Laser Sintering by Spot and Linear Optics for Inkjet-Printed Thin-Film Conductive Silver Patterns with the Focus on Ink-Sets and Process Parameters
Abstract
:1. Introduction
2. Materials and Experimental Setup
3. Results and Discussion
3.1. Parameter Range and Characteristics for the Spot-Laser Sintering
3.2. Parameter Range and Characteristics for the Line-Laser Sintering
3.3. Implementation of the Optimized Parameters for Large Scale/Rapid Laser Sintering
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hon, K.K.B.; Li, L.; Hutchings, I.M. Direct writing technology—Advances and developments. Cirp Ann.-Manuf. Technol. 2008, 57, 601–620. [Google Scholar] [CrossRef]
- Hutchings, I.M. Inkjet printing in micro manufacturing. In Proceedings of the Conference on Micro Manufacturing, Karlsruhe, Germany, 23–25 September 2009. [Google Scholar]
- Castrejon-Pita, J.R. Future, Opportunities and Challenges of Inkjet Technologies. At. Sprays 2013, 23, 541–565. [Google Scholar] [CrossRef]
- Hammerschmidt, J.; Wolf, F.M.; Goedel, W.A.; Baumann, R.R. Inkjet Printing of Reinforcing Patterns for the Mechanical Stabilization of Fragile Polymeric Microsieves. Langmuir 2012, 28, 3316–3321. [Google Scholar] [CrossRef]
- Sowade, E.; Blaudeck, T.; Baumann, R.R. Inkjet Printing of Colloidal Nanospheres: Engineering the Evaporation-Driven Self-Assembly Process to Form Defined Layer Morphologies. Nanoscale Res. Lett. 2015, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Mitra, K.Y.; Polomoshnov, M.; Martinez-Domingo, C.; Mitra, D.; Ramon, E.; Baumann, R.R. Fully Inkjet-Printed Thin-Film Transistor Array Manufactured on Paper Substrate for Cheap Electronic Applications. Adv. Electron. Mater. 2017, 3, 1700275. [Google Scholar] [CrossRef]
- Zichner, R.; Baumann, R.R. Roll-to-roll screen printed radio frequency identification transponder antennas for vehicle tracking systems. Jpn. J. Appl. Phys. 2013, 52, 05DC24. [Google Scholar] [CrossRef]
- Teichler, A.; Perelaer, J.; Schubert, U.S. Inkjet printing of organic electronics—Comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 2013, 1, 1910–1925. [Google Scholar] [CrossRef]
- Mitra, K.Y.; Weise, D.; Hartwig, M.; Kapadia, S.; Baumann, R.R. Time-Efficient Curing of Printed Dielectrics via Infra-Red Suitable to S2S and R2R Manufacturing Platforms for Electronic Devices. IEEE Trans. Electron Devices 2016, 63, 2777–2784. [Google Scholar] [CrossRef]
- Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R.R.; Kerdcharoen, T. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array. Sensors 2014, 14, 19700–19712. [Google Scholar] [CrossRef]
- Marjanović, N.; Chiolerio, A.; Kus, M.; Ozel, F.; Tilki, S.; Ivanović, N.; Rakočević, Z.; Andrić, V.; Barudžija, T.; Baumann, R.R. Magnetite nanoparticles: Synthesis, thin film properties and inkjet printing of magnetic cores for inductor applications. Thin Solid Film. 2014, 570 Pt A, 38–44. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, H.; Xing, L.; Bu, Q.; Ren, D.; Sun, B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 2023, 15, 6025–6051. [Google Scholar] [CrossRef]
- Evans, S.E.; Harrington, T.; Rodriguez Rivero, M.C.; Rognin, E.; Tuladhar, T.; Daly, R. 2D and 3D inkjet printing of biopharmaceuticals—A review of trends and future perspectives in research and manufacturing. Int. J. Pharm. 2021, 599, 120443. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Choong, Y.Y.C.; Kuo, C.N.; Low, H.Y.; Chua, C.K. 3D printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 2022, 127, 100945. [Google Scholar] [CrossRef]
- Greer, J.R.; Street, R.A. Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 2007, 55, 6345–6349. [Google Scholar] [CrossRef]
- Yang, X.; He, W.; Wang, S.; Zhou, G.; Tang, Y.; Yang, J. Effect of the different shapes of silver particles in conductive ink on electrical performance and microstructure of the conductive tracks. J. Mater. Sci.-Mater. Electron. 2012, 23, 1980–1986. [Google Scholar] [CrossRef]
- Ryu, K.; Moon, Y.-J.; Park, K.; Moon, S.-J. Electrical Property and Surface Morphology of Silver Nanoparticles after Thermal Sintering. J. Electron. Mater. 2016, 45, 312–321. [Google Scholar] [CrossRef]
- Sowade, E.; Kang, H.; Mitra, K.Y.; Weiß, O.J.; Weber, J.; Baumann, R.R. Roll-to-roll infrared (IR) drying and sintering of an inkjet-printed silver nanoparticle ink within 1 second. J. Mater. Chem. C 2015, 3, 11815–11826. [Google Scholar] [CrossRef]
- Wünscher, S.; Abbel, R.; Perelaer, J.; Schubert, U.S. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2014, 2, 10232–10261. [Google Scholar] [CrossRef]
- Perelaer, J.; Schubert, U.S. Novel approaches for low temperature sintering of inkjet printed inorganic nanoparticles for roll-to-roll R2R applications. J. Mater. Res. 2013, 28, 564–573. [Google Scholar] [CrossRef]
- Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Film. 2014, 556, 452–459. [Google Scholar] [CrossRef]
- Reinhold, I.; Müller, M.; Müller, M.; Voit, W.; Zapka, W. Spectrally Enhanced Photonic Sintering. In Proceedings of the 28th International Conference on Digital Printing Technologies and Digital Fabrication (NIP28), Quebec City, QC, Canada, 9–13 September 2012; pp. 424–430. [Google Scholar] [CrossRef]
- Mitra, D.; Mitra, K.Y.; Dzhagan, V.; Pillai, N.; Zahn, D.R.T.; Baumann, R.R. Work Function and Conductivity of Inkjet-Printed Silver Layers: Effect of Inks and Post-treatments. J. Electron. Mater. 2018, 47, 2135–2142. [Google Scholar] [CrossRef]
- Choi, J.H.; Ryu, K.; Park, K.; Moon, S.-J. Thermal conductivity estimation of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Int. J. Heat Mass Transf. 2015, 85, 904–909. [Google Scholar] [CrossRef]
- Theodorakosa, I.; Zacharatos, F.; Geremia, R.; Karnakis, D.; Zergioti, I. Selective laser sintering of Ag nanoparticles ink for applications inflexible electronics. Appl. Surf. Sci. 2015, 336, 157–162. [Google Scholar] [CrossRef]
- Balliu, E.; Andersson, H.; Engholm, M.; Öhlund, T.; Nilsson, H.-E.; Olin, H. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns. Sci. Rep. 2018, 8, 10408. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, D.; Zhao, P.; Huang, J. Effect of processing parameters on laser sintering of silver MOD inks for inkjet printing. IET Collab. Intell. Manuf. 2019, 1, 10–19. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Yang, S.; Li, Y.; Huang, J. Multiscale simulation study of laser sintering of inkjet-printed silver nanoparticle inks. Int. J. Heat Mass Transf. 2020, 159, 120110. [Google Scholar] [CrossRef]
- Zhao, P.; Huang, J.; Nan, J.; Liu, D.; Meng, F. Laser sintering process optimization of microstrip antenna fabricated by inkjet printing with silver-based MOD ink. J. Mater. Process. Tech. 2020, 275, 116347. [Google Scholar] [CrossRef]
- Hussain, A.; Lee, H.-L.; Moon, Y.-J.; Hwang, J.Y.; Moon, S.-J. Effect of pulse overlapping on temperature field and physical characteristics in pulsed laser sintering of inkjet-printed silver nanoparticles. Int. J. Heat Mass Transf. 2023, 202, 123678. [Google Scholar] [CrossRef]
- Paeng, D.; Yeo, J.; Lee, D.; Moon, S.-J.; Grigoropoulos, C.P. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles. Appl. Phys. A 2015, 120, 1229–1240. [Google Scholar] [CrossRef]
- Park, H.; Park, J.J.; Bui, P.-D.; Yoon, H.; Grigoropoulos, C.P.; Lee, D.; Ko, S.H. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. Adv. Mater. 2024, 36, 2307586. [Google Scholar] [CrossRef]
- Kang, B.; Ko, S.; Kim, J.; Yang, M. Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Opt. Express 2011, 19, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-K.; Lee, M.-T. Laser Direct Synthesis and Patterning of Silver Nano/Microstructures on a Polymer Substrate. ACS Appl. Mater. Interfaces 2014, 6, 16. [Google Scholar] [CrossRef] [PubMed]
Ag-NP1 | |||
---|---|---|---|
# | Power [W] | Speed [mm/s] | R [Ω/sq.] |
1 | 6 | 50 | MΩ |
2 | 8 | 50 | 1.09 ± 0.04 |
3 | 10 | 50 | 0.62 ± 0.00 |
4 | 12 | 50 | 0.34 ± 0.08 |
5 | 14 | 50 | 0.27 ± 0.03 |
6 | 16 | 50 | 0.21 ± 0.01 |
7 | 18 | 50 | 0.18 ± 0.02 |
8 | 20 | 50 | Full damage |
Ag-NP2 | |||
---|---|---|---|
# | Power [W] | Speed [mm/s] | R [Ω/sq.] |
1 | 26 | 10 | Full damage |
2 | 26 | 50 | 0.13 ± 0.01 |
3 | 26 | 75 | 0.17 ± 0.02 |
4 | 26 | 100 | 0.18 ± 0.00 |
5 | 28 | 100 | 0.14 ± 0.00 |
6 | 30 | 100 | 0.15 ± 0.01 |
7 | 32 | 100 | 0.12 ± 0.02 |
8 | 34 | 100 | Full damage |
Ag-MOD | |||
---|---|---|---|
# | Power [W] | Speed [mm/s] | R [Ω/sq.] |
1 | 18 | 50 | 0.14 ± 0.04 |
2 | 20 | 75 | 0.14 ± 0.05 |
3 | 28 | 75 | 0.11 ± 0.00 |
4 | 30 | 75 | 0.12 ± 0.01 |
5 | 32 | 75 | 0.12 ± 0.01 |
6 | 34 | 75 | 0.11 ± 0.00 |
7 | 36 | 75 | 0.14 ± 0.03 |
8 | 38 | 75 | 0.14 ± 0.02 |
9 | 20 | 100 | 0.15 ± 0.00 |
10 | 22 | 100 | 0.15 ± 0.03 |
Spot Laser | |||
---|---|---|---|
Ink and Sample | Average Resistivity [Ω‧m] | Average Conductivity [S‧m−1] | Average Percent of Bulk Ag |
Ag-NP1 #2 | 5.47 × 10−7 | 1.83 × 106 | 3% |
Ag-NP2 #4 | 1.62 × 10−7 | 6.17 × 106 | 10% |
Ag-MOD #2 | 1.68 × 10−7 | 5.49 × 106 | 10% |
Line laser | |||
Ag-NP1 #2 | 6.35 × 10−7 | 1.57 × 106 | 3% |
Ag-NP2 #4 | 4.50 × 10−8 | 2.22 × 107 | 36% |
Ag-MOD #2 | 3.11 × 10−6 | 2.97 × 105 | 0.5% |
Line and Spot laser for large scale sintering | |||
Ag-NP1, Spot Laser | 3.05 × 10−7 | 3.28 × 106 | 5% |
Ag-NP1, Line Laser | 4.85 × 10−7 | 2.06 × 106 | 3% |
Ag-NP2, Line Laser | 1.35 × 10−7 | 7.41 × 106 | 12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, D.; Mitra, K.Y.; Buchecker, G.; Görk, A.; Mousto, M.; Franzl, T.; Zichner, R. Laser Sintering by Spot and Linear Optics for Inkjet-Printed Thin-Film Conductive Silver Patterns with the Focus on Ink-Sets and Process Parameters. Polymers 2024, 16, 2896. https://doi.org/10.3390/polym16202896
Mitra D, Mitra KY, Buchecker G, Görk A, Mousto M, Franzl T, Zichner R. Laser Sintering by Spot and Linear Optics for Inkjet-Printed Thin-Film Conductive Silver Patterns with the Focus on Ink-Sets and Process Parameters. Polymers. 2024; 16(20):2896. https://doi.org/10.3390/polym16202896
Chicago/Turabian StyleMitra, Dana, Kalyan Yoti Mitra, Georg Buchecker, Alexander Görk, Maxim Mousto, Thomas Franzl, and Ralf Zichner. 2024. "Laser Sintering by Spot and Linear Optics for Inkjet-Printed Thin-Film Conductive Silver Patterns with the Focus on Ink-Sets and Process Parameters" Polymers 16, no. 20: 2896. https://doi.org/10.3390/polym16202896
APA StyleMitra, D., Mitra, K. Y., Buchecker, G., Görk, A., Mousto, M., Franzl, T., & Zichner, R. (2024). Laser Sintering by Spot and Linear Optics for Inkjet-Printed Thin-Film Conductive Silver Patterns with the Focus on Ink-Sets and Process Parameters. Polymers, 16(20), 2896. https://doi.org/10.3390/polym16202896