experi-
mental measurements [50] for the Young’s modulus of silica-nanoparticle-filled P(MMA-co-
MTC) nanocomposites. Silica nanoparticles have an average diameter of around 20 nm [50].
A good agreement is observed between the model predictions and the experimental mea-
surements at all nanoparticle contents.



Polymers 2024, 16, 2860 17 of 19Polymers 2024, 16, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 12. Present predictions for Young’s modulus of silica-nanoparticle-filled P(MMA-co-MTC) 
nanocomposites compared to experimental data [50]. 

4. Conclusions 
In this paper, the piezoelectro-elastic coefficients of PZT-7A-fiber-reinforced nano-

composites with a silica-nanoparticle-filled polyimide matrix were evaluated. First, the Ji 
and Mori–Tanaka models were hierarchically employed to predict the elastic properties 
of the silica-nanoparticle-filled polymer. The nanoparticle–polymer interphase and the 
nanoparticle agglomeration were included in the analysis. Then, considering the nanopar-
ticle-filled polymer as the matrix and the piezoelectric fiber as the reinforcement, the 
Mori–Tanaka model was employed to predict the elastic and piezoelectric constants of the 
piezoelectric fibrous nanocomposites. A good agreement was observed between the pre-
sent predictions and other results available in the literature. The results showed that add-
ing silica nanoparticles into the polyimide matrix improves the elastic and piezoelectric 
properties (𝐸், 𝐺௅், 𝐺்௅, and 𝑒ଷଵ) of the piezoelectric fibrous nanocomposites. As com-
pared to the composite without nanoparticles, 39%, 31.8%, and 37% improvements in the 
values of 𝐸், 𝐺்௅, and the piezoelectric coefficient 𝑒ଷଵ were observed once the volume 
fractions of the fiber and nanoparticle were 60% and 3%, respectively. More improvement 
in the elastic moduli 𝐸், 𝐺௅், and 𝐺்௅ and the piezoelectric coefficient 𝑒ଷଵ was found by 
decreasing the nanoparticle diameter. A thicker and stiffer interphase led to an increase in 
the elastic moduli 𝐸், 𝐺௅், and 𝐺்௅ and the piezoelectric coefficient 𝑒ଷଵ of the piezoelec-
tric fibrous nanocomposites. However, the nanoparticle agglomeration that formed in the 
polymer matrix decreased the elastic moduli 𝐸், 𝐺௅், and 𝐺்௅ and the piezoelectric co-
efficient 𝑒ଷଵ. It was observed that increasing the piezoelectric fiber volume fraction in-
creased the piezoelectro-elastic constants of the piezoelectric fibrous nanocomposites. 

Author Contributions: Conceptualization, U.U.; methodology, U.U.; software, U.U., S.H.M. and 
M.K.A.; validation, U.U.; formal analysis, M.H.A.; investigation, S.H.M.; resources, S.H.M. and F.A.; 
writing—original draft, U.U.; writing—review and editing, S.H.M. and M.K.A.; visualization, 
M.H.A.; supervision, F.A. and M.K.A.; project administration, M.H.A., F.A. and M.K.A.; funding 
acquisition, F.A. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded through the Research Institute Supporting Program (RICSP-24-
2), King Saud University, Riyadh, Saudi Arabia. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The original contributions presented in the study are included in the 
article, further inquiries can be directed to the corresponding author. 

Acknowledgments: The authors extend their appreciation to the King Saud University for funding 
this work through the Research Institute Supporting Program (RICSP-24-2), King Saud University, 
Riyadh, Saudi Arabia 

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

Y
ou

ng
's 

m
od

ul
us

 (G
Pa

)

Nanoparticle weight fraction (%)

Experiment, Wang et al. (2013)

Present study

Figure 12. Present predictions for Young’s modulus of silica-nanoparticle-filled P(MMA-co-MTC)
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4. Conclusions

In this paper, the piezoelectro-elastic coefficients of PZT-7A-fiber-reinforced nanocom-
posites with a silica-nanoparticle-filled polyimide matrix were evaluated. First, the Ji and
Mori–Tanaka models were hierarchically employed to predict the elastic properties of the
silica-nanoparticle-filled polymer. The nanoparticle–polymer interphase and the nanoparti-
cle agglomeration were included in the analysis. Then, considering the nanoparticle-filled
polymer as the matrix and the piezoelectric fiber as the reinforcement, the Mori–Tanaka
model was employed to predict the elastic and piezoelectric constants of the piezoelectric
fibrous nanocomposites. A good agreement was observed between the present predictions
and other results available in the literature. The results showed that adding silica nanopar-
ticles into the polyimide matrix improves the elastic and piezoelectric properties (ET , GLT ,
GTL, and e31) of the piezoelectric fibrous nanocomposites. As compared to the composite
without nanoparticles, 39%, 31.8%, and 37% improvements in the values of ET , GTL, and
the piezoelectric coefficient e31 were observed once the volume fractions of the fiber and
nanoparticle were 60% and 3%, respectively. More improvement in the elastic moduli ET ,
GLT , and GTL and the piezoelectric coefficient e31 was found by decreasing the nanoparticle
diameter. A thicker and stiffer interphase led to an increase in the elastic moduli ET , GLT ,
and GTL and the piezoelectric coefficient e31 of the piezoelectric fibrous nanocomposites.
However, the nanoparticle agglomeration that formed in the polymer matrix decreased
the elastic moduli ET , GLT , and GTL and the piezoelectric coefficient e31. It was observed
that increasing the piezoelectric fiber volume fraction increased the piezoelectro-elastic
constants of the piezoelectric fibrous nanocomposites.
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