Highly Filled Waste Polyester Fiber/Low-Density Polyethylene Composites with a Better Fiber Length Retention Fabricated by a Two-Rotor Continuous Mixer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method
2.2.1. Pre-Coating of Fibers
2.2.2. Blending and Extrusion of Waste PET Fiber/LDPE Composites
2.3. Characterization
2.3.1. Length Distribution of Fibers
2.3.2. Mechanical Properties Test
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Differential Scanning Calorimeter (DSC)
2.3.5. Dynamic Mechanical Analysis (DMA)
2.3.6. Dynamic Rheological Analysis (DRA)
3. Results and Discussion
3.1. Analysis of the Length Distribution of Fibers
3.2. Mechanical Properties Analysis
3.3. Micromorphology Analysis
3.4. Analysis of DSC
3.5. Dynamic Mechanical Analysis
3.6. Dynamic Rheological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhang, H.; Yu, Y.; Guo, W.; Wu, C. Recycled Poly(ethylene terephthalate)/Linear Low-Density Polyethylene Blends Through Physical Processing. J. Appl. Polym. Sci. 2009, 114, 1187–1194. [Google Scholar] [CrossRef]
- Yang, K.L.; Wang, M.X.; Wang, X.R.; Shan, J.Y.; Zhang, J.; Tian, G.M.; Yang, D.; Ma, J.H. Polyester/Cotton-Blended Textile Waste Fiber Separation and Regeneration via a Green Chemistry Approach. Acs. Sustain. Chem. Eng. 2024, 12, 4530–4538. [Google Scholar] [CrossRef]
- Pattnaik, P.; Dangayach, G.S.; Bhardwaj, A.K. A review on the sustainability of textile industries wastewater with and without treatment methodologies. Rev. Environ. Health 2018, 33, 163–203. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, X.; Ding, X. Environmental impacts of textiles in the use stage: A systematic review. Sustain. Prod. Consum. 2023, 36, 233–245. [Google Scholar] [CrossRef]
- Ou, J.H.; Yang, R.; Dai, Z.L.; Kong, Z.X.; Shu, H.; Huang, X.P. Synthesis, Characterization, Application of PET Waste Blended with Hybrid Fibers and Preparation of Fiber Derived Unsaturated Resin. Polym. Sci. Ser. A 2022, 64, 818–833. [Google Scholar] [CrossRef]
- Sakthivel, S.; Tesfamicael, F.A.; Mekonnen, S.; Solomon, E.; Gedilu, M.; Kumar, S.S.; SenthilKumar, B. Recycled cotton/polyester and polypropylene nonwoven hybrid composite materials for house hold applications. J. Text. Inst. 2022, 113, 45–53. [Google Scholar] [CrossRef]
- Woigk, W.; Fuentes, C.A.; Rion, J.; Hegemann, D.; van Vuure, A.W.; Kramer, E.; Dransfeld, C.; Masania, K. Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites. Compos. Sci. Technol. 2019, 183, 107791. [Google Scholar] [CrossRef]
- Gama, N.; Godinho, B.; Barros-Timmons, A.; Ferreira, A. PU composites based on different types of textile fibers. J. Compos. Mater. 2021, 55, 3615–3626. [Google Scholar] [CrossRef]
- Saujanya, C.; Radhakrishnan, S. Structure development and properties of PET fibre filled PP composites. Polymer 2001, 42, 4537–4548. [Google Scholar] [CrossRef]
- Sunny, T.; Pickering, K.L. Improving Polypropylene Matrix Composites Reinforced with Aligned Hemp Fibre Mats Using High Fibre Contents. Materials 2022, 15, 5587. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K. High-aspect ratio fillers: Fiber-reinforcedcomposites and their anisotropic properties. Dent. Mater. 2015, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.-N.; Dai, H.-L.; Dai, T.; Yang, Y. Linkages among fiber content, porosity and local aggregation in fiber-reinforced composites, and their effect on effective properties. J. Mater. Sci. 2017, 52, 12486–12505. [Google Scholar] [CrossRef]
- Bengtsson, M.; Le Baillif, M.; Oksman, K. Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1922–1931. [Google Scholar] [CrossRef]
- Wu, C.-M.; Murakami, R.-I.; Lai, S.-G.; Lin, P.-C.; Koinkar, P.; Lee, K.-C.; Lai, C.-C.; Rwei, S.-P. Investigation on the interface modification of PET/PP composites. Mod. Phys. Lett. B 2019, 33, 14–15. [Google Scholar] [CrossRef]
- Jia, M.; Xie, W.; Yu, K.; Lu, X.; Qian, K. Analyses on impact behaviour and reinforcement mechanism of basalt fiber and textile reinforced cement-based composite materials. J. Text. Inst. 2021, 112, 1835–1849. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, Y.; Jin, F. Design of short fiber-reinforced thermoplastic composites: A review. Polym. Compos. 2022, 43, 4835–4847. [Google Scholar] [CrossRef]
- Ali, H.; Akrami, R.; Fotouhi, S.; Fotouhi, M. Fiber reinforced polymer composites in bridge industry. Structures 2021, 30, 774–785. [Google Scholar] [CrossRef]
- Rueppel, A.; Wolff, S.; Oldemeier, J.P.; Schoeppner, V.; Heim, H.-P. Influence of Processing Glass-Fiber Filled Plastics on Different Twin-Screw Extruders and Varying Screw Designs on Fiber Length and Particle Distribution. Polymers 2022, 14, 3113. [Google Scholar] [CrossRef]
- Yu, W.; Ma, Y.; Xie, L.; Lin, Y.; Zhang, M. Effect of Mixing Equipment Structure on Residual Length of GF and Mechanical Properties of PP/GF Composites. China Plast. 2018, 32, 83–89. [Google Scholar] [CrossRef]
- Mao, Y.; Cao, W.; Wu, C. Study of ‘one-step’ preparation of r-PET fiber-reinforced PE composites. Mater. Res. Express 2021, 8, 085302. [Google Scholar] [CrossRef]
- GB/T 1040.2-2022; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. Standardization Administration of China: Beijing, China, 2022.
- GB/T 9341-2008; Plastics—Determination of Flexural Properties. Standardization Administration of China: Beijing, China, 2008.
- GB/T 1843-2008; Plastics—Determination of Izod Impact Strength. Standardization Administration of China: Beijing, China, 2008.
- Si, Q.; Yang, Z.; Liang, R.; Zhao, Y.; Zhao, G. Non-Isothermal Crystallization Kinetics of rp-PBAT Prepared from Post-Consumer Polyester Textiles. Plastics 2023, 52, 88–93. [Google Scholar]
- Aliotta, L.; Lazzeri, A. A proposal to modify the Kelly-Tyson equation to calculate the interfacial shear strength (IFSS) of composites with low aspect ratio fibers. Compos. Sci. Technol. 2020, 186, 107920. [Google Scholar] [CrossRef]
- Zare, Y. Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 2015, 85, 1–6. [Google Scholar] [CrossRef]
- Yan, X.; Yang, Y.; Hamada, H. Tensile properties of glass fiber reinforced polypropylene composite and its carbon fiber hybrid composite fabricated by direct fiber feeding injection molding process. Polym. Compos. 2018, 39, 3564–3574. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, Y.; Zhang, Y.; Liu, R.; Meng, F.; Yu, W. The reinforcing mechanism of mechanical properties of bamboo fiber bundle-reinforced composites. Polym. Compos. 2019, 40, 1463–1472. [Google Scholar] [CrossRef]
- Satapathy, S.; Nando, G.B.; Jose, J.; Nag, A. Mechanical properties and fracture behavior of short PET fiber-waste polyethylene composites. J. Reinf. Plast. Compos. 2008, 27, 967–984. [Google Scholar] [CrossRef]
- Hua, T.Z.; Jie, Z.W.; Yao, D.Q.; Ying, W.; Xuan, H.J. Construction of Collagen/Oxidized Sodium Carboxymethyl Cellulose/Nano ZnO Composite Hydrogel. China Leather 2022, 51, 9–17+21. [Google Scholar] [CrossRef]
- Su, J.; Jiang, Z.; Fang, C.; Yang, M.; Wu, L.; Huang, Z. The Reinforcing Effect of Waste Polyester Fiber on Recycled Polyethylene. Polymers 2022, 14, 3109. [Google Scholar] [CrossRef]
- Tajvidi, M.; Falk, R.H.; Hermanson, J.C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J. Appl. Polym. Sci. 2006, 101, 4341–4349. [Google Scholar] [CrossRef]
- Drakopoulos, S.X.; Forte, G.; Ronca, S. Relaxation Dynamics in Disentangled Ultrahigh Molecular Weight Polyethylene via Torsional Rheology. Ind. Eng. Chem. Res. 2020, 59, 4515–4523. [Google Scholar] [CrossRef]
- Salleh, F.M.; Hassan, A.; Yahya, R.; Azzahari, A.D. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos. Part B Eng. 2014, 58, 259–266. [Google Scholar] [CrossRef]
- Asoodeh, F.; Aghvami-Panah, M.; Salimian, S.; Naeimirad, M.; Khoshnevis, H.; Zadhoush, A. The Effect of Fibers’ Length Distribution and Concentration on Rheological and Mechanical Properties of Glass Fiber-Reinforced Polypropylene Composite. J. Ind. Text. 2022, 51, 8452S–8471S. [Google Scholar] [CrossRef]
- Yang, W.X.; Bin, Y.Z.; Wang, H.; Ge, Z.H. Rheological properties of UHMWPE/HDPE blend gels and morphology and mechanical properties of gel-spun fibers. Polym. Eng. Sci. 2021, 61, 2127–2136. [Google Scholar] [CrossRef]
Sample | Waste PET Fiber (wt%) | LDPE (wt%) | LDPE-g-MAH (wt%) |
---|---|---|---|
LDPE | 0 | 100 | 0 |
SP10/RP10 | 10 | 89 | 1 |
SP20/RP20 | 20 | 78 | 2 |
SP30/RP30 | 30 | 67 | 3 |
SP40/RP40 | 40 | 56 | 4 |
SP50/RP50 | 50 | 45 | 5 |
SP60/RP60 | 60 | 34 | 6 |
Tm (PE)/°C | ∆Hm (PE)/J·g−1 | χc (PE)/% | Tm (PET)/°C | ∆Hm (PET)/J·g−1 | χc (PET)/% | |
---|---|---|---|---|---|---|
LDPE | 114.8 | 138.2 | 47.17 | — | — | — |
SP10 | 113.8 | 118.9 | 45.09 | 249.8 | 4.332 | 30.91 |
RP10 | 114.4 | 119.2 | 45.13 | 246.9 | 5.221 | 37.28 |
SP20 | 114.3 | 107.3 | 45.78 | 249.9 | 8.253 | 29.45 |
RP20 | 113.6 | 106.6 | 45.48 | 246.4 | 10.22 | 36.50 |
SP30 | 113.7 | 93.6 | 45.66 | 249.6 | 11.85 | 28.21 |
RP30 | 113.9 | 89.9 | 43.83 | 249.2 | 14.58 | 34.71 |
SP40 | 114.5 | 79.4 | 45.14 | 250.1 | 14.91 | 26.63 |
RP40 | 113.8 | 78.4 | 44.62 | 249.5 | 18.63 | 33.27 |
SP50 | 113.5 | 65.0 | 44.38 | 250.2 | 17.63 | 25.19 |
RP50 | 113.7 | 64.3 | 43.90 | 250.2 | 22.76 | 32.51 |
SP60 | 112.9 | 50.9 | 43.46 | 249.7 | 21.09 | 25.11 |
RP60 | 113.0 | 50.3 | 42.93 | 248.8 | 26.84 | 31.95 |
PET-fiber | — | — | — | 251.5 | 57.71 | 41.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Pan, Z.; Yang, S.; Cao, C.; Zhou, W.; Xie, Y.; Yang, Y.; Qian, Q.; Chen, Q. Highly Filled Waste Polyester Fiber/Low-Density Polyethylene Composites with a Better Fiber Length Retention Fabricated by a Two-Rotor Continuous Mixer. Polymers 2024, 16, 2929. https://doi.org/10.3390/polym16202929
Chen J, Pan Z, Yang S, Cao C, Zhou W, Xie Y, Yang Y, Qian Q, Chen Q. Highly Filled Waste Polyester Fiber/Low-Density Polyethylene Composites with a Better Fiber Length Retention Fabricated by a Two-Rotor Continuous Mixer. Polymers. 2024; 16(20):2929. https://doi.org/10.3390/polym16202929
Chicago/Turabian StyleChen, Junrong, Zhijie Pan, Songwei Yang, Changlin Cao, Weiming Zhou, Yidu Xie, Yilin Yang, Qingrong Qian, and Qinghua Chen. 2024. "Highly Filled Waste Polyester Fiber/Low-Density Polyethylene Composites with a Better Fiber Length Retention Fabricated by a Two-Rotor Continuous Mixer" Polymers 16, no. 20: 2929. https://doi.org/10.3390/polym16202929
APA StyleChen, J., Pan, Z., Yang, S., Cao, C., Zhou, W., Xie, Y., Yang, Y., Qian, Q., & Chen, Q. (2024). Highly Filled Waste Polyester Fiber/Low-Density Polyethylene Composites with a Better Fiber Length Retention Fabricated by a Two-Rotor Continuous Mixer. Polymers, 16(20), 2929. https://doi.org/10.3390/polym16202929