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Supplementary Materials: Kinetics of Polyampholyte
Dimerization: Influence of Charge Sequences
Seowon Kim 1, Nam-Kyung Lee 1,* , Youngkyun Jung 2, and Albert Johner 3,*

1. Theory
1.1. Dimerization Kinetics from the Statistics of the Distance between the Centers of Mass of the
Two Unimers: Fokker-Planck Type Approach

The random variable considered is the center to center distance r of the two unimers.
The conservation law of the probability density P( r) reads:

∂P
∂t

+∇ · j = 0 (S1)

where the probability current j is here:

j = −D
∂P
∂r

− DP
∂V
∂r

(S2)

The friction enters the problem when the centers of mass of both unimers move and
experience position fluctuations. The center-to-center distance experiences the double
fluctuation and hence the diffusion constant D above is taken twice that of one unimer.
We assume that the probability has spherical symmetry and only depends on the radial
coordinate r rather than on r.

The average time for going from the dimer state to the unimer state can be estimated
from the Fokker-Planck (FP) equation. We consider the system at the free energy minimum
(shell) on the dimer side at location r2 (state (2)) and calculate its average first passage time
at the minimum on the unimer side (state (1)) located at position r1 (Fig. 7). We choose to
proceed with the Laplace transformed Fokker-Planck (FP) equation with s the conjugate of
Dt.

sP̃ − P(t = 0) +∇r · j̃ = 0 (S3)

Here and below f̃ (s) designates the Laplace transform (LT) of f (t). For a start in state (2) :
P(t = 0) = δ(r−r2)

4πr2
2 , further state (1) is adsorbing, P(r1) = 0, to describe the first passage

time statistics at state (1).
To assess the moments of the first passage time distribution we expand P̃ and j̃ in

powers of s around s = 0. P̃ = P0 + sP1 + ... and j̃ = j0 + sj1 + ... The average first passage
time at state (1) is defined as ⟨t⟩ =

∫ ∞
0 t4πr2

1 j(r1) and obtained as −4πr2
1 j1(r1).

The first terms of the expansions of j̃ and P̃ follow from the LT of the FP equation.
The lowest order current j0 conserves flux on either side of the shell of radius r2. No
probability flows into r = 0, all probability ultimately flows into the adsorbing shell of
radius r1. As a consequence, j0< = 0, (r < r2), j0> = 1

4πr2 , (r > r2), which also ensures
the proper discontinuity on the r2-shell. From this, P0 is obtained by integration of the
first order equation defining the probability current where ∇ ↔ d

dr +
2
r . As a result, we

have: P0<(r) = −e−V(r) ∫ r2
r1

eV(r′)

4πr′2 dr′ and P0> = −e−V(r) ∫ r
r1

eV(r′)

4πr′2 dr′, where we have taken
into account that P0>(r1) = 0 and the continuity of P0 at r2. Note the Boltzmann type
distribution in the no current region (r < r2) and that the probability density vanishes
beyond the adsorbing shell enclosing the source.

The next order term, j1, in the current is obtained from the FP equation in the same
way as j0, but with the Dirac distribution source term replaced by sP0. The expression for
j1(r) is given by j1(r) = 1

r2

∫ r
0 P0(r′)r′2dr′, where the lower bound in the integral is set to

https://doi.org/10.3390/polym19202928
https://orcid.org/0000-0002-5359-0687
https://orcid.org/0000-0003-1272-763X


Polymers 2024, 19, 2928. https://doi.org/10.3390/polym19202928 S2 of S8

zero to avoid singularities at 0. The sought mean first passage time (dimer dwell time) is
obtained as:

⟨td⟩ =
∫ r1

0
P0(r′)4πr′2dr′, (S4)

where P0 is piecewise defined above.
In the same way we may calculate the first passage time at state (2) when starting in

state (1). In contrast to the previous case the adsorbing shell of radius r2 does not enclose
the source on the shell of radius r1 (also the center r = 0 is screened by the the adsorbing
shell). We hence introduce a reflecting shell at L enclosing the system. Making the proper
adjustments we arrive at P0>, (r > r1), P0<, (r < r1), along with the expression for the
mean first passage time (unimer dwell time):

P0>(r) = e−V(r)
∫ r1

r2

eV(r′)

4πr′2
dr′; (r > r1) (S5)

P0<(r) = e−V(r)
∫ r

r2

eV(r′)

4πr′2
dr′; (r < r1) (S6)

⟨tu⟩ =
∫ L

r2

P0(r′)4πr′2dr′. (S7)

1.2. Dimer dwell time and bound/unbound block transitions: a toy model

We consider a block initially bound to the other chain inside a dimer and want to
describe its state either closed (bound to the other chain) or open (free or bound to its own
chain) at time t. This is done in terms of the dwell time distribution in either state p1(t) for
the closed state and p2(t) in the open state. Using LT with respect to time (see above) to
reduce convolutions to ordinary products, the probability for the block to be in the open
state and close state when starting out from the close state read respectively:

p̃(c|c) =
1
s
(1 − p̃1)

1
1 − p̃1 p̃2

and p̃(o|c) =
1
s
(1 − p̃2)

p̃1

1 − p̃1 p̃2
. (S8)

The final state is either closed or open and these two probabilities add up to 1/s (1 in
direct space). From the simulations we obtained the two first moments of the dwell time
distributions which yield the large time/small expansions: p̃1 = 1 − s⟨t1⟩+ s2

2 ⟨t2
1⟩ and

similarly for p̃2 with index 2 in place of index 1. We are interested in the long time/small-s
limits which can be cast in the form:

p̃(o|c) =
⟨t2⟩

s(⟨t1⟩+ ⟨t2⟩)
−

2⟨t1⟩2⟨t2⟩+ ⟨t1⟩⟨t2
2⟩ − ⟨t2

1⟩⟨t2⟩
2(⟨t1⟩+ ⟨t2⟩)2 + O(s). (S9)

The next order ∼ s involves the ∼ s3 term in the p̃1, p̃2 expansion. Provided the con-
stant term in Eq. S9 is negative, which is likely, the expansion can be cast as p̃(o|c) ∼

⟨t2⟩
⟨t1⟩+⟨t2⟩

τ−1
c

s(τ−1
c +s)

or in direct space:

p(o|c)(t) ∼ ⟨t2⟩
⟨t1⟩+ ⟨t2⟩

(
1 − e−t/τc

)
τc =

2⟨t1⟩2⟨t2⟩+ ⟨t1⟩⟨t2
2⟩ − ⟨t2

1⟩⟨t2⟩
2(⟨t1⟩+ ⟨t2⟩)⟨t2⟩

. (S10)

The asymptotic value corresponds to the equilibrium probability Peq2 of the open state
according to ergodicity while the final relaxation time τc is a combination of the first two
moments of the dwell time distributions p1 and p2. If the constant term in Eq. S9 were
positive, the above would apply to p̃(c|c) = 1/s− p̃(o|c). Only the approach to the asymptote
is described here. As p(c|c) starts out from unity and approaches its asymptote from below,
it would exhibit an undershoot before settling at the asymptotic value. Similar forms are
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obtained for other conditional probabilities and the equilibrium probability only depends
on the final state whilst the relaxation functions need to be explicitly calculated. Most
important here are p(o|c) and p(o|o).

p̃(o|o) =
⟨t2⟩

s(⟨t1⟩+ ⟨t2⟩)
+

2⟨t1⟩⟨t2⟩2 − ⟨t1⟩⟨t2
2⟩+ ⟨t2

1⟩⟨t2⟩
2(⟨t1⟩+ ⟨t2⟩)2 + O(s). (S11)

Typically the constant is expected to be positive. As a consequence, we obtain p(o|o) from
p(c|o) as:

p(o|o) =
⟨t2⟩

⟨t1⟩+ ⟨t2⟩
+

⟨t1⟩
⟨t1⟩+ ⟨t2⟩

exp−t/τo (S12)

where:

τo =
2⟨t1⟩⟨t2⟩2 + ⟨t2⟩⟨t2

1⟩ − ⟨t2
2⟩⟨t1⟩

2(⟨t1⟩+ ⟨t2⟩)⟨t1⟩
. (S13)

It so happens that asymptotic expressions for both p(o|c) and p(o|o) also give the correct
value for t = 0 and may give a fair description over the whole t-range. However, the
expressions for τc (Eq. S10) and τo (Eq. S12) are not immediately transparent. To fix the
idea, we may refer to exponential distributions, where the average of the square is twice the
square of the average. This relation approximately holds for the simulation data (though
we are not yet implying that exponential distributions for the block dwell times) and leads
to the much simpler expression: 1/τc = 1/τo = 1/⟨t1⟩+ 1/⟨t2⟩.

Consider a dimer with all its n blocks initially closed. Assuming that the blocks are
statistically independent, the probability for them to be all open at time t reads: P{(o|c)}(t) =
Πn

i=1Peq2|i(1 − e−t/τi ). We will come back on this assumption below. The first passage time

distribution for all blocks being open P̃ f
{(o|c)} obtains from the Dyson equation. In LT:

P̃ f
{(o|c)} =

P̃{(o|c)}
1 + P̃{(o|o)}

(S14)

where P{(o|o)}(t) is the conditional probability that all blocks are again open after time t. At
asymptotically large times the first passage event contributes little to the overall passage and
we expect 1 to be negligible in the denominator of Equation (S14). Conversely, if we were
to keep only the term 1, the associated average first passage time would diverge. As the
direct space terms are all exponential in the numerator and denominator in Equation (S14),
it becomes straightforward to proceed and get P̃ f

{(o|c)}. Below we give the average first
passage time ⟨t f ⟩ when all blocks are open simultaneously:

⟨t f ⟩ = ∑
blocks

τ
(i)
c − ∑

pairs of blocks
(1/τ

(i)
c + 1/τ

(j)
c )−1 + . . .+

∑
blocks

⟨t1⟩(i)

⟨t2⟩(i)
τ
(i)
o + ∑

pairs of blocks

⟨t1⟩(i)

⟨t2⟩(i)
⟨t1⟩(j)

⟨t2⟩(j)
(1/τ

(i)
o + 1/τ

(j)
o )−1 + . . .

(S15)

The sum in the first line is alternating and generated by the numerator in Eq. S14, while the
sum in the last line is not alternating, and is generated by the denominator, where the first
term (1) is neglected. The time ⟨t f ⟩ is not necessarily dominated by the first term of either
sum.
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It is more natural to start out from the equilibrium distribution of closed and open
states which leads to the average first passage time at the all-open state:

⟨t f ⟩ = ∑
blocks

⟨t1⟩(i)

⟨t1⟩(i) + ⟨t2⟩(i)
(τ

(i)
c − τ

(i)
o )

− ∑
pairs of blocks

⟨t1⟩(i)

⟨t1⟩(i) + ⟨t2⟩(i)
⟨t1⟩(j)

⟨t1⟩(j) + ⟨t2⟩(j)
× τij + . . .

+ ∑
blocks

⟨t1⟩(i)

⟨t2⟩(i)
τ
(i)
o + ∑

pairs of blocks

⟨t1⟩(i)

⟨t2⟩(i)
⟨t1⟩(j)

⟨t2⟩(j)
(1/τ

(i)
o + 1/τ

(j)
o )−1 + . . .

(S16)

where τij = (1/τ
(i)
c + 1/τ

(j)
c )−1 + (1/τ

(i)
o + 1/τ

(j)
o )−1 − (1/τ

(i)
o + 1/τ

(j)
c )−1 − (1/τ

(i)
c +

1/τ
(j)
o )−1 and the last line generated by the denominator in Eq. S14 is unchanged. Note

that among the terms listed in Eq. S16, only the contribution of the denominator survives
for exponential block dwell time distributions.

We use operational definitions of the dimer state and unimer state which are based on
the number of contacts (simulations) or on the separation between the centers of mass of
the two unimers (FP equation). When all blocks are open for the first time it is very likely
that one of them closes within a very short time span. If we do not want to count these
very short lived dissociated states which may further be held by simple monomer contacts,
we may ask for the all-open state to last at least for a time tS. For each block this criterion
involves the survival probability So in the open state, So(t) = 1 −

∫ t
0 p2(t′)dt′. The long

time asymptotics of So(t) reads So(t) ∼ 2⟨t2⟩2

⟨t2
2⟩

exp (− 2⟨t2⟩
⟨t2

2⟩
t). This asymptotic law does not

extrapolate to unity for vanishing time except for exponential p2(t) distribution, where the
characteristic decay time further reduces to ⟨t2⟩. Assuming that the blocks are independent,
the probability for all blocks to remain open after time tS is the product of the individual
survival probabilities.

∏
i

Si
o =

(
∏

i

2(⟨t2⟩(i))2

⟨(t2)2⟩(i)

)
exp(−tS ∑

i

2⟨t2⟩(i)

⟨t2
2⟩(i)

) (S17)

where the index (i) runs over the blocks. Depending on the prescribed time tS a large
multiplicative factor may apply to ⟨t f ⟩ given in Equations (S15) and (S16).

Throughout we assumed blocks to behave independently. In the very opposite case of
strongly coupled blocks, longer blocks may trigger the switching of shorter ones and the
global opening time would be reduced. Long blocks dominate the opening dynamics in
both independent and coupled blocks. Results should remain similar.
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2. Molecular Dynamics Simulation Description

In the molecular dynamics simulations, we consider a system of PA chains with
a well defined charge sequence in weakly poor solvent condition, with no added salt.
Each PA is modeled as a bead-spring chain consisting of N = 100 monomers, each with a
diameter σ (approximately equal to the average bond length b). All considered sequences
for the dimerization study bear net charges of Q = 8. The electro-neutrality is imposed by
counterions compensating the net charge on the PA backbones. Counterion condensation
effect does not play a major role in the density condition we considered, albeit some charge
regulation occurs.

The motion of beads is described by the following equation with the total energy
U = ULJ + UC + UFENE,

m
dvi(t)

dt
= −ζ

∂ri
∂t

− dU
dri

+ fR(t),

where ζ is the frictional coefficient and m is the mass of the bead. Here, ri and vi are the
position and the velocity of particle i, respectively. The Gaussian random force fR has zero
average ⟨fR(t)⟩ = 0 and correlations ⟨fR(t) · fR(t′)⟩ = 6kBTζδ(t − t′) set the temperature
of the system. The temperature is set to T = T0 such that kBT0 = 1 and we measure
energy in thermal unit kBT0. Additionally, we set ζ = 1.0 mτ−1 where τ = (mσ2/kBT)1/2

is the characteristic time scale. Two charged particles interact via the Coulomb potential
UC(rij) = zizj

lB
rij

kBT, where zi and zj are the charge valence of particle i and j, and rij

denotes the center-to-center distance between i and j particles. The strength of electrostatic
interactions is determined by the Bjerrum length lB. In our simulations for PAs, we set
lB = 3σ at T0. The long-range electrostatic interactions are calculated by the particle-
particle-particle-mesh (PPPM) method implemented in LAMMPS software package [1].

The chain connectivity is ensured by the finite extension nonlinear elastic (FENE)
potential UFENE between two consecutive beads [2] UFENE(r) = −0.5kr2

0 ln[1 − (r/r0)
2],

where the spring constant is taken as k = 30kBT/σ2 and the maximum bond length as
r0 = 1.5σ. With this potential, the equilibrium bond length is 1.004±0.002 σ, indicating
minimal deviation from the average bond length.

The excluded volume interactions are modeled by the truncated-shifted Lennard-
Jones(LJ) potential: ULJ(rij) = 4ϵLJ[(σ/rij)

12 − (σ/rij)
6 − (σ/rc)12 + (σ/rc)6] for rij < rc

and 0 elsewhere. Here ϵLJ represents the strength of the LJ potential. In simulations of
random PAs, the value of the interaction parameter is set to ϵLJ = 0.6 and the cutoff distance
rc is set to 2.5σ for monomer-monomer interactions so that polymers are in moderately
poor solvent condition. For monomer–counterion and counterion–counterion interactions,
we set the interaction parameter ϵLJ = 1.0 and the cut off distance 21/6σ, which leads to
purely repulsive interactions.

We integrated the equation of motion using the velocity Verlet algorithm with an
integration time step δt = 0.005τ. We first performed 107 integration steps (= 5 × 104τ) in
order for the mean square radius of gyration of the chain to relax to its equilibrium values
for two chain simulations. After equilibration, we ran additional 2.4 × 108 integration steps
(= 1.2 × 106τ) and collected data every 103 time steps (= 5 τ) for two chain simulations.
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3. Kinetics of PA Dimerization
3.1. Moment of Inertia Tensor, Eigenvalues

To study the shapes of a dimer consisting of 2N monomers, we calculate the three
principal moments of inertia for a given configuration of the dimer, which are obtained
from the moment of inertia tensor

Iij =
1

2N

2N

∑
α=1

mα

[
δij

(
∑

k=1,2,3
x2

αk

)
− xαi xαj

]
,

where i, j = 1, 2, 3 and xαk represents the position of a α-monomer relative to the center of
mass of the dimer.

We recorded three real eigenvalues, denoted as λ1 ≤ λ2 ≤ λ3, at a given time from the
moment of inertia tensor. The time averaged values are reported in Fig. 2, where λ3(λ1)
represents the time-averaged value of the largest (smallest) eigenvalue.

Table S1. Eigenvalues λ1,λ2, and λ3 for the conformations shown in Fig. 1. In (a) and (b), the
conformations are labeled as 1, 2, and 3 from left to right.

Sequence timestep λ1 λ2 λ3

17 a-1 6.08 19.18 20.31
a-2 6.19 22.28 22.80
a-3 8.83 9.52 13.26

29 b-1 8.20 9.09 12.21
b-2 6.90 20.58 23.52
b-3 7.67 12.94 16.79

46 c 7.43 10.65 11.99
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3.2. Dimerization and Dissociation

Figure S1. Snapshots illustrating association and dissociation processes of two PA chains (seq.39).
Each shown process spans approximately 3000τ. The two unimers are distinguished by pink and
green colors. White spheres indicate counterions.
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3.3. Potential Profiles

Figure S2. (a) Potential profiles for representative sequences of Q = 8 and CNC = 5, seq.13 (A1,
(−4)× 1,(−2)× 3), seq.23 (B2,(−3)× 2,(−2)× 1) and seq.48(B1,(−3)× 1,(−2)× 2). (b) Potential
profiles for three sequences, seq.16, seq.17, and seq.29 belonging to Group B3 ((−3)× 3). The CNC
values for these sequences are 4, 5, and −1, respectively. (c) The landscape of three sequences with Q
= 10 are shown for comparison: sequence a ((−4)× 1) and sequence b and c ((−2)× 3). (d) These
three sequences from (c) are shown below. The center-to-center distances r are chosen as reaction
coordinates.

We evaluate the potential profiles for three sequences that share the same CNC value
(CNC = 5) but exhibit varying levels of blockiness. Sequence 13, characterized by high
blockiness, displays the slowest switching kinetics (long dissociation times), which corre-
sponds to the largest energy barrier for dissociation. This analysis of sequences with the
same CNC value but different blockiness levels underscores the significant impact of block
structure on switching kinetics. Furthermore, we compare the potential profiles of three
sequences within the same B3 group but with different CNC values. The unimer and dimer
states of seq.29, with CNC = −1, are expected to be more compact and stable, leading to
a higher energy barrier. Finally, the energy landscapes of three sequences with larger net
charges (Q = 10) are noticeably shifted, indicating a preference for unimer states.
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