Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions
Abstract
:1. Introduction
2. Utilization of Anthocyanins as Intelligent Indicator Films
2.1. pH Indicators
2.2. Volatile Compound Indicators
Source of Anthocyanin | Anthocyanin Concentration | Film-Forming Polymer | Type of Indicator | Food Application | References |
---|---|---|---|---|---|
Red cabbage | 0, 20, 40, and 60 mg/100 g solution | PVA and CMC | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Pork meat | [22] |
0.7 g/100 mL solution | Agar and methylcellulose | Total Volatile Basic Nitrogen (TVBN) release indicator | Chicken breast | [11] | |
2.5 g/100 g polymer | Gelatin | Total Volatile Basic Nitrogen (TVBN) release indicator | Fish | [13] | |
Purple sweet potato | 0.2, 0.4, 0.6, 0.8, and 1.0 g/100 g polymer | Sodium alginate | NH3 presence indicator | Chicken breast | [16] |
1.5 g/100 g polymer | Agar, chitosan and sodium alginate | Total Volatile Basic Nitrogen (TVBN) release indicator | Fresh shrimp | [39] | |
- | Sweet potato powder and sodium alginate | Total Volatile Basic Nitrogen (TVBN) release indicator | Fresh shrimp | [12] | |
Black carrot | 6 mg/mL solution | Bacterial cellulose nanofibers | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Fish filet (rainbow trout and common carp) | [36] |
45 mg/100 mL solution | PVA and CMC | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Fish (carp) | [8] | |
Blueberry | 0.1 g/100 g polymer | Potato starch | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Fresh shrimp | [27] |
0.15 mg/mL solution | PVA and corn starch | CO2 presence indicator | Mushrooms | [14] | |
0.3 g/100 mL solution | PVA | NH3 presence indicator | Pork meat | [15] | |
Black corn | 21 mg/100 g black corn powder | Black corn starch and κ-carrageenan | Total Volatile Basic Nitrogen (TVBN) release indicator | Pork meat | [37] |
Mulberry | 15, 30, and 45 mg/100 g solution | Gelatin and PVA | Total Volatile Basic Nitrogen (TVBN) release indicator | Fish (carp) | [41] |
4, 8, 12, and 16 g/100 g polymer | Chitosan, PVA, sodium alginate and pullulan | Total Volatile Basic Nitrogen (TVBN) release indicator | Chinese mitten crab | [42] | |
Black soybean | 0.02–0.30 g/100 g polymer | Sodium alginate | Total Volatile Basic Nitrogen (TVBN) release and Hydrogen sulfide indicator (H2 S) | Pork meat | [18] |
Grape skin | 10 g/100 g cassava starch | cassava starch and PVA | Total Volatile Basic Nitrogen (TVBN) release indicator | Pork meat | [40] |
Roselle | 30, 60 and 120 mg/100 g starch | Starch and PVA | Total Volatile Basic Nitrogen (TVBN) release indicator | Fish filet | [4] |
2.5/100 g polymer | PVA, chitosan and starch | Total Volatile Basic Nitrogen (TVBN) release indicator | Pork meat | [43] | |
10 g/100 g polymer | Gelatin and agar | Total Volatile Basic Nitrogen (TVBN) release indicator | Fresh shrimp | [38] | |
10 mL/100 g polymer | Agar and PVA | NH3 presence, and release of trimethylamine (TMA) and dimethylamine (DMA) indicator | Salmon | [17] | |
Eggplant | 2 and 4 g/100 g polymer | Chitosan | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Pork meat | [44] |
Plum peel | 5, 10 and 15 g/100 g polymer | Sodium alginate and gelatin | pH variation and Total Volatile Basic Nitrogen (TVBN) release indicator | Chicken breast | [9] |
2.3. Gas Indicators
3. Stability of Anthocyanins in Smart Indicator Films
3.1. Temperature
3.2. Light
4. Production and Characterization of Indicator Films with Anthocyanins
4.1. Types of Polymers Used in pH Indicator Films
4.2. Physical–Chemical Characteristics
4.3. Responses under Real Storage Conditions
5. Encapsulation as an Alternative Method for Incorporating Anthocyanins into Films
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, L.; Liu, Y.; Zhao, L.; Wang, Y. Anthocyanin-Based PH-Sensitive Smart Packaging Films for Monitoring Food Freshness. J. Agric. Food Res. 2022, 9, 100340. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Braga, A.R.C.; de Oliveira, B.R.; Gomes, F.P.; Moreira, V.L.; Pereira, V.A.C.; Egea, M.B. The Potential of Anthocyanins in Smart, Active, and Bioactive Eco-Friendly Polymer-Based Films: A Review. Food Res. Int. 2021, 142, 110202. [Google Scholar] [CrossRef] [PubMed]
- Almasi, H.; Forghani, S.; Moradi, M. Recent Advances on Intelligent Food Freshness Indicators; an Update on Natural Colorants and Methods of Preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel Colorimetric Films Based on Starch/Polyvinyl Alcohol Incorporated with Roselle Anthocyanins for Fish Freshness Monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Bring Some Colour to Your Package: Freshness Indicators Based on Anthocyanin Extracts. Trends Food Sci. Technol. 2021, 111, 495–505. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of Antioxidant and Intelligent PH-Sensing Packaging Films by Incorporating Purple-Fleshed Sweet Potato Extract into Chitosan Matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.Y.; Lacroix, M.; Han, J. Intelligent PH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C. A Smart Film Incorporating Anthocyanins and Tea Polyphenols into Sodium Carboxymethyl Cellulose/Polyvinyl Alcohol for Application in Mirror Carp. Int. J. Biol. Macromol. 2022, 223, 404–417. [Google Scholar] [CrossRef]
- Chen, K.; Li, J.; Li, L.; Wang, Y.; Qin, Y.; Chen, H. A PH Indicator Film Based on Sodium Alginate/Gelatin and Plum Peel Extract for Monitoring the Freshness of Chicken. Food Biosci. 2023, 53, 102584. [Google Scholar] [CrossRef]
- Zong, Z.; Liu, M.; Chen, H.; Farag, M.A.; Wu, W.; Fang, X.; Niu, B.; Gao, H. Preparation and Characterization of a Novel Intelligent Starch/Gelatin Binary Film Containing Purple Sweet Potato Anthocyanins for Flammulina Velutipes Mushroom Freshness Monitoring. Food Chem. 2023, 405, 134839. [Google Scholar] [CrossRef]
- Hashim, S.B.H.; Tahir, H.E.; Lui, L.; Zhang, J.; Zhai, X.; Mahdi, A.A.; Ibrahim, N.A.; Mahunu, G.K.; Hassan, M.M.; Xiaobo, Z.; et al. Smart Films of Carbohydrate-Based/Sunflower Wax/Purple Chinese Cabbage Anthocyanins: A Biomarker of Chicken Freshness. Food Chem. 2023, 399, 133824. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, J.; Yun, D.; Wang, Z.; Tang, C.; Liu, J. A New Method to Prepare Color-Changeable Smart Packaging Films Based on the Cooked Purple Sweet Potato. Food Hydrocoll. 2023, 137, 108397. [Google Scholar] [CrossRef]
- Pang, S.; Wang, Y.; Jia, H.; Hao, R.; Jan, M.; Li, S.; Pu, Y.; Dong, X.; Pan, J. The Properties of PH-Responsive Gelatin-Based Intelligent Film as Affected by Ultrasound Power and Purple Cabbage Anthocyanin Dose. Int. J. Biol. Macromol. 2023, 230, 123156. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, W.; Zheng, L.; Yu, J.; Sun, P.; Shao, P. Intelligent Packaging Films Incorporated with Anthocyanins-Loaded Ovalbumin-Carboxymethyl Cellulose Nanocomplexes for Food Freshness Monitoring. Food Chem. 2022, 387, 132908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, W.; Xia, M.; Zeng, Q.; Cai, Z. Intelligent Colorimetric Film Incorporated with Anthocyanins-Loaded Ovalbumin-Propylene Glycol Alginate Nanocomplexes as a Stable PH Indicator of Monitoring Pork Freshness. Food Chem. 2022, 368, 130825. [Google Scholar] [CrossRef]
- Zhao, M.; Nuerjiang, M.; Bai, X.; Feng, J.; Kong, B.; Sun, F.; Li, Y.; Xia, X. Monitoring Dynamic Changes in Chicken Freshness at 4 °C and 25 °C Using PH-Sensitive Intelligent Films Based on Sodium Alginate and Purple Sweet Potato Peel Extracts. Int. J. Biol. Macromol. 2022, 216, 361–373. [Google Scholar] [CrossRef]
- Xiaowei, H.; Liuzi, D.; Zhihua, L.; Jin, X.; Jiyong, S.; Xiaodong, Z.; Junjun, Z.; Ning, Z.; Holmes, M.; Xiaobo, Z. Fabrication and Characterization of Colorimetric Indicator for Salmon Freshness Monitoring Using Agar/Polyvinyl Alcohol Gel and Anthocyanin from Different Plant Sources. Int. J. Biol. Macromol. 2023, 239, 124198. [Google Scholar] [CrossRef]
- Shi, S.; Xu, X.; Feng, J.; Ren, Y.; Bai, X.; Xia, X. Preparation of NH3- and H2S-Sensitive Intelligent PH Indicator Film from Sodium Alginate/Black Soybean Seed Coat Anthocyanins and Its Use in Monitoring Meat Freshness. Food Packag. Shelf Life 2023, 35, 100994. [Google Scholar] [CrossRef]
- Ma, Q.; Liang, T.; Cao, L.; Wang, L. Intelligent Poly (Vinyl Alcohol)-Chitosan Nanoparticles-Mulberry Extracts Films Capable of Monitoring PH Variations. Int. J. Biol. Macromol. 2018, 108, 576–584. [Google Scholar] [CrossRef]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA Films with Anthocyanins from Brassica Oleraceae (Red Cabbage) as Time-Temperature Indicators for Application in Intelligent Food Packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Silva-Pereira, M.C.; Teixeira, J.A.; Pereira-Júnior, V.A.; Stefani, R. Chitosan/Corn Starch Blend Films with Extract from Brassica Oleraceae (Red Cabbage) as a Visual Indicator of Fish Deterioration. LWT 2015, 61, 258–262. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Z.; Shang, M.; Zhong, Y. A Colorimetric Film Based on Polyvinyl Alcohol/Sodium Carboxymethyl Cellulose Incorporated with Red Cabbage Anthocyanin for Monitoring Pork Freshness. Food Packag. Shelf Life 2021, 28, 100641. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, Q.; Jin, Z.; Wang, Y.C. Intelligent Films Based on Pectin, Sodium Alginate, Cellulose Nanocrystals, and Anthocyanins for Monitoring Food Freshness. Food Chem. 2023, 404, 134528. [Google Scholar] [CrossRef] [PubMed]
- Wagh, R.V.; Khan, A.; Priyadarshi, R.; Ezati, P.; Rhim, J.W. Cellulose Nanofiber-Based Multifunctional Films Integrated with Carbon Dots and Anthocyanins from Brassica Oleracea for Active and Intelligent Food Packaging Applications. Int. J. Biol. Macromol. 2023, 233, 123567. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA Nanocomposite Films Containing Black Carrot Anthocyanin and Bentonite Nanoclays with Improved Mechanical, Thermal and Antibacterial Properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Ebrahimi Tirtashi, F.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Cellulose/Chitosan PH-Responsive Indicator Incorporated with Carrot Anthocyanins for Intelligent Food Packaging. Int. J. Biol. Macromol. 2019, 136, 920–926. [Google Scholar] [CrossRef]
- Bao, Y.; Cui, H.; Tian, J.; Ding, Y.; Tian, Q.; Zhang, W.; Wang, M.; Zang, Z.; Sun, X.; Li, D.; et al. Novel PH Sensitivity and Colorimetry-Enhanced Anthocyanin Indicator Films by Chondroitin Sulfate Co-Pigmentation for Shrimp Freshness Monitoring. Food Control 2022, 131, 108441. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Huo, R.; Cui, Z. Preparation of an Indicator Film Based on Pectin, Sodium Alginate, and Xanthan Gum Containing Blueberry Anthocyanin Extract and Its Application in Blueberry Freshness Monitoring. Heliyon 2023, 9, e14421. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yuan, L.; Yong, H.; Liu, J. Preparation and Characterization of Antioxidant, Antimicrobial and PH-Sensitive Films Based on Chitosan, Silver Nanoparticles and Purple Corn Extract. Food Hydrocoll. 2019, 96, 102–111. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Pereira Ribeiro, C.P.; Uliana, N.R.; Cassetari Rodrigues, M.B.; da Rosa, C.G.; Ferrareze, J.P.; Veeck, A.P.d.L.; Nunes, M.R. Bioactive and PH-Sensitive Films Based on Carboxymethyl Cellulose and Blackberry (Morus nigra L.) Anthocyanin-Rich Extract: A Perspective Coating Material to Improve the Shelf Life of Cherry Tomato (Solanum lycopersicum L. var. Cerasiforme). Biocatal. Agric. Biotechnol. 2021, 33, 101989. [Google Scholar] [CrossRef]
- Zeng, F.; Ye, Y.; Liu, J.; Fei, P. Intelligent PH Indicator Composite Film Based on Pectin/Chitosan Incorporated with Black Rice Anthocyanins for Meat Freshness Monitoring. Food Chem. X 2023, 17, 100531. [Google Scholar] [CrossRef] [PubMed]
- Amaregouda, Y.; Kamanna, K.; Gasti, T. Fabrication of Intelligent/Active Films Based on Chitosan/Polyvinyl Alcohol Matrices Containing Jacaranda Cuspidifolia Anthocyanin for Real-Time Monitoring of Fish Freshness. Int. J. Biol. Macromol. 2022, 218, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, C. A Double-Layer Smart Film Based on Gellan Gum/Modified Anthocyanin and Sodium Carboxymethyl Cellulose/Starch/Nisin for Application in Chicken Breast. Int. J. Biol. Macromol. 2023, 232, 123464. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.; Wang, X.; Zhang, X.; Liu, Y.; Qin, Y.; Liu, J. Effects of Anthocyanin-Rich Purple and Black Eggplant Extracts on the Physical, Antioxidant and PH-Sensitive Properties of Chitosan Film. Food Hydrocoll. 2019, 94, 93–104. [Google Scholar] [CrossRef]
- Huang, R.; Liu, D. Freshness Evaluation of Pork as Well as Its Problems and Countermeasures. Meat Ind. 2010, 43–46. [Google Scholar]
- Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel PH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr. Polym. 2019, 222, 115030. [Google Scholar] [CrossRef]
- Chi, W.; Liu, W.; Li, J.; Wang, L. Simultaneously Realizing Intelligent Color Change and High Haze of κ-Carrageenan Film by Incorporating Black Corn Seed Powder for Visually Monitoring Pork Freshness. Food Chem. 2023, 402, 134257. [Google Scholar] [CrossRef]
- Kim, H.-J.; Roy, S.; Rhim, J.-W. Gelatin/Agar-Based Color-Indicator Film Integrated with Clitoria Ternatea Flower Anthocyanin and Zinc Oxide Nanoparticles for Monitoring Freshness of Shrimp. Food Hydrocoll. 2022, 124, 107294. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Lu, D.; Gao, W.; Zhao, Q.; Shi, X. Multifunctional Intelligent Film Integrated with Purple Sweet Potato Anthocyanin and Quercetin-Loaded Chitosan Nanoparticles for Monitoring and Maintaining Freshness of Shrimp. Food Packag. Shelf Life 2023, 35, 101022. [Google Scholar] [CrossRef]
- Zhu, B.; Lu, W.; Qin, Y.; Cheng, G.; Yuan, M.; Li, L. An Intelligent PH Indicator Film Based on Cassava Starch/Polyvinyl Alcohol Incorporating Anthocyanin Extracts for Monitoring Pork Freshness. J. Food Process. Preserv. 2021, 45, e15822. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, X.; Qin, Y.-R.; Zhang, Y.-H.; Wang, X.-P.; Wang, J.-Y.; Ning, Z.-X.; Ruan, Q.-J.; Zhang, Y.-S. Preparation and Characterization of a Novel Colorimetric Indicator Film Based on Gelatin/Polyvinyl Alcohol Incorporating Mulberry Anthocyanin Extracts for Monitoring Fish Freshness. Food Res. Int. 2019, 126, 108604. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, L.; Li, Z.; Xue, J.; Shi, J.; Tahir, H.E.; Zhai, X.; Zhang, J.; Zhang, N.; Sun, W.; et al. A Visual Bi-Layer Indicator Based on Mulberry Anthocyanins with High Stability for Monitoring Chinese Mitten Crab Freshness. Food Chem. 2023, 411, 135497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.W.; Jiang, C.; Holmes, M. Preparation of an Intelligent PH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xie, C.; Tang, H.; Hao, W.; Wu, J.; Sun, Y.; Sun, J.; Liu, Y.; Jiang, L. Development, Characterization and Application of Intelligent/Active Packaging of Chitosan/Chitin Nanofibers Films Containing Eggplant Anthocyanins. Food Hydrocoll. 2023, 139, 108496. [Google Scholar] [CrossRef]
- Borchert, N.B.; Cruz-Romero, M.C.; Mahajan, P.V.; Ren, M.; Papkovsky, D.B.; Kerry, J.P. Application of Gas Sensing Technologies for Non-Destructive Monitoring of Headspace Gases (O2 and CO2) during Chilled Storage of Packaged Mushrooms (Agaricus bisporus) and Their Correlation with Product Quality Parameters. Food Packag. Shelf Life 2014, 2, 17–29. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, G.; Cao, L.; Wang, L. Accurately Intelligent Film Made from Sodium Carboxymethyl Starch/κ-Carrageenan Reinforced by Mulberry Anthocyanins as an Indicator. Food Hydrocoll. 2020, 108, 106012. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Oancea, S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Tao, C.; Liu, M.; Pan, Y.; Lv, Z. Effect of Temperature and PH on Stability of Anthocyanin Obtained from Blueberry. J. Food Meas. Charact. 2018, 12, 1744–1753. [Google Scholar] [CrossRef]
- Garcia, V.A.D.S.; Osiro, D.; Vanin, F.M.; Yoshida, C.M.P.; de Carvalho, R.A. Oral Films with Addition Mushroom (Agaricus bisporus) as a Source of Active Compounds. J. Pharm. Sci. 2022, 111, 1739–1748. [Google Scholar] [CrossRef]
- Ockun, M.A.; Baranauskaite, J.; Uner, B.; Kan, Y.; Kırmızıbekmez, H. Preparation, Characterization and Evaluation of Liposomal-Freeze Dried Anthocyanin-Enriched Vaccinium Arctostaphylos L. Fruit Extract Incorporated into Fast Dissolving Oral Films. J. Drug Deliv. Sci. Technol. 2022, 72, 103428. [Google Scholar] [CrossRef]
- Gasti, T.; Dixit, S.; D’souza, O.J.; Hiremani, V.D.; Vootla, S.K.; Masti, S.P.; Chougale, R.B.; Malabadi, R.B. Smart Biodegradable Films Based on Chitosan/Methylcellulose Containing Phyllanthus Reticulatus Anthocyanin for Monitoring the Freshness of Fish Fillet. Int. J. Biol. Macromol. 2021, 187, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Forghani, S.; Zeynali, F.; Almasi, H.; Hamishehkar, H. Characterization of Electrospun Nanofibers and Solvent-Casted Films Based on Centaurea Arvensis Anthocyanin-Loaded PVA/κ-Carrageenan and Comparing Their Performance as Colorimetric PH Indicator. Food Chem. 2022, 388, 133057. [Google Scholar] [CrossRef] [PubMed]
- Koshy, R.R.; Koshy, J.T.; Mary, S.K.; Sadanandan, S.; Jisha, S.; Pothan, L.A. Preparation of PH Sensitive Film Based on Starch/Carbon Nano Dots Incorporating Anthocyanin for Monitoring Spoilage of Pork. Food Control 2021, 126, 108039. [Google Scholar] [CrossRef]
- Chen, M.; Yan, T.; Huang, J.; Zhou, Y.; Hu, Y. Fabrication of Halochromic Smart Films by Immobilizing Red Cabbage Anthocyanins into Chitosan/Oxidized-Chitin Nanocrystals Composites for Real-Time Hairtail and Shrimp Freshness Monitoring. Int. J. Biol. Macromol. 2021, 179, 90–100. [Google Scholar] [CrossRef]
- Chen, S.; Wu, M.; Lu, P.; Gao, L.; Yan, S.; Wang, S. Development of PH Indicator and Antimicrobial Cellulose Nanofibre Packaging Film Based on Purple Sweet Potato Anthocyanin and Oregano Essential Oil. Int. J. Biol. Macromol. 2020, 149, 271–280. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural Anthocyanins: Sources, Extraction, Characterization, and Suitability for Smart Packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Dong, H.; Ling, Z.; Zhang, X.; Zhang, X.; Ramaswamy, S.; Xu, F. Smart Colorimetric Sensing Films with High Mechanical Strength and Hydrophobic Properties for Visual Monitoring of Shrimp and Pork Freshness. Sens. Actuators B Chem. 2020, 309, 127752. [Google Scholar] [CrossRef]
- Rosales, T.K.O.; Fabi, J.P. Nanoencapsulated Anthocyanin as a Functional Ingredient: Technological Application and Future Perspectives. Colloids Surf. B Biointerfaces 2022, 218, 112707. [Google Scholar] [CrossRef]
- Faridi Esfanjani, A.; Assadpour, E.; Jafari, S.M. Improving the Bioavailability of Phenolic Compounds by Loading Them within Lipid-Based Nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Tie, S.; Hou, S.; Wang, H.; Song, Y.; Rai, R.; Tan, M. Facile Synthesis of Nano-Nanocarriers from Chitosan and Pectin with Improved Stability and Biocompatibility for Anthocyanins Delivery: An in Vitro and in Vivo Study. Food Hydrocoll. 2020, 109, 106114. [Google Scholar] [CrossRef]
- Akhavan Mahdavi, S.; Jafari, S.M.; Assadpour, E.; Ghorbani, M. Storage Stability of Encapsulated Barberry’s Anthocyanin and Its Application in Jelly Formulation. J. Food Eng. 2016, 181, 59–66. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, Y.P.; Lee, Y.M.; Seo, E.M.; Lee, K.W.; Kim, H.S. Optimization of Microencapsulation of Seed Oil by Response Surface Methodology. Food Chem. 2008, 107, 98–105. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Microencapsulation of Anthocyanin Extract from Purple Rice Bran Using Modified Rice Starch and Its Effect on Rice Dough Rheology. Int. J. Biol. Macromol. 2019, 124, 573–581. [Google Scholar] [CrossRef]
- Jafari, S.M. An Overview of Nanoencapsulation Techniques and Their Classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Elsevier: Amsterdam, The Netherlands, 2017; pp. 545–590. ISBN 9780128094365. [Google Scholar]
- Wu, C.; Li, Y.; Sun, J.; Lu, Y.; Tong, C.; Wang, L.; Yan, Z.; Pang, J. Novel Konjac Glucomannan Films with Oxidized Chitin Nanocrystals Immobilized Red Cabbage Anthocyanins for Intelligent Food Packaging. Food Hydrocoll. 2020, 98, 105245. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, L.; Yu, J.; Farag, M.A.; Shao, P. Intelligent Starch/Chitosan-Based Film Incorporated by Anthocyanin-Encapsulated Amylopectin Nanoparticles with High Stability for Food Freshness Monitoring. Food Control 2023, 151, 109798. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Characterisation and Storage Stability of Aronia Anthocyanins Encapsulated with Combinations of Maltodextrin with Carboxymethyl Cellulose, Gum Arabic, and Xanthan Gum. Food Chem. 2023, 405, 135202. [Google Scholar] [CrossRef]
Source of Anthocyanin | Film-Forming Polymer | Extract/Polymer Ratio | Food Application | Characterization | References |
---|---|---|---|---|---|
Red cabbage | PVA (1 g/100 g solution) and chitosan (1 g/100 g solution) | 25 g/100 g polymer | Pasteurized milk | Swelling Index, Fourier-transform infrared analysis (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical properties, color parameters, sensitivity to lactic acid. | [20] |
Chitosan (1 g/100 mL solution) and corn starch (5 g/100 mL solution) | 5 mL/100 mL solution | Fish filets | FT-IR, DSC, water vapor permeability (WVP), Light Microscopy (LM) and image texture analysis (GLCM and SDBC), color parameters, pH stability in different storage temperatures (4–7 °C and 25 °C for 72 h) | [21] | |
PVA (8 g/100 g solution) and CMC (2 g/100 g solution) | 0, 20, 40, and 60 mg/100 g solution | Fresh pork | Color parameters, mechanical properties, water solubility, swelling Index, FT-IR, X-ray diffraction (XRD), SEM, ammonia sensitivity, pH, and TVB-N. | [22] | |
Pectin (2.5 g/100 g solution) and sodium alginate (2.5 g/100 g solution) | 50.74 mg/100 g solution | Shrimp | Colorimetric response at different pH (2–12), UPLC, FT-IR, TGA, AFM, thickness, color parameters, UV-vis transmission, opacity, moisture content, water solubility, mechanical properties, antioxidant activity (DPPH and ABTS), color responses to pH (2–12), color stability in different storage temperatures (4 and 25 °C for 2 days), pH variation with and without contact with shrimp (4 and 25 °C for 72 h). | [23] | |
Cellulose nanofiber (2.75 g/100 g solution) | 6 g/100 g polymer | Pork, fish, and shrimp | FT-IR, X-ray photoelectron spectroscopy (XPS), SEM, AFM, transmission electron microscopy (TEM), antioxidant activity (DPPH and ABTS), antibacterial analysis (Listeria monocytogenes and E. coli), thickness, mechanical properties, color parameters, WVP, contact angle, TGA, ammonia sensitivity (NH3). | [24] | |
Purple sweet potato | Agar and potato starch | - | Pork | UV-vis spectroscopy, FT-IR, color response, pH variation for 48 h. | [7] |
Chitosan (2 g/100 g solution) | 0, 5, 10 and 15 g/100 g polymer | - | Color response, thickness, moisture content, water solubility, WVP, UV-vis light barrier, mechanical properties, TGA, SEM, FT-IR, XRD, antioxidant activity (DPPH), color response to pH (3–10). | [6] | |
Starch (4.5 g/100 g solution) and gelatin (4.5 g/100 g solution) | 0.1 g sweet potato powder/100 g solution | Flammulina velutipes mushroom | FT-IR, SEM, color parameters, thickness, mechanical properties, moisture content, WVP. | [10] | |
Black carrot | Chitosan (2 g/100 g solution) and PVA (1 g/100 g solution) | 1 g/100 g polymer | - | UV-vis spectroscopy, SEM, XRD, FT-IR, TGA, mechanical properties, color response to pH (3–13), color parameters, WVP, antibacterial analysis (S. aureus, E. coli and P. aeruginosa) | [25] |
Chitosan (1.4 g/100 g solution) | 10.5 mg/100 mL solution | Pasteurized milk | Color response to pH (2–11), swelling Index, water solubility, FT-IR, SEM, color stability (20 °C and 30 days). | [26] | |
PVA (3 g/100 g solution) and CMC (1.5 g/100 g solution) | 45 mg/100 mL solution | Fish (Carp) | Color parameters, thickness, mechanical properties, moisture content, water solubility, WVP, light transmittance and opacity, TGA, SEM, FT-IR, XRD, antioxidant activity (DPPH), antibacterial analysis (S. aureus and E. coli), color response to pH (2–13), ammonia sensitivity (NH3), pH stability in different storage temperatures with and without light (4 and 25 °C for 20 days), total volatile basic nitrogen analysis (TVB-N) | [8] | |
Blueberry | Potato starch (6 g/100 g solution) | 0.1 g/100 g polymer | Fresh shrimp | SEM, FT-IR, XRD, mechanical properties, water solubility, color parameters, ammonia sensitivity (NH3), color stability in different storage temperatures with and without light (4 and 25 °C for 14 days), color response to pH (2–12), microbial analysis by total viable count (TVC), TVB-N. | [27] |
Pectin (0.6 g/100 g solution), sodium alginate (0.5 g/100 g solution) and xanthan gum (0.2 g/100 g solution) | 0.25, 0.5, 0.75 and 1.0 g/100 g polymer | Blueberry | Extract color response to pH (2–13), color response, thickness, mechanical properties, light transmittance and opacity, moisture content, water solubility, swelling Index, WVP, FT-IR, SEM, color response to pH (2–12), color stability in different storage temperatures (4 and 25 °C for 24 days), freshness in different temperatures (−1, 4, 10 and 15 °C) | [28] | |
Purple corn | Chitosan (2 g/100 g solution) | 2 g/100 g polymer | - | FT-IR, color parameters, UV-vis transmission, thickness, moisture content, water solubility, WVP, mechanical properties, antioxidant activity (DPPH), antibacterial analysis (E. coli, Salmonella, S. aureus and L. monocytogenes), color response to pH (3–10). | [29] |
Mulberry | PVA (10 g/100 g solution) and chitosan (3 g/100 g solution) | 10, 20, 30, and 40 g/100 g polymer | Fish | TEM, SEM, color parameters, mechanical properties, UV-vis spectroscopy, color response to pH (1–11), changes in color parameters over 4 days. | [19] |
CMC (2.5 g/100 g solution) | 10, 30 and 50 g/100 g polymer | Cherry tomato | Thickness, moisture content, water solubility, color parameters, opacity, UV-vis transmission, total phenolics, antioxidant activity (DPPH and FRAP), color response to pH (2–13), color stability (6 °C for 15 days). | [30] | |
Black rice | Chitosan (2.7 g/100 g solution) and pectin (1.3 g/100 g solution) | 0.1, 0.2, 0.3 and 0.4 g/100 g polymer | Pork and beef meat | Antioxidant activity (DPPH), mechanical properties, FT-IR, SEM, color response to pH (1–13), ammonia sensitivity (NH3). | [31] |
Roselle | Chitosan (1 g/100 g solution) and PVA (0.5 g/100 g solution) | 0.02, 0.20, 0.33 and 0.46 g/100 g polymer | Fish filet | UV-vis spectroscopy, total phenolics and flavonoids, thickness, XRD, SEM, energy dispersive X-ray (EDX), moisture content, water solubility, WVP, oxygen permeability, contact angle, mechanical properties, TGA, release of anthocyanin, color response to pH (1–14), antioxidant activity (DPPH), cell viability, antibacterial analysis (E. coli and S. aureus), pH variation in fish (52 h), TVB-N (52 h). | [32] |
CMC (2 g/100 g solution), starch (2 g/100 g solution) and gellan gum (1 g/100 g solution) | - | Chicken breast | Anthocyanin stability in different temperatures (45, 60, 75 and 90 °C for 2 h), oxidation stability, light stability (constant light for 7 days) and pH stability (1–11), SEM, FT-IR, XRD, thickness, mechanical properties, moisture content, water solubility, WVP, oxygen permeability, opacity, antibacterial analysis (S. aureus and E. coli), sensibility response to pH (2–13), ammonia sensitivity (NH3), TVB-N. | [33] | |
Black eggplant | Chitosan (2 g/100 g solution) | 1, 2, and 3 g de extract/100 g polymer | Pasteurized milk | Color parameters, thickness, moisture content, WVP, UV–vis light barrier, mechanical properties, SEM, FT-IR, XRD, antioxidant activity (DPPH), sensibility response to pH (2–13). | [34] |
Application | Source of Anthocyanin | Film-Forming Polymer | Storage Time | Storage Temperature | Color Variation (Response) | References |
---|---|---|---|---|---|---|
Pork meat | Purple sweet potato | Agar and purple sweet potato | 48 h | 25 °C | Red to green (pH 5.78 to 7.46) | [7] |
Roselle | PVA, chitosan and starch | 72 h | 25 °C | Red to yellow (TVB-N 7.52 to 41 mg/100 g) | [43] | |
Red cabbage | PVA and CMC | 24 h | 25 °C | Purple to blue purple (pH 5.71 to 6.51 and TVB-N 6.36 to 18.78 mg/100 g) | [22] | |
Blueberry | PVA | 5 days | 4 °C 25 °C | Purplish red to dark blue (-) | [15] | |
Black corn | Black corn starch and κ-carrageenan | 23 h | 25 °C | Pink to grayish green (TVB-N 2.70 to 14.03 mg/100 g) | [37] | |
Black soybean | Sodium alginate | 5 days | 25 °C | Light brown to brown (pH 6.03 to 7.6 and TVB-N 9.20 to 33.98 mg/100 g) | [18] | |
Eggplant | Chitosan | 48 h | 25 °C | Blue to green (pH 7.68 to 8.18 and TVB-N 15.16 to 24.32 mg/100 g) | [44] | |
Milk | Black cabbage | PVA and chitosan | 4 days | 25 °C | Dark gray to dark pink (pH 6.8 to 4.6) | [20] |
Black carrot | Chitosan | 48 h | 20 °C | Blue to violet rose (pH 6.6 to 5.7) | [26] | |
Eggplant | Chitosan | 16 h | 40 °C | Blue to dark blue (pH 6.68 to 4.47) | [34] | |
Fish | Red cabbage | PVA and chitosan | 72 h 7 days | 25 °C 4–7 °C | Transparent to yellow | [21] |
Blueberry | PVA and chitosan | 4 days | 25 °C | Red to green (-) | [19] | |
Black carrot | Bacterial cellulose nanofibers | 15 days | 4 °C | Deep carmine to jelly bean blue (pH 6.36 to 7.22) | [36] | |
Jacaranda cuspidifolia flower | Chitosan and PVA | 52 h | 25 °C | Transparent to yellow (pH 6.5 to 12.8 and TVB-N 6.01 to 36.21 mg/100 g) | [32] | |
Red cabbage | Gelatin | 6 days | 4 °C | Pink to atrovirens (TVB-N 13.30 to 37.76 mg/100 g) | [13] | |
Shrimp | Red cabbage | Pectin and sodium alginate | 72 h | 4 °C 25 °C | lilac to dark green (-) lilac to greenish yellow (-) | [23] |
Blueberry | Potato starch | 36 h | 4 °C | pink to light gray (pH 6.91 to 7.47 and TVB-N 9.57 to 28.47 mg/100 g) | [27] | |
Mushroom | Sweet potato | Starch and gelatin | 60 h | 20 °C | green to yellowish green (-) | [10] |
Mitten crab | Mulberry | Chitosan, PVA, sodium alginate and pullulan | 12 days | 4 °C | Pink to dark green (pH 6.34 to 7.22 and TVB-N 9.2 to 45.24 mg/100 g) | [42] |
Cherry tomato | Blackberry | CMC | 15 days | 6 °C | Red to reddish rose (pH 4.2 to 4.7) | [30] |
Chicken | Purple sweet potato | Sodium alginate | 60 h | 4 °C 25 °C | Pink to blue (TVB-N 5.35 to 19.93 mg/100 g) Pink to blue (5.35 to 16.19 mg/100 g) | [16] |
Purple cabbage | Agar and methylcellulose | 42 h | 25 °C | Pink to green (TVB-N 8.8 to 44.0 mg/100 g) | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remedio, L.N.; Parada Quinayá, C. Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions. Polymers 2024, 16, 2886. https://doi.org/10.3390/polym16202886
Remedio LN, Parada Quinayá C. Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions. Polymers. 2024; 16(20):2886. https://doi.org/10.3390/polym16202886
Chicago/Turabian StyleRemedio, Leandro Neodini, and Carolina Parada Quinayá. 2024. "Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions" Polymers 16, no. 20: 2886. https://doi.org/10.3390/polym16202886
APA StyleRemedio, L. N., & Parada Quinayá, C. (2024). Intelligent Packaging Systems with Anthocyanin: Influence of Different Polymers and Storage Conditions. Polymers, 16(20), 2886. https://doi.org/10.3390/polym16202886