A Review of the Biomimetic Structural Design of Sandwich Composite Materials
Abstract
:1. Introduction
2. Core Layer Biomimetic Structural Design
2.1. Animal Biomimetic Structures
2.2. Plant Biomimetic Structures
2.3. Fusion of Multi-Biomimetic Structures
3. Surface–Core Interface Bonding
3.1. Adhesion
3.2. Interlocking Structure
3.3. Interface Bonding Optimization
4. Manufacturing of Sandwich Composite Materials Based on Biomimetic Structural Design
4.1. Selective Laser Sintering (SLS)
4.2. Stereolithography (SLA)
4.3. Fused Deposition Modeling (FDM)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biancolini, M.E.; Brutti, C. Numerical and experimental investigation of the strength of corrugated board packages. Packag. Technol. Sci. 2003, 16, 47–60. [Google Scholar] [CrossRef]
- Viguié, J.; Dumont, P.J.J.; Orgéas, L.; Vacher, P.; Desloges, I.; Mauret, E. Surface stress and strain fields on compressed panels of corrugated board boxes. An experimental analysis by using Digital Image Stereocorrelation. Compos. Struct. 2011, 93, 2861–2873. [Google Scholar] [CrossRef]
- Fleck, N.A.; Deshpande, V.S.; Ashby, M.F. Micro-architectured materials: Past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2495–2516. [Google Scholar] [CrossRef]
- Ren, L.; Liang, Y. Biological couplings: Function, characteristics and implementation mode. Sci. China Technol. Sci. 2010, 53, 379–387. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, C.; Zhao, Q.; Lin, Z.; Han, Z.; Ren, L. Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather. Materials 2021, 14, 3618. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J.; Yang, C.; Weitz, D.A.; He, H.; Li, D.; Chen, D.; Liu, K.; Bai, H. Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. ACS Appl. Mater. Interfaces 2019, 11, 23616–23622. [Google Scholar] [CrossRef]
- Nachuan, T. Conceptual design of a biomimetic thermal insulation tea cup for water chestnut based on 3D printing technology. Technol. Innov. Product. 2023, 44, 87–90. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Jiang, P.; Nie, M.; Kong, D.; Kang, Z.; Liu, M.; Zhu, D.; Jiang, C.; Zhang, Q.; et al. Smart Bionic Structures: Connecting Nature and Technology through Additive Manufacturing. Addit. Manuf. Front. 2024, 3, 200137. [Google Scholar] [CrossRef]
- Hou, X.; Lei, J.; Li, S.; Wang, Z.; Liu, Z. The tensile mechanical behavior of 3D printed biomimetic composite materials with seashells. J. High Press. Phys. 2020, 34, 74–80. [Google Scholar]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 014102. [Google Scholar] [CrossRef]
- Chen, S.; Bai, M.; Wang, Q.; Li, X.; Shao, J.; Shi, S.Q.; Zhou, W.; Cao, J.; Li, J. A strong and tough supramolecular assembled β-cyclodextrin and chitin nanocrystals protein adhesive: Synthesis, characterization, bonding performance on three-layer plywood. Carbohydr. Polym. 2024, 333, 121971. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, T.; Guo, Y.; Hao, X.; Sun, L.; Guo, C.; Fan, Q.; Ou, R. Handling-friendly, waterproof, and mildew-resistant all-bio-based soybean protein adhesives with high-bonding performance via bio-inspired hydrophobic-enhanced crosslinking network. Ind. Crop. Prod. 2024, 214, 118583. [Google Scholar] [CrossRef]
- Xie, W.; Cao, X.; Zhang, B.; Wei, Z.; Ge, B.; Xiao, Z.; Li, Q.; Shi, Z. Biomimetic cellular-structured MCMB@WC composites with excellent mechanical properties. J. Eur. Ceram. Soc. 2023, 43, 4696–4705. [Google Scholar] [CrossRef]
- Li, X.; Jiang, P.; Nie, M.; Liu, Z.; Liu, M.; Qiu, Y.; Chen, Z.; Zhang, Z. Enhanced strength-ductility synergy of laser additive manufactured stainless steel/Ni-based superalloy dissimilar materials characterized by bionic mechanical interlocking structures. J. Mater. Res. Technol. 2023, 26, 4770–4783. [Google Scholar] [CrossRef]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef]
- Niu, X.; Xu, F.; Zou, Z.; Fang, T.; Zhang, S.; Xie, Q. In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures. Compos. Struct. 2022, 299, 116064. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.; Hu, X.; Li, Y.; Wang, L. Exploiting negative Poisson’s ratio to design 3D-printed composites with enhanced mechanical properties. Mater. Des. 2018, 142, 247–258. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Song, B.; Dang, L.; Zhang, Z. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos. Part B Eng. 2018, 162, 21–32. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Wang, X.; Fang, J.; Chen, J.; Li, J. Searching superior crashworthiness performance by constructing variable thickness honeycombs with biomimetic cells. Int. J. Mech. Sci. 2022, 235, 107718. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Wang, Y. Compressive properties of cuttlebone-like lattice (CLL) materials with functionally graded density. Eur. J. Mech. A/Solids 2021, 87, 104215. [Google Scholar] [CrossRef]
- Li, Y.; Hu, D.; Yang, Z. Crashworthiness design of a sponge-inspired multicell tube under axial crushing. Int. J. Mech. Sci. 2022, 244, 108070. [Google Scholar] [CrossRef]
- Jia, X. Natural Biomaterials and Their Biomimetic Engineering Materials; Chemical Industry Press: Beijing, China, 2007; ISBN 9787122006103. [Google Scholar]
- Yaraghi, N.A.; Kisailus, D. Biomimetic structural materials: Inspiration from design and assembly. Annu. Rev. Phys. Chem. 2018, 69, 23–57. [Google Scholar] [CrossRef]
- Hou, X.; Lei, J.; Li, S.; Wang, Z.; Liu, Z. Tension Mechanical Behavior of 3D Printed Composite Materials Inspired by Nacre. Gaoyawli 2020, 34, 014102. [Google Scholar] [CrossRef]
- Han, B.; Qin, K.; Yu, B.; Wang, B.; Zhang, Q.; Lu, T.J. Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance. Mater. Des. 2016, 93, 271–282. [Google Scholar] [CrossRef]
- Zhang, L.; Hebert, R.; Wright, J.T.; Shukla, A.; Kim, J.-H. Dynamic response of corrugated sandwich steel plates with graded cores. Int. J. Impact Eng. 2014, 65, 185–194. [Google Scholar] [CrossRef]
- Hou, S.; Shu, C.; Zhao, S.; Liu, T.; Han, X.; Li, Q. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading. Compos. Struct. 2015, 126, 371–385. [Google Scholar] [CrossRef]
- Yang, X.; Ma, J.; Shi, Y.; Sun, Y.; Yang, J. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Mater. Des. 2017, 135, 275–290. [Google Scholar] [CrossRef]
- Xin, Z.; Zhang, X.; Duan, Y.; Xu, W. Nacre-inspired design of CFRP composite for improved energy absorption properties. Compos. Struct. 2018, 184, 102–109. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, J.; He, Z.; Hu, Z.; Hui, D. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes. Compos. Part B Eng. 2017, 121, 134–144. [Google Scholar] [CrossRef]
- Li, Q.; Wu, L.; Hu, L.; Chen, T.; Zou, T.; Li, E. Axial compression performance of a bamboo-inspired porous lattice structure. Thin-Walled Struct. 2022, 180, 109803. [Google Scholar] [CrossRef]
- Niu, X.; Xu, F.; Zou, Z.; Zhu, Y.; Duan, L.; Du, Z.; Ma, H. Mechanical properties of horsetail bio-inspired honeycombs under quasi-static axial load. Int. J. Mech. Sci. 2023, 260, 108663. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, M.; Wang, D.; Wu, Y.; Liu, K.; Wu, S. Energy absorption characteristics of starfruit-inspired biomimetic lattice structure under non-axial compression loading. Eng. Struct. 2023, 294, 116767. [Google Scholar] [CrossRef]
- Xu, P.; Guo, W.; Yang, L.; Yang, C.; Ruan, D.; Xu, J.; Yao, S. Crashworthiness analysis of the biomimetic lotus root lattice structure. Int. J. Mech. Sci. 2023, 263, 108774. [Google Scholar] [CrossRef]
- Bührig-Polaczek, A.; Fleck, C.; Speck, T.; Schüler, P.; Fischer, S.F.; Caliaro, M.; Thielen, M. Biomimetic cellular metals—Using hierarchical structuring for energy absorption. Bioinspir. Biomim. 2016, 11, 045002. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.F.; Thielen, M.; Loprang, R.R.; Seidel, R.; Fleck, C.; Speck, T.; Bührig-Polaczek, A. Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties. Adv. Eng. Mater. 2010, 12, B658–B663. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Guo, J.; Cheng, B.; Cao, Y.; Lu, S.; Zhao, N.; Xu, J. Biomimetic Gradient Polymers with Enhanced Damping Capacities. Macromol. Rapid Commun. 2016, 37, 655–661. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, S.; Yu, T.; Xu, J. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. Int. J. Impact Eng. 2018, 125, 163–172. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Q.; Mei, C.; Hong, S.; Xu, Z.; Li, J. Research progress of functional composites constructed from three dimen-sional structural wood with high porosity. Acta Mater. Compos. Sin. 2020, 37, 1796–1804. [Google Scholar] [CrossRef]
- Qin, S.; Ren, Z.; Wang, C.; Kou, Y.; Liu, Z.; Xu, M. Biomimetic design of wood cell wall based on 3D printing. Acta Mater. Compos. Sin. 2023, 40, 1085–1095. [Google Scholar] [CrossRef]
- Fratzl, P.; Burgert, I.; Keckes, J. Mechanical model for the deformation of the wood cell wall. Int. J. Mater. Res. 2004, 95, 579–584. [Google Scholar] [CrossRef]
- Deng, Q.; Li, S.; Chen, Y. Mechanical properties and failure mechanism of wood cell wall layers. Comput. Mater. Sci. 2012, 62, 221–226. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Ngamkhanong, C.; Xu, S. Large amplitude vibrations of imperfect spider web structures. Sci. Rep. 2020, 10, 19161. [Google Scholar] [CrossRef] [PubMed]
- Blackledge, T.A.; Coddington, J.A.; Gillespie, R.G. Are three-dimensional spider webs defensive adaptations? Ecol. Lett. 2002, 6, 13–18. [Google Scholar] [CrossRef]
- Lee, E.; Jia, Z.; Yang, T.; Li, L. Multiscale mechanical design of the lightweight, stiff, and damage-tolerant cuttlebone: A computational study. Acta Biomater. 2022, 154, 312–323. [Google Scholar] [CrossRef]
- Wu, F.; Sun, B.-H. Study on functional mechanical performance of array structures inspired by cuttlebone. J. Mech. Behav. Biomed. Mater. 2022, 136, 105459. [Google Scholar] [CrossRef]
- Mao, A.; Zhao, N.; Liang, Y.; Bai, H. Mechanically Efficient Cellular Materials Inspired by Cuttlebone. Adv. Mater. 2021, 33, 2007348. [Google Scholar] [CrossRef]
- Yang, B.; Chen, W.; Xin, R.; Zhou, X.; Tan, D.; Ding, C.; Wu, Y.; Yin, L.; Chen, C.; Wang, S.; et al. Pomelo peel-inspired 3D-printed porous structure for efficient absorption of compressive strain energy. J. Bionic. Eng. 2022, 19, 448–457. [Google Scholar] [CrossRef]
- Zhuang, Z.; Qian, Z.; Wang, X.; Xu, X.; Chen, B.; Song, G.; Liu, X.; Ren, L.; Ren, L. Bioinspired Structural Composite Flexible Material with High Cushion Performance. Adv. Sci. 2023, 11, e2304947. [Google Scholar] [CrossRef]
- Sethi, A.; Budarapu, P.; Vusa, V. Nature-inspired bamboo-spiderweb hybrid cellular structures for impact applications. Compos. Struct. 2022, 304, 116298. [Google Scholar] [CrossRef]
- Mousanezhad, D.; Ebrahimi, H.; Haghpanah, B.; Ghosh, R.; Ajdari, A.; Hamouda, A.; Vaziri, A. Spiderweb honeycombs. Int. J. Solids Struct. 2015, 66, 218–227. [Google Scholar] [CrossRef]
- He, Q.; Feng, J.; Chen, Y.; Zhou, H. Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading. J. Sandw. Struct. Mater. 2018, 22, 771–796. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, Z.; Chen, W.; Huang, H.; Li, M.; Li, X. Study on the deformation mode and energy absorption characteristics of a corner-enhanced biomimetic spider web hierarchical structure. Thin-Walled Struct. 2024, 199, 111810. [Google Scholar] [CrossRef]
- Guo, Z.; Niu, W.; Qi, G.; Chai, G.B.; Tai, Z.; Li, Y. Performance of 3D printing biomimetic conch shell and pearl shell hybrid design composites under quasi-static three-point bending load. J. Mech. Behav. Biomed. Mater. 2024, 151, 106381. [Google Scholar] [CrossRef]
- Wu, H.; Guo, A.; Kong, D.; Li, X.; Wu, J.; Wang, H.; Qu, P.; Wang, S.; Guo, S.; Liu, C.; et al. Nacre-like Carbon Fiber-reinforced Biomimetic Ceramic Composites: Fabrication, Microstructure, and Mechanical Performance. Ceram. Int. 2024, 50, 25388–25399. [Google Scholar] [CrossRef]
- Gu, D.; Qian, M. Laser additive manufacturing of bidirectionally corrugated panel structure with shock absorption and resistance function inspired by mantis shrimp. In Laser Additive Manufacturing of Metallic Materials and Components; Elsevier: Amsterdam, The Netherlands, 2023; pp. 533–560. [Google Scholar]
- Zhang, B.; Yang, J.; Li, Y.; Zhang, J.; Niu, S.; Han, Z.; Ren, L. Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp. Int. J. Mech. Sci. 2022, 244, 108073. [Google Scholar] [CrossRef]
- Li, T.-T.; Wang, H.; Huang, S.-Y.; Lou, C.-W.; Lin, J.-H. Bioinspired foam composites resembling pomelo peel: Structural design and compressive, bursting and cushioning properties. Compos. Part B Eng. 2019, 172, 290–298. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Y.; Li, J.; Li, J.; Gao, Q.; Zhan, X. Improving the coating and prepressing properties of soybean meal adhesive by constructing a biomimetic topological structure. Mater. Des. 2022, 223, 111483. [Google Scholar] [CrossRef]
- Ufodike, C.O.; Ahmed, M.F.; Dolzyk, G. Additively manufactured biomorphic cellular structures inspired by wood microstructure. J. Mech. Behav. Biomed. Mater. 2021, 123, 104729. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, X.; Chen, C.; Hao, X.; Liu, Z.; Ou, R.; Wang, Q. Biomimetic versatile wood hybrids with gradient structure towards lightweight, high strength, fire-retardant, and deterioration-resistant materials. Compos. Part B Eng. 2024, 280, 111483. [Google Scholar] [CrossRef]
- García-Guzmán, L.; Távara, L.; Reinoso, J.; Justo, J.; París, F. Fracture resistance of 3D printed adhesively bonded DCB composite specimens using structured interfaces: Experimental and theoretical study. Compos. Struct. 2018, 188, 173–184. [Google Scholar] [CrossRef]
- Sun, F.; Pruncu, C.I.; Penchev, P.; Jiang, J.; Dimov, S.; Blackman, B.R.K. Influence of surface micropatterns on the mode I fracture toughness of adhesively bonded joints. Int. J. Adhes. Adhes. 2020, 103, 102718. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Z.; He, X.; Su, Y.; Oh, S.-K.; Zhang, S. Mussel-bionic composite coatings based on biomass polyurethane and its adhesive mechanisms of humid interface with cementitious materials. Prog. Org. Coatings 2023, 186, 108001. [Google Scholar] [CrossRef]
- Liu, T.; Du, G.; Yang, H.; Ni, K.; Su, H.; Wen, H.; Park, B.-D.; Ran, X.; Gao, W.; Fan, M.; et al. Cellulose-based ultrastrong wood adhesive and composites constructed through “sandwich” profile bonding interface. Compos. Part B Eng. 2023, 271, 111169. [Google Scholar] [CrossRef]
- Lin, E.; Li, Y.; Ortiz, C.; Boyce, M.C. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids 2014, 73, 166–182. [Google Scholar] [CrossRef]
- Li, Y.; Ortiz, C.; Boyce, M.C. Bioinspired, mechanical, deterministic fractal model for hierarchical suture joints. Phys. Rev. E 2012, 85, 031901. [Google Scholar] [CrossRef]
- Li, Y.; Ortiz, C.; Boyce, M.C. A generalized mechanical model for suture interfaces of arbitrary geometry. J. Mech. Phys. Solids 2012, 61, 1144–1167. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, H.; Ortiz, C.; Xu, J.; Dao, M. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs. J. Mech. Behav. Biomed. Mater. 2012, 15, 70–77. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Y.; Lu, Y.; Wang, J.; Cao, Y.; Zhang, C. Tensile behavior of bio-inspired hierarchical suture joint with uniform fractal interlocking design. J. Mech. Behav. Biomed. Mater. 2020, 113, 104137. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Ritchie, R.O. Interfacial toughening effect of suture structures. Acta Biomater. 2019, 102, 75–82. [Google Scholar] [CrossRef]
- Malik, I.A.; Barthelat, F. Bioinspired sutured materials for strength and toughness: Pullout mechanisms and geometric enrichments. Int. J. Solids Struct. 2018, 138, 118–133. [Google Scholar] [CrossRef]
- Mirkhalaf, M.; Barthelat, F. Design, 3D printing and testing of architectured materials with bistable interlocks. Extreme Mech. Lett. 2017, 11, 1–7. [Google Scholar] [CrossRef]
- Rivera, J.; Hosseini, M.S.; Restrepo, D.; Murata, S.; Vasile, D.; Parkinson, D.Y.; Barnard, H.S.; Arakaki, A.; Zavattieri, P.; Kisailus, D. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature 2020, 586, 543–548. [Google Scholar] [CrossRef]
- Ni, Y.; Bai, H.; Wang, Z.; Liao, H.; Wu, W. Bio-inspired, metal additive manufacturing interlocked structures: Geometrically design and fracture performance analysis. Compos. Struct. 2023, 321, 117220. [Google Scholar] [CrossRef]
- Song, J.; Yang, H.; Bermejo, R.; Qu, J.; Hu, L.; Zhang, Y. Enhanced thermal shock response of Al2O3–graphite composites through a layered architectural design. J. Am. Ceram. Soc. 2018, 102, 3673–3684. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Xu, H.; Fuenmayor, E.; Major, I. Material compatibility and processing challenges in droplet deposition modelling additive manufacturing: A study on pharmaceutical excipients Polyvinylpyrrolidone/vinyl acetate (PVP/VA) and Polycaprolactone (PCL). Eur. J. Pharm. Sci. 2024, 200, 106850. [Google Scholar] [CrossRef]
- Avadanei, M.; Brunchi, C.-E. Wheat gliadin/xanthan gum intermolecular complexes: Interaction mechanism and structural characterization. Food Chem. 2024, 460, 140619. [Google Scholar] [CrossRef]
- Sakai, S.; Yoshii, A.; Sakurai, S.; Horii, K.; Nagasuna, O. Silk fibroin nanofibers: A promising ink additive for extrusion three-dimensional bioprinting. Mater. Today Bio 2020, 8, 100078. [Google Scholar] [CrossRef]
- Han, J.; Li, B.; Ji, H.; Guo, F.; Wei, D.; Cao, S.; Zhang, W.; Chen, X. Interfacial adhesion between recycled asphalt binder and aggregates considering aggregate surface anisotropy: A molecular dynamics simulation. Constr. Build. Mater. 2024, 438, 137176. [Google Scholar] [CrossRef]
- Chen, J.; Xu, S.; Wang, B.; Fan, X.; Singh, D.J.; Zheng, W. Insights into the surface tension and superficial density peak of molten metals from molecular dynamics. Acta Mater. 2024, 276, 120149. [Google Scholar] [CrossRef]
- Enriquez, J.I.G.; Halim, H.H.; Yamasaki, T.; Michiuchi, M.; Inagaki, K.; Geshi, M.; Hamada, I.; Morikawa, Y. Origin of the surface facet dependence in the thermal degradation of the diamond (111) and (100) surfaces in vacuum investigated by machine learning molecular dynamics simulations. Carbon 2024, 226, 119223. [Google Scholar] [CrossRef]
- Chen, B.; Zeng, Y.; Wang, H.; Li, E. Approximate Bayesian assisted inverse method for identification of parameters of variable stiffness composite laminates. Compos. Struct. 2021, 267, 113853. [Google Scholar] [CrossRef]
- Fares, M.; Elmarghany, M.; Atta, D. Suppressing vibrational response of functionally graded truncated conical shells by active control and design optimization. Thin-Walled Struct. 2018, 122, 480–490. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.; Zhu, S.; Liu, Y. Buckling behaviors prediction of biological staggered composites with finite element analysis and machine learning coupled method. Compos. Struct. 2024, 345, 118357. [Google Scholar] [CrossRef]
- Aqel, R.; Severson, P.; Elhajjar, R. A dovetail core design for joints in composite sandwich structures. Compos. Struct. 2023, 327, 117700. [Google Scholar] [CrossRef]
- Champa-Bujaico, E.; Díez-Pascual, A.M.; Redondo, A.L.; Garcia-Diaz, P. Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques. Compos. Part B Eng. 2023, 269, 111099. [Google Scholar] [CrossRef]
- Cai, R.; Wen, W.; Wang, K.; Peng, Y.; Ahzi, S.; Chinesta, F. Tailoring interfacial properties of 3D-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods. Mater. Today Commun. 2022, 32, 103985. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, H.; Liu, S.; Ren, H.; Zhang, B.; Sun, X.; Chen, J. Determination of cohesive parameters for fibre-reinforced composite interfaces based on finite element analysis and machine learning. J. Compos. Mater. 2022, 56, 4113–4122. [Google Scholar] [CrossRef]
- Gardner, L. Metal additive manufacturing in structural engineering—Review, advances, opportunities and outlook. Structures 2022, 47, 2178–2193. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Jockusch, J.; Özcan, M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent. Mater. J. 2020, 39, 345–354. [Google Scholar] [CrossRef]
- Maniruzzaman, M. 3D and 4D Printing in Biomedical Applications; Wiley: Hoboken, NJ, USA, 2019; Volume 2, pp. 25–52. [Google Scholar]
- Abdullah, T.; Qurban, R.O.; Abdel-Wahab, M.S.; Salah, N.A.; Melaibari, A.A.; Zamzami, M.A.; Memić, A. Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials. Polymers 2022, 14, 2645. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Lin, S.-C.; Jeng, J.-Y. CFD and strength analysis of novel biomimetic lattice structure designed for additive manufacturing and post-processing. Mater. Des. 2022, 224, 111375. [Google Scholar] [CrossRef]
- Yan, M.; Tian, X.; Peng, G.; Li, D.; Zhang, X. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos. Sci. Technol. 2018, 165, 140–147. [Google Scholar] [CrossRef]
- Vafaeefar, M.; Moerman, K.M.; Vaughan, T.J. Experimental and computational analysis of energy absorption characteristics of three biomimetic lattice structures under compression. J. Mech. Behav. Biomed. Mater. 2023, 151, 106328. [Google Scholar] [CrossRef] [PubMed]
- Tavangarian, F.; Sadeghzade, S.; Davami, K. A novel biomimetic design inspired by nested cylindrical structures of spicules. J. Alloy. Compd. 2020, 864, 158197. [Google Scholar] [CrossRef]
- Chen, J.; Huang, J.; Pan, L.; Zhao, T.; Zhang, X.; Lin, H. The 3D lightweight structural characteristics of the beetle forewing: Verification. Structures 2021, 33, 2943–2949. [Google Scholar] [CrossRef]
- Chen, Q.; Zou, B.; Wang, X.; Zhou, X.; Yang, G.; Lai, Q.; Zhao, Y. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure. J. Mech. Behav. Biomed. Mater. 2024, 155, 106553. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Jiang, J.; Yang, X.; Zhang, L.; Zhou, Z.; Zhong, Y.; Shen, Z. Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion. J. Eur. Ceram. Soc. 2020, 41, 1033–1040. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Liu, J.; Guo, S.; Lu, S.; Lv, Y.; Song, B. FDM 3D-printed volcanic-shaped structure for ultrafast solar-driven interfacial evaporation and efficient energy utilization. Desalination 2022, 548, 116275. [Google Scholar] [CrossRef]
- Ganesh Natarajan, S.; Bruce Ralphin Rose, J. Performance enhancement of futuristic airplanes by nature inspired biomimetic fish scale arrays—A design approach. Biomim. Intell. Robot. 2022, 2, 100045. [Google Scholar] [CrossRef]
- Tao, J.; Tahmasebi, P.; Kader, A.; Feng, D.; Sahimi, M.; Evans, P.D.; Saadatfar, M. Wood biomimetics: Capturing and simulating the mesoscale complexity of willow using cross-correlation reconstruction algorithm and 3D printing. Mater. Des. 2023, 228, 111812. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Ding, S.; Li, L.; Huang, C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. 2020, 34, 236–246. [Google Scholar] [CrossRef]
Fracture Energy Absorption (N·mm) | Tensile Strength (MPa) | Compressive Strength (MPa) | Ultimate Force (N) | Fracture Toughness (MPa·m1/2) | Flexural Strength (MPa) | Fracture Work (KJ/m2) | |
---|---|---|---|---|---|---|---|
Shell Nacre Biomimetic Structure | 423 [28] | 22.5 [24] | — | 37.5 [54] | 1.9 [55] | 4.8 [55] | 0.9 [55] |
Mantis Shrimp Bidirectional Corrugated Structure | 287.2 [28] | 74 [28] | 690 [56] | 45,000 [28] | — | — | 199.8 [57] |
Pomelo Peel Honeycomb Structure | 2300 [58] | — | 0.131 [58] | 7500 [58] | — | — | 25.6 [58] |
Wood Cell Wall Biomimetic Structure | 74,000 [59] | 34.9 [38] | 52.7 [38] | 3000 [60] | — | 80 [61] | — |
Squid–Pomelo Peel–Spider Web Integrated Biomimetic Structure | 4800 [49] | 1.36 [49] | 0.211 [49] | 600 [49] | — | — | — |
Angle-Reinforced Spider Web Honeycomb Structure | 1,494,000 [53] | 11.8 [53] | 0.64 [53] | 2900 [53] | — | 13.7 [53] | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, S.; Qu, G.; Wang, G.; Hao, Y.; Sun, J.; Ding, J. A Review of the Biomimetic Structural Design of Sandwich Composite Materials. Polymers 2024, 16, 2925. https://doi.org/10.3390/polym16202925
Che S, Qu G, Wang G, Hao Y, Sun J, Ding J. A Review of the Biomimetic Structural Design of Sandwich Composite Materials. Polymers. 2024; 16(20):2925. https://doi.org/10.3390/polym16202925
Chicago/Turabian StyleChe, Shanlong, Guangliang Qu, Guochen Wang, Yunyan Hao, Jiao Sun, and Jin Ding. 2024. "A Review of the Biomimetic Structural Design of Sandwich Composite Materials" Polymers 16, no. 20: 2925. https://doi.org/10.3390/polym16202925
APA StyleChe, S., Qu, G., Wang, G., Hao, Y., Sun, J., & Ding, J. (2024). A Review of the Biomimetic Structural Design of Sandwich Composite Materials. Polymers, 16(20), 2925. https://doi.org/10.3390/polym16202925