Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Unsorted Plastic Waste
2.2. Analysis of Sorted Plastic Waste
2.3. Melt Mixing and Compression Molding of Sorted PP, PS and PE Fractions
2.4. Mechanical Analysis
2.5. Preparation of Compounds with Coupling Agents and Characterization
- -
- Commercial PP grafted with maleic anhydride (PPMA), trade name KA 805, containing approximately 1 wt% of grafted meleic anhydride, kindly supplied by Basell Polyolefins spa (Ferrara, Italy).
- -
- Commercial PE grafted with maleic anhydride (PEMA), trade name Compoline CO/LL, with a grafted maleic anhydride content of 1.4 wt%, kindly supplied by Auser Polimeri srl (Lucca, Italy).
3. Results and Discussion
3.1. Compositional Analysis of Unsorted Plastic Waste
3.2. Sorting and Analysis of Sorted Plastic Wastes
3.3. Melt Mixing and Compression Molding of the PP, PE and PS Polymer Fractions
3.3.1. Elemental Analysis of PP, PE and PS Polymer Fractions
3.3.2. Melt Flow Rate
- -
- Sabic PP 48M40, MFR 15 g/10 min @ 230 °C/2.16 kg, injection-molding grade, used for crates, boxes and rigid packaging.
- -
- LyondellBasell Moplen HP483R, MFR 27 g/10 min @ 230 °C/2.16 kg, injection-molding grade, used for caps and closures, furniture, and household articles.
- -
- Borealis RF365MO, MFR 20 g/10 min @ 230 °C/2.16 kg, used for closures and thin wall containers.
- -
- Sabic LDPE 2801H0W, MFR 0.55 g/10 min @ 190 °C/2.16 kg, used for shrink films and packaging films.
- -
- LyondellBasell Lupolen 3020F, MFR 0.90 g/10 min @ 190 °C/2.16 kg, used for bags and pouches, food packaging films, and lamination films.
- -
- Dow DOWLEX 2049, MFR 1.0 g/10 min @ 190 °C/2.16 kg, used for food packaging.
- -
- Ineos Styrolution PS-148G, MFR 6 g/10 min @ 200 °C/5 kg, general purpose polystyrene.
- -
- Sabic PS 155 PS, MFR 7 g/10 min @ 200 °C/5 kg, general purpose polystyrene.
3.4. Mechanical Analysis of PE, PP and PS Compounds
3.5. Property Improvement of Recycled PP and PE Fractions
3.6. Classification of Sorted Polymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Avella, M.; Avolio, R.; Bonadies, I.; Carfagna, C.; Errico, M.E.; Gentile, G. Recycled multilayer cartons as cellulose source in HDPE-based composites: Compatibilization and structure-properties relationships. J. Appl. Polym. Sci. 2009, 114, 2978–2985. [Google Scholar] [CrossRef]
- Piergiovanni, L.; Limbo, S. Plastic Packaging Materials. In Food Packaging Materials; Springer Briefs in Molecular Science; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Evode, N.; Ahmad Qamar, S.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Guerritore, M.; Olivieri, F.; Castaldo, R.; Avolio, R.; Cocca, M.; Errico, M.E.; Galdi, M.R.; Carfagna, C.; Gentile, G. Recyclable-by-design mono-material flexible packaging with high barrier properties realized through graphene hybrid coatings. Resour. Conserv. Recy. 2022, 179, 106126. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.G.C.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Kibria, M.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Koller, M.; Braunegg, G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech J. 2018, 2, 89–103. [Google Scholar] [CrossRef]
- Lau, W.W.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef]
- Rhodes, C.J. Plastic pollution and potential solutions. Sci. Prog. 2018, 101, 207–260. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Galloway, T.S.; Lewis, C.N. Marine microplastics spell big problems for future generations. Proc. Natl. Acad. Sci. USA 2016, 113, 2331–2333. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Allgeier, A.; Yin, D.; Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ. Int. 2019, 130, 104938. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Vencato, S.; Montano, S.; Saliu, F.; Coppa, S.; Becchi, A.; Liotta, I.; Valente, T.; Cocca, M.; Matiddi, M.; Camedda, A.; et al. Phthalate levels in common sea anemone Actinia equina and Anemonia viridis: A proxy of short-term microplastic interaction? Mar. Pollut. Bull. 2024, 200, 116125. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhang, Q.; Zheng, Y.; He, G.; Shi, H. Plastic waste as the potential carriers of pathogens. Curr. Opin. Food Sci. 2024, 41, 224–230. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Y.; Chen, Y.; Zhang, W.; Zha, J.; He, S.; Yang, C.; Zhang, T.; Tang, C.; Zhang, C.; et al. A review: Research progress on microplastic pollutants in aquatic environments. Sci. Total Environ. 2021, 766, 142572. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thielm, M.; Moore, C.J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2024, 9, e111913. [Google Scholar] [CrossRef]
- Ducoli, S.; Federici, S.; Cocca, M.; Gentile, G.; Zendrini, A.; Bergese, P.; Depero, L.E. Characterization of polyethylene terephthalate (PET) and polyamide (PA) true-to-life nanoplastics and their biological interactions. Environ. Pollut. 2024, 343, 123150. [Google Scholar] [CrossRef]
- della Valle, M.; D’Abrosca, G.; Gentile, M.T.; Russo, L.; Isernia, C.; Di Gaetano, S.; Avolio, R.; Castaldo, R.; Cocca, M.; Gentile, G.; et al. Polystyrene nanoplastics affect the human ubiquitin structure and ubiquitination in cells: A high-resolution study. Chem. Sci. 2022, 13, 13563–13573. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Envir. Health Rpt. 2018, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Niero, M. Implementation of the European Union’s packaging and packaging waste regulation: A decision support framework combining quantitative environmental sustainability assessment methods and socio-technical approaches. Clean. Waste Syst. 2023, 6, 100112. [Google Scholar] [CrossRef]
- Ambrose, C.A.; Hooper, R.; Potter, A.K.; Singh, M.M. Diversion from landfill: Quality products from valuable plastics. Resour. Conserv. Recycl. 2022, 36, 309–318. [Google Scholar] [CrossRef]
- Da, S.; Paula, M.M.; Medeiros Rodrigues, F.B.B.; Bernardin, A.M.; Fiori, M.A.; Angioletto, E. Characterization of aluminized polyethylene blends via mechanical recycling. Mater. Sci. Eng. A 2005, 403, 37–41. [Google Scholar] [CrossRef]
- Morris, J. Recycling versus incineration: An energy conservation analysis. J. Hazard. Mater. 1996, 47, 277–293. [Google Scholar] [CrossRef]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef]
- Capuano, R.; Bonadies, I.; Castaldo, R.; Cocca, M.; Gentile, G.; Protopapa, A.; Avolio, R.; Errico, M.E. Valorization and Mechanical Recycling of Heterogeneous Post-Consumer Polymer Waste through a Mechano-Chemical Process. Polymers 2021, 13, 2783. [Google Scholar] [CrossRef]
- Roosen, M.; Mys, N.; Kusenberg, M.; Billen, P.; Dumoulin, A.; Dewulf, J.; Van Geem, K.M.; Ragaert, K.; De Meester, S. Detailed Analysis of the Composition of Selected Plastic Packaging Waste Products and Its Implications for Mechanical and Thermochemical Recycling. Environ. Sci. Technol. 2020, 54, 13282–13293. [Google Scholar] [CrossRef] [PubMed]
- Avolio, R.; Spina, F.; Gentile, G.; Cocca, M.; Avella, M.; Carfagna, C.; Tealdo, G.; Errico, M.E. Recycling Polyethylene-Rich Plastic Waste from Landfill Reclamation: Toward an Enhanced Landfill-Mining Approach. Polymers 2019, 11, 208. [Google Scholar] [CrossRef] [PubMed]
- Liotta, I.; Avolio, R.; Castaldo, R.; Gentile, G.; Ambrogi, V.; Errico, M.E.; Cocca, M. Mitigation approach of plastic and microplastic pollution through recycling of fishing nets at the end of life. Process Saf. Environ. Prot. 2024, 182, 1143–1152. [Google Scholar] [CrossRef]
- Bonadies, I.; Capuano, R.; Avolio, R.; Castaldo, R.; Cocca, M.; Gentile, G.; Errico, M.E. Sustainable Cellulose-Aluminum-Plastic Composites from Beverage Cartons Scraps and Recycled Polyethylene. Polymers 2022, 14, 807. [Google Scholar] [CrossRef] [PubMed]
- Cappucci, G.M.; Avolio, R.; Carfagna, C.; Cocca, M.; Gentile, G.; Scarpellini, S.; Spina, F.; Tealdo, G.; Errico, M.E.; Ferrari, A.M. Environmental life cycle assessment of the recycling processes of waste plastics recovered by landfill mining. Waste Manag. 2020, 118, 68–78. [Google Scholar] [CrossRef]
- Castaldo, R.; De Falco, F.; Avolio, R.; Bossanne, E.; Cicaroni Fernandes, F.; Cocca, M.; Di Pace, E.; Errico, M.E.; Gentile, G.; Jasiński, D.; et al. Critical Factors for the Recycling of Different End-of-Life Materials: Wood Wastes, Automotive Shredded Residues, and Dismantled Wind Turbine Blades. Polymers 2019, 11, 1604. [Google Scholar] [CrossRef]
- Shamsuyeva, M.; Endres, H.-J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Astrup, T.F. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Manag. 2019, 87, 161–172. [Google Scholar] [CrossRef]
- Jmal, H.; Bahlouli, N.; Wagner-Kocher, C.; Leray, D.; Ruch, F.; Munsch, J.N.; Nardin, M. Influence of the grade on the variability of the mechanical properties of polypropylene waste. Waste Manag. 2018, 75, 160–173. [Google Scholar] [CrossRef]
- Lase, I.S.; Bashirgonbadi, A.; van Rhijn, F.; Dewulf, J.; Ragaert, K.; Delva, L.; Roosen, M.; Brandsma, M.; Langen, M.; De Meester, S. Material flow analysis and recycling performance of an improved mechanical recycling process for post-consumer flexible plastics. Waste Manag. 2022, 153, 249–263. [Google Scholar] [CrossRef]
- Wilts, H.; Garcia, B.R.; Garlito, R.G.; Gómez, L.S.; Prieto, E.G. Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy. Resources 2021, 10, 28. [Google Scholar] [CrossRef]
- Gupta, P.K.; Shree, V.; Hiremath, L.; Rajendran, S. The use of modern technology in smart waste management and recycling: Artificial intelligence and machine learning. In Recent Advances in Computational Intelligence; Springer: Cham, Switzerland, 2019; pp. 173–188. [Google Scholar] [CrossRef]
- Fang, B.; Yu, J.; Chen, Z.; Osman, A.I.; Farghali, M.; Ihara, I.; Hamza, E.H.; Rooney, D.W.; Yap, P.-S. Artificial intelligence for waste management in smart cities: A review. Environ. Chem. Lett. 2023, 21, 1959–1989. [Google Scholar] [CrossRef]
- Schmidt, J.; Marques, M.R.; Botti, S.; Marques, M.A. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 2019, 5, 83. [Google Scholar] [CrossRef]
- Meza, J.K.S.; Yepes, D.O.; Rodrigo-Ilarri, J.; Cassiraga, E. Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon 2019, 5, e02810. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.B.; Oh, S.K.; Park, E.K.; Choi, W.Z. Identification of black plastics realized with the aid of Raman spectroscopy and fuzzy radial basis function neural networks classifier. J. Mater. Cycles Waste Manag. 2017, 19, 1093–1105. [Google Scholar] [CrossRef]
- Erkinay Ozdemir, M.; Ali, Z.; Subeshan, B.; Asmatulu, E. Applying machine learning approach in recycling. J. Mater. Cycles Waste Manag. 2021, 23, 855–871. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef]
- Hubo, S.; Delva, L.; Van Damme, N.; Ragaert, K. Blending of recycled mixed polyolefins with recycled polypropylene: Effect on physical and mechanical properties. AIP Conf. Proc. 2016, 1779, 1. [Google Scholar]
- Miller, P.; Sbarski, I.; Kosior, E.; Masood, S.; Iovenitti, P. Correlation of rheological and mechanical properties for blends of recycled HDPE and virgin polyolefins. J. Appl. Polym. Sci. 2001, 82, 3505–3512. [Google Scholar] [CrossRef]
- Langwieser, J.; Schweighuber, A.; Felgel-Farnholz, A.; Marschik, C.; Buchberger, W.; Fischer, J. Determination of the influence of multiple closed recycling loops on the property profile of different polyolefins. Polymers 2022, 14, 2429. [Google Scholar] [CrossRef]
- Volfson, S.I.; Zakirova, L.Y.; Karaseva, Y.S.; Nigmatullina, A.I. Effect of the technological additives on the properties of recycled polyolefins. Key Eng. Mater. 2019, 816, 90–95. [Google Scholar] [CrossRef]
- Ghosh, A. Performance modifying techniques for recycled thermoplastics. Resour. Conserv. Recycl. 2021, 175, 105887. [Google Scholar] [CrossRef]
- Perugini, F.; Mastellone, M.L.; Arena, U. A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Prog. 2005, 24, 137–154. [Google Scholar] [CrossRef]
Item # | Description | Weight (g) | Tm or Tg * (°C) | Automatic FTIR Identification (Matching %) | Combined DSC/FTIR Identification |
---|---|---|---|---|---|
1.1 | Detergent container | 54.2 | 140 (Tm) | PE (>98%) | PE |
1.2 | Detergent container | 38.4 | 143 (Tm) | PE (>98%) | PE |
1.3 | Detergent container | 44.4 | 137 (Tm) | PE (>98%) | PE |
1.4 | Detergent container | 32.4 | 139 (Tm) | PE (>98%) | PE |
1.5 | Shopper | 2.6 | 108 (Tm) | PE (>97%) | PE |
1.6 | Packaging film | 1.4 | 121 (Tm) | PE (>98%) | PE |
1.7 | Shopper | 2.1 | 121 (Tm) | PE (>98%) | PE |
1.8 | Shopper | 2.4 | 123 (Tm) | PE (>98%) | PE |
1.9 | Beverage bottle | 40.2 | 247 (Tm) | PET (>99%) | PET |
1.10 | Beverage bottle | 40.9 | 246 (Tm) | PET (>99%) | PET |
1.11 | Beverage bottle | 40.1 | 246 (Tm) | PET (>99%) | PET |
1.12 | Beverage bottle | 42.3 | 248 (Tm) | PET (>99%) | PET |
1.13 | Oil bottle | 28.8 | 245 (Tm) | PET (>99%) | PET |
1.14 | Food tray | 8.5 | 245 (Tm) | PET (>98%) | PET |
1.15 | Food tray | 6.5 | 245 (Tm) | PET (>98%) | PET |
1.16 | Food tray | 6.2 | 244 (Tm) | PET (>98%) | PET |
1.17 | Beverage bottle | 20.8 | 246 (Tm) | PET (>99%) | PET |
1.18 | Beverage bottle | 40.3 | 247 (Tm) | PET (>99%) | PET |
1.19 | Beverage bottle | 41.8 | 248 (Tm) | PET (>99%) | PET |
1.20 | Beverage bottle | 40.8 | 245 (Tm) | PET (>99%) | PET |
1.21 | Beverage bottle | 40.2 | 247 (Tm) | PET (>99%) | PET |
1.22 | Beverage bottle | 10.1 | 247 (Tm) | PET (>99%) | PET |
1.23 | Beverage bottle | 10.6 | 246 (Tm) | PET (>99%) | PET |
1.24 | Beverage bottle | 9.4 | 248 (Tm) | PET (>99%) | PET |
1.25 | Beverage bottle | 40.1 | 248 (Tm) | PET (>99%) | PET |
1.26 | Beverage bottle | 9.1 | 247 (Tm) | PET (>99%) | PET |
1.27 | Beverage bottle | 10.4 | 246 (Tm) | PET (>99%) | PET |
1.28 | Beverage bottle | 25.3 | 246 (Tm) | PET (>99%) | PET |
1.29 | Single-use plate | 3.5 | 162 (Tm) | PP (>98%) | PP |
1.30 | Packaging film | 1.4 | 160 (Tm) | PP (>98%) | PP |
1.31 | Food tray | 6.4 | 159 (Tm) | PP (>98%) | PP |
1.32 | Packaging film | 2.4 | 157 (Tm) | PP (>98%) | PP |
1.33 | Packaging film | 1.6 | 158 (Tm) | PP (>97%) | PP |
1.34 | Shopper | 3.1 | 160 (Tm) | PP (>98%) | PP |
1.35 | Single-use plate | 3.4 | 161 (Tm) | PP (>99%) | PP |
1.36 | Plant container | 12.5 | 99 (Tg) | PS (>95%) | PS |
1.37 | Packaging net | 3.2 | 97 (Tg) | PS (>98%) | PS |
1.38 | Expanded packaging | 9.4 | 101 (Tg) | PS (>98%) | PS |
1.39 | Packaging film | 6.8 | 110 (Tg) | PS (>97%) | PS |
1.40 | Packaging item | 6.2 | 96 (Tg) | PS (>98%) | PS |
Item # | Description | Weight (g) | Tm or Tg * (°C) | Automatic FTIR Identification (Matching %) | Combined DSC/FTIR Identification |
---|---|---|---|---|---|
2.1 | Detergent container | 38.4 | 130 (Tm) | PE (>97%) | PE |
2.2 | Detergent container | 28.7 | 141 (Tm) | PE (>98%) | PE |
2.3 | Detergent container | 19.4 | 130 (Tm) | PE (>99%) | PE |
2.4 | Milk bottle | 12.2 | 135 (Tm) | PE (>99%) | PE |
2.5 | Detergent container | 18.2 | 139 (Tm) | PE (>99%) | PE |
2.6 | Packaging | 6.2 | 120 (Tm) | PE (>98%) | PE |
2.7 | Shopper | 6.2 | 120 (Tm) | PE (>98%) | PE |
2.8 | Flexible packaging | 8.4 | 119 (Tm) | PE (>95) | PE |
2.9 | Shopper | 4.2 | 125 (Tm) | PE (>96%) | PE |
2.10 | Flexible packaging | 3.2 | 114 (Tm) | PE (>99) | PE |
2.11 | Flexible packaging | 5.6 | 116 (Tm) | PE (>97) | PE |
2.12 | Food tray | 6.2 | 123 (Tm) 150 (Tm) | PE (>97%)/ PP (>98) | PE/PP |
2.13 | Flexible packaging | 5.6 | 109 (Tm) 177 (Tm) | PE (>98%)/ PP (>98) | PE/PP |
2.14 | Pot for plants | 8.2 | 122 (Tm) 160 (Tm) | PE (>97%)/ PP (>96) | PE/PP |
2.15 | Compact disk | 14.8 | 249 (Tm) | PC (>95%) | PC |
2.16 | Toy | 2.2 | 53 (Tm) | PCL (>88%) | PCL |
2.17 | Beverage bottle | 30.4 | 249 (Tm) | PET (>99%) | PET |
2.18 | Beverage bottle | 18.2 | 246 (Tm) | PET (>98%) | PET |
2.19 | Beverage bottle | 28.2 | 251 (Tm) | PET (>99%) | PET |
2.20 | Beverage bottle | 32.4 | 250 (Tm) | PET (>99%) | PET |
2.21 | Beverage bottle | 29.3 | 251 (Tm) | PET (>99%) | PET |
2.22 | Beverage bottle | 18.9 | 249 (Tm) | PET (>98%) | PET |
2.23 | Beverage bottle | 10.2 | 253 (Tm) | PET (>99%) | PET |
2.24 | Beverage bottle | 9.4 | 255 (Tm) | PET (>99%) | PET |
2.25 | Milk bottle | 8.4 | 248 (Tm) | PET (>99%) | PET |
2.26 | Beverage bottle | 28.7 | 244 (Tm) | PET (>98%) | PET |
2.27 | Beverage bottle | 23.4 | 245 (Tm) | PET (>99%) | PET |
2.28 | Beverage bottle | 10.3 | 255 (Tm) | PET (>99%) | PET |
2.29 | Case for liquids | 9.1 | 165 (Tm) | PP (>97%) | PP |
2.30 | Packaging for fruit | 12.4 | 162 (Tm) | PP (>97%) | PP |
2.31 | Food tray | 10.5 | 163 (Tm) | PP (>97%) | PP |
2.32 | Flexible packaging | 6.3 | 162 (Tm) | PP (>99) | PP |
2.33 | Single-use glass | 2.1 | 155 (Tm) | PP (>98%) | PP |
2.34 | Container for liquids | 6.2 | 163 (Tm) | PP (>99%) | PP |
2.35 | Flexible packaging | 6.2 | 159 (Tm) 252 (Tm) | PP (>97%)/ PET (>98%) | PP/PET |
2.36 | Expanded packaging | 7.2 | 90 (Tg) | PS (>97%) | PS |
2.37 | Food tray | 9.4 | 82 (Tg) | PS (>98%) | PS |
2.38 | Expanded packaging | 4.2 | 85 (Tg) | PS (>98%) | PS |
2.39 | Expanded packaging | 9.2 | 80 (Tg) | PS (>98%) | PS |
2.40 | Food tray | 4.3 | 82 (Tg) | PS (>97%) | PS |
Item # | Description | Weight (g) | Tm or Tg * (°C) | Automatic FTIR Identification (Matching %) | Combined DSC/FTIR Identification |
---|---|---|---|---|---|
3.1 | Detergent container | 14.1 | 139 (Tm) | PE (>99%) | PE |
3.2 | Detergent container | 9.9 | 133 (Tm) 185 (Tm) | PE (>97%)/ PP (>92%) | PE/PP |
3.3 | Flexible packaging | 2.4 | 111 (Tm) | PE (>98%) | PE |
3.4 | Flexible packaging | 4.2 | 110 (Tm) | PE (>99%) | PE |
3.5 | Flexible packaging | 3.8 | 116 (Tm) | PE (>99%) | PE |
3.6 | Flexible packaging | 4.5 | 114 (Tm) | PE (>98%) | PE |
3.7 | Packaging film | 4.5 | 120 (Tm) | PE (>99%) | PE |
3.8 | Packaging film | 3.8 | 107 (Tm) | PE (>99%) | PE |
3.9 | Soap container | 9.1 | 137 (Tm) | PE (>98%) | PE |
3.10 | Packaging container | 8.2 | 122 (Tm) | PE (>98%) | PE |
3.11 | Shopper | 6.2 | 110 (Tm) 123 (Tm) | PE (>94%) | PE. PE |
3.12 | Flexible packaging | 7.5 | 114 (Tm) 126 (Tm) 254 (Tm) | PE (>95%)/ PET (>98%) | PE. PE. PET |
3.13 | Flexible packaging | 6.7 | 101 (Tm) 153 (Tm) | PE (>98%)/ PP (>99%) | PE. PP |
3.14 | Packaging net | 2.4 | 117 (Tm) 162 (Tm) | PE (>97%)/ PP (>94%) | PE. PP |
3.15 | Beverage bottle | 29.4 | 245 (Tm) | PET (>99%) | PET |
3.16 | Beverage bottle | 18.4 | 246 (Tm) | PET (>98%) | PET |
3.17 | Beverage bottle | 42.3 | 249 (Tm) | PET (>99%) | PET |
3.18 | Beverage bottle | 19.4 | 251 (Tm) | PET (>98%) | PET |
3.19 | Beverage bottle | 32.3 | 253 (Tm) | PET (>98%) | PET |
3.20 | Beverage bottle | 19.7 | 243 (Tm) | PET (>99%) | PET |
3.21 | Beverage bottle | 12.1 | 240 (Tm) | PET (>99%) | PET |
3.22 | Milk bottle | 9.4 | 244 (Tm) | PET (>99%) | PET |
3.23 | Beverage bottle | 12.4 | 245 (Tm) | PET (>99%) | PET |
3.24 | Beverage bottle | 11.3 | 249 (Tm) | PET (>99%) | PET |
3.25 | Single use gloves | 12.2 | 254 (Tm) | PET (>97%) | PET |
3.26 | Beverage bottle | 10.4 | 250 (Tm) | PET (>99%) | PET |
3.27 | Beverage bottle | 27.7 | 250 (Tm) | PET (>99%) | PET |
3.28 | Beverage bottle | 34.7 | 245 (Tm) | PET (>98%) | PET |
3.29 | Beverage bottle | 12.9 | 248 (Tm) | PET (>98%) | PET |
3.30 | Beverage bottle | 39.2 | 247 (Tm) | PET (>98%) | PET |
3.31 | Beverage bottle | 29.6 | 246 (Tm) | PET (>98%) | PET |
3.32 | Food tray | 4.8 | 155 (Tm) | PP (>97%) | PP |
3.33 | Office item | 6.2 | 158 (Tm) | PP (>99%) | PP |
3.34 | Detergent container | 28.2 | 164 (Tm) | PP (>98%) | PP |
3.35 | Shopper | 3.2 | 160 (Tm) | PP (>99%) | PP |
3.36 | Container | 8.2 | 161 (Tm) | PP (>99%) | PP |
3.37 | Toy | 4.6 | 96 (Tg) | PS (>99%) | PS |
3.38 | Single-use plate | 2.4 | 85 (Tg) | PS (>97%) | PS |
3.39 | Expanded packaging | 7.2 | 87 (Tg) | PS (>97%) | PS |
3.40 | Packaging tray | 4.3 | 86 (Tg) | PS (>94%) | PS |
Batch | Fraction | Identification Results by FTIR (% of Analyzed Granules) |
---|---|---|
1 | PET1 | PET: 100% |
2 | PET2 | PET: 100% |
3 | PET3 | PET: 100% |
1 | PP1 | PP: 100% |
2 | PP2 | PP: 100% |
3 | PP3 | PP: 100% |
1 | PE1 | PE: 100% |
2 | PE2 | PE: 100% |
3 | PE3 | PE: 100% |
1 | PS1 | PS: 100% |
2 | PS2 | PS: 98%; cellulose: 2% |
3 | PS3 | PS: 100% |
Batch | Fraction | Elemental Composition (wt%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | O | Al | Si | Cl | Ca | Ti | Fe | ||
1 | PP1 | 94.36 ± 0.15 | 4.76 ± 0.23 | 0.03 ± 0.02 | 0.13 ± 0.01 | - | 0.42 ± 0.07 | 0.33 ± 0.01 | - |
1 | PE1 | 93.17 ± 0.38 | 6.13 ± 0.41 | 0.08 ± 0.02 | 0.08 ± 0.01 | - | 0.15 ± 0.01 | 0.41 ± 0.01 | - |
1 | PS1 | 90.20 ± 0.22 | 7.20 ± 0.16 | - | 0.10 ± 0.03 | - | 0.98 ± 0.08 | 1.28 ± 0.14 | |
2 | PP2 | 92.01 ± 0.28 | 6.06 ± 0.11 | 0.11 ± 0.02 | 0.32 ± 0.01 | - | 1.05 ± 0.15 | 0.41 ± 0.02 | 0.07 ± 0.03 |
2 | PE2 | 93.88 ± 0.32 | 5.14 ± 0.35 | 0.06 ± 0.03 | 0.07 ± 0.01 | - | 0.24 ± 0.01 | 0.63 ± 0.02 | - |
2 | PS2 | 90.25 ± 0.45 | 7.57 ± 0.49 | - | 0.19 ± 0.08 | - | 1.15 ± 0.01 | 0.83 ± 0.03 | - |
3 | PP3 | 94.72 ± 0.64 | 3.72 ± 0.42 | 0.06 ± 0.02 | 0.35 ± 0.01 | - | 0.79 ± 0.20 | 0.38 ± 0.01 | - |
3 | PE3 | 93.20 ± 1.76 | 5.58 ± 1.82 | 0.11 ± 0.04 | 0.18 ± 0.05 | - | 0.81 ± 0.06 | 0.14 ± 0.01 | - |
3 | PS3 | 90.60 ± 0.12 | 7.00 ± 0.36 | - | 0.09 ± 0.02 | 0.22 ± 0.04 | 0.92 ± 0.06 | 1.17 ± 0.11 | - |
Batch | Fraction | Test Conditions | MFR (g/10 min) |
---|---|---|---|
1 | PP1 | 230 °C/2.16 kg | 31.36 |
2 | PP2 | 230 °C/2.16 kg | 20.61 |
3 | PP3 | 230 °C/2.16 kg | 15.41 |
1 | PE1 | 190 °C/2.16 kg | 0.96 |
2 | PE2 | 190 °C/2.16 kg | 0.78 |
3 | PE3 | 190 °C/2.16 kg | 1.79 |
1 | PS1 | 200 °C/5 kg | 6.34 |
2 | PS2 | 200 °C/5 kg | 8.35 |
3 | PS3 | 200 °C/5 kg | 6.46 |
Tensile Tests | |||
Sample | Young’s modulus (MPa) | Stress at yield (MPa) | Strain at break (%) |
PP1 | 855 ± 15 | 17.8 ± 1.8 | 5.8 ± 1.9 |
PP2 | 860 ± 25 | 17.1 ± 1.4 | 5.6 ± 0.9 |
PP3 | 780 ± 35 | 17.6 ± 1.8 | 5.9 ± 0.4 |
PP average over 3 batches | 832 ± 45 | 17.5 ± 0.4 | 5.8 ± 0.2 |
PE1 | 585 ± 35 | 19.6 ± 0.6 | 770 ± 50 |
PE2 | 640 ± 45 | 19.4 ± 0.5 | 735 ± 80 |
PE3 | 595 ± 25 | 19.2 ± 0.1 | 680 ± 100 |
PE average over 3 batches | 606 ± 30 | 19.4 ± 0.2 | 728 ± 45 |
PS1 | 1400 ± 120 | 20.2 ± 2.4 | 1.4 ± 0.2 |
PS2 | 1455 ± 100 | 21.1 ± 2.2 | 1.6 ± 0.1 |
PS3 | 1410 ± 65 | 20.8 ± 1.7 | 1.5 ± 0.2 |
PS average over 3 batches | 1422 ± 21 | 20.7 ± 0.5 | 1.5 ± 0.1 |
Flexural tests | |||
Sample | Flexural modulus (MPa) | Stress at yield/break (MPa) | Strain at yield/break (%) |
PP1 | 530 ± 80 | 24.5 ± 3.1 * | 8.1 ± 0.3 * |
PP2 | 545 ± 60 | 25.5 ± 2.8 * | 8.6 ± 0.2 * |
PP3 | 525 ± 25 | 22.5 ± 1.2 * | 8.9 ± 0.2 * |
PP average over 3 batches | 533 ± 10 | 24.1 ± 1.5 * | 8.5 ± 0.4 * |
PS1 | 1720 ± 110 | 27.1 ± 1.4 ** | 3.3 ± 0.1 ** |
PS2 | 1650 ± 150 | 27.4 ± 1.8 ** | 3.0 ± 0.4 ** |
PS3 | 1580 ± 70 | 28.8 ± 2.4 ** | 2.9 ± 0.3 ** |
PS average over 3 batches | 1650 ± 70 | 27.8 ± 0.9 ** | 3.1 ± 0.2 ** |
Tensile Tests | |||
---|---|---|---|
Sample | Young’s Modulus (MPa) | Stress at Yield (MPa) | Strain at Break (%) |
PP2_5PPMA | 855 ± 45 | 21.6 ± 0.7 | 8.5 ± 1.6 |
PP2_10PPMA | 790 ± 45 | 21.1 ± 1.0 | 8.7 ± 1.8 |
PP2 | 860 ± 25 | 17.1 ± 1.4 | 5.6 ± 0.9 |
PE2_5PEMA | 660 ± 45 | 21.0 ± 0.4 | 635 ± 105 |
PE2_10PEMA | 650 ± 30 | 19.3 ± 0.8 | 570 ± 40 |
PE2 | 640 ± 45 | 19.4 ± 0.5 | 735 ± 80 |
PP | |||||||||||
MFR @ 230 °C/2.16 kg (g/10 min) | Sub code | Young’s modulus @ 10 mm/min (MPa) | Sub code | Stress at yield @ 10 mm/min (MPa) | Sub code | ||||||
<5 | R0 | <500 | M0 | <10 | S0 | ||||||
5–10 | R1 | 500–875 | M1 | 10–15 | S1 | ||||||
10–20 | R2 | 875–1250 | M2 | 15–20 | S2 | ||||||
20–30 | R3 | 1250–1625 | M3 | 20–25 | S3 | ||||||
30–40 | R4 | 1625–2000 | M4 | 25–30 | S4 | ||||||
>40 | R5 | >2000 | M5 | >30 | S5 | ||||||
PE | |||||||||||
MFR 190 °C/2.16 kg (g/10 min) | Sub code | Young’s modulus @ 10 mm/min (MPa) | Sub code | Stress at yield @ 10 mm/min (MPa) | Sub code | Strain at break @ 10 mm/min (%) | Sub code | ||||
<0.3 | R0 | <400 | M0 | <15.0 | S0 | <100 | E0 | ||||
0.3–0.8 | R1 | 400–600 | M1 | 15.0–17.5 | S1 | 100–300 | E1 | ||||
0.8–1.3 | R2 | 600–800 | M2 | 17.5–20.0 | S2 | 300–500 | E2 | ||||
1.3–1.8 | R3 | 800–1000 | M3 | 20.0–22.5 | S3 | 500–700 | E3 | ||||
1.8–2.3 | R4 | 1000–1200 | M4 | 22.5–25.0 | S4 | 700–900 | E4 | ||||
>2.3 | R5 | >1200 | M5 | >25 | S5 | >900 | E5 | ||||
PS | |||||||||||
MFR 200 °C/5 kg (g/10 min) | Subcode | Flexural modulus @ 2 mm/min (MPa) | Subcode | Stress at break @ 2 mm/min (MPa) | Subcode | ||||||
<4 | R0 | <1000 | M0 | <20.0 | S0 | ||||||
4–6 | R1 | 1000–1400 | M1 | 20.0–23.0 | S1 | ||||||
6–8 | R2 | 1400–1800 | M2 | 23.0–26.0 | S2 | ||||||
8–10 | R3 | 1800–2200 | M3 | 26.0–29.0 | S3 | ||||||
10–12 | R4 | 2200–2600 | M4 | 29.0–32.0 | S4 | ||||||
>12 | R5 | >2600 | M5 | >32 | S5 |
Batch | Sample | Classification Code |
---|---|---|
1 | PP1 | PP_R4_M1_S2 |
1 | PE1 | PE_R2_M1_S2_E4 |
1 | PS1 | PS_R2_M2_S3 |
2 | PP2 | PP_R3_M1_S2 |
2 | PP2_5PPMA | PP(C5)_R3_M1_S3 |
2 | PP2_10PPMA | PP(C10)_R3_M1_S3 |
2 | PE2 | PE_R1_M2_S2_E4 |
2 | PE2_5PEMA | PE(C5)_R2_M2_S3_E3 |
2 | PE2_10PEMA | PE(C10)_R2_M2_S2_E3 |
2 | PS2 | PS_R3_M2_S3 |
3 | PP3 | PP_R2_M1_S2 |
3 | PE3 | PE_R3_M1_S2_E3 |
3 | PS3_MIX | PS_R2_M2_S3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, F.; Caputo, A.; Leonetti, D.; Castaldo, R.; Avolio, R.; Cocca, M.; Errico, M.E.; Iannotta, L.; Avella, M.; Carfagna, C.; et al. Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases. Polymers 2024, 16, 2898. https://doi.org/10.3390/polym16202898
Olivieri F, Caputo A, Leonetti D, Castaldo R, Avolio R, Cocca M, Errico ME, Iannotta L, Avella M, Carfagna C, et al. Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases. Polymers. 2024; 16(20):2898. https://doi.org/10.3390/polym16202898
Chicago/Turabian StyleOlivieri, Federico, Antonino Caputo, Daniele Leonetti, Rachele Castaldo, Roberto Avolio, Mariacristina Cocca, Maria Emanuela Errico, Luigi Iannotta, Maurizio Avella, Cosimo Carfagna, and et al. 2024. "Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases" Polymers 16, no. 20: 2898. https://doi.org/10.3390/polym16202898
APA StyleOlivieri, F., Caputo, A., Leonetti, D., Castaldo, R., Avolio, R., Cocca, M., Errico, M. E., Iannotta, L., Avella, M., Carfagna, C., & Gentile, G. (2024). Compositional Analysis and Mechanical Recycling of Polymer Fractions Recovered via the Industrial Sorting of Post-Consumer Plastic Waste: A Case Study toward the Implementation of Artificial Intelligence Databases. Polymers, 16(20), 2898. https://doi.org/10.3390/polym16202898