Application of Biomass-Based Triboelectrification for Particulate Matter Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ti3C2Tx Synthesis
2.3. Preparation of CNF-Based Aerogel (CA)
2.4. Preparation of PVA-CNF-PEO Film
2.5. Assembly of the Self-Charging Mask
2.6. Filtration Performance Testing Platform
2.7. Characterization
3. Results and Discussion
3.1. Preparation and Characterization of CA/Ti3C2Tx Composites
3.2. Structure and Filtration Principle of SAFs
3.3. Working Principle and the Electrical Output of the SAF
3.4. Filtration Performance of the SAF
3.5. Economic Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, eabd9149. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.L.; Li, Y.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Tellier, R. Review of aerosol transmission of influenza A Virus. Emerg. Infect. Dis. 2006, 12, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Moyes, G.; Zhu, F.; Li, Y.; Wang, X. The prevalence of influenza bacterial co-infection and its role in disease severity: A systematic review and meta-analysis. J. Glob. Health 2023, 13, 04063. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Illés, B.; Géczy, A.; Istók, B.; Hliva, V.; Török, D.; Kovács, J.G.; Harmati, I.; Molnár, K. Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 2021, 89, 106418. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, H.; Zeng, Y.; Xue, J.; Cao, X.; Wang, N.; Wang, Z. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy 2022, 91, 106612. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Q.; Bai, S.; Hai, J.; Cheng, L.; Xu, G.; Qin, Y. Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology. Nano Energy 2021, 79, 105434. [Google Scholar] [CrossRef]
- Dinh, T.; Nguyen, T.; Phan, H.P.; Nguyen, N.T.; Dao, D.V.; Bell, J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 2020, 166, 112460. [Google Scholar] [CrossRef]
- Zaarour, B.; Zhu, L.; Jin, X. Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Mater. 2019, 17, 181–189. [Google Scholar] [CrossRef]
- Ren, J.; Liu, T.; An, X.; Wu, F.; Xie, C. Preparation and property of antibacterial filter membrane by coaxial electro-spraying/electrospinning technology. J. Appl. Polym. Sci. 2023, 141, e54847. [Google Scholar] [CrossRef]
- Wang, P.L.; Roschli, A.; Paranthaman, M.P.; Theodore, M.; Cramer, C.L.; Zangmeister, C.; Zhang, Y.; Urban, J.J.; Love, L. Recent developments in filtration media and respirator technology in response to COVID-19. MRS Bull. 2021, 46, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, Z.; Zhang, X.; Diao, D. Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Res. 2021, 14, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xu, S.; Wang, Z.; Xue, K.; Su, J.; Song, Y.; Chen, S.; Zhu, C.; Tang, B.Z.; Ye, R. Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano 2020, 14, 12045–12053. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Karmacharya, M.; Joshi, S.R.; Gulenko, O.; Park, J.; Kim, G.H.; Cho, Y.K. Photoactive Antiviral Face Mask with Self-Sterilization and Reusability. Nano Lett. 2021, 21, 337–343. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, X.; Zhang, W.; Xu, R.; Kim, S.C.; Cui, Y.; Howard, T.T.; Wu, E.; Cui, Y. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens. One Earth 2020, 3, 574–589. [Google Scholar] [CrossRef]
- Zhao, M.; Liao, L.; Xiao, W.; Yu, X.; Wang, H.; Wang, Q.; Lin, Y.L.; Kilinc-Balci, F.S.; Price, A.; Chu, L.; et al. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett. 2020, 20, 5544–5552. [Google Scholar] [CrossRef]
- Gao, Y.; Gu, Y.; Tian, E.; Mo, J. A two-stage cascaded ionizer for boosting PM charging in electrostatic filtration: Principles, design, and long-term performance. Sep. Purif. Technol. 2023, 313, 123494. [Google Scholar] [CrossRef]
- Peng, Z.; Shi, J.; Xiao, X.; Hong, Y.; Li, X.; Zhang, W.; Cheng, Y.; Wang, Z.; Li, W.J.; Chen, J.; et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat. Commun. 2022, 13, 7835. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.; Yeh, M.-H.; Fan, X.; Wen, Z.; Li, Z.; Hu, C.; Wang, Z.L. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment. ACS Nano 2015, 9, 5577–5584. [Google Scholar] [CrossRef]
- Tang, M.; Jiang, L.; Wang, C.; Li, X.; He, X.; Li, Y.; Liu, C.; Wang, Y.; Gao, J.; Xu, H. Bioelectrets in electrospun bimodal Poly(lactic acid) fibers: Realization of multiple mechanisms for efficient and long-term filtration of fine PMs. ACS Appl. Mater. Interfaces 2023, 15, 25919–25931. [Google Scholar] [CrossRef] [PubMed]
- Im, S.; Frey, E.; Lacks, D.J.; Genzer, J.; Dickey, M.D. Enhanced triboelectric charge stability by air-stable radicals. Adv. Sci. 2023, 10, 2304459. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Luo, B.; Liu, Y.; Fu, Q.; Liu, T.; Wang, S.; Nie, S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 2022, 52, 299–326. [Google Scholar] [CrossRef]
- Nie, S.; Fu, Q.; Lin, X.; Zhang, C.; Lu, Y.; Wang, S. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512. [Google Scholar] [CrossRef]
- Karimi Kisomi, M.; Seddighi, S.; Mohammadpour, R.; Rezaniakolaei, A. Enhancing air filtration efficiency with triboelectric nanogenerators in face masks and industrial filters. Nano Energy 2023, 112, 108514. [Google Scholar] [CrossRef]
- Vázquez-López, A.; Ao, X.; Sánchez del Río Saez, J.; Wang, D.-Y. Triboelectric nanogenerator (TENG) enhanced air filtering and face masks: Recent advances. Nano Energy 2023, 114, 108635. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Huang, J.; Li, S.; Meng, Z.; Cai, W.; Lai, Y. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv. Fiber Mater. 2023, 5, 1505–1518. [Google Scholar] [CrossRef]
- Ding, Z.; Tian, Z.; Ji, X.; Wang, D.; Ci, X.; Shao, X.; Rojas, O.J. Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biol. Macromol. 2023, 234, 122903. [Google Scholar] [CrossRef]
- Lan, X.; Chen, X.; Luo, Y.; Lai, X.; Bao, Y.; Chen, X.; Liu, Y.; Zheng, H.; Wang, H.; Tang, Y. A versatile nanofibrous facemask filter for triboelectric nanogenerator-based self-powered respiratory monitoring with efficient filtration and excellent antibacterial capacities. Chem. Eng. Sci. 2023, 279, 118949. [Google Scholar] [CrossRef]
- Potu, S.; Madathil, N.; Mishra, S.; Bora, A.; Sivalingam, Y.; Babu, A.; Velpula, M.; Bochu, L.; Ketharachapalli, B.; Kulandaivel, A.; et al. Surface-engineered high-performance triboelectric nanogenerator for self-powered health monitoring and electronics. ACS Appl. Eng. Mater. 2023, 1, 2663–2675. [Google Scholar] [CrossRef]
- Wu, G.; Du, H.; Pakravan, K.; Kim, W.; Cha, Y.L.; Beidaghi, M.; Zhang, X.; Panc, X.; Kim, D.-J. Wearable room-temperature ethanol sensor based on Ti3C2Tx/Polypyrrole functionalized face mask for drunk driving monitoring. Carbon 2024, 216, 118565. [Google Scholar] [CrossRef]
- Ding, Z.; Tian, Z.; Ji, X.; Yang, G.; Sameer, M.; Lu, Y.; Rojas, O.J. Hybrid cellulose-based systems for triboelectrification in aerosol filtration, ammonia abatement and respiration monitoring. Adv. Funct. Mater. 2024, 34, 2313790. [Google Scholar] [CrossRef]
- Xie, Y.; Kent, P.R.C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn(X = C, N) monolayers. Phys. Rev. B 2013, 87, 235441. [Google Scholar] [CrossRef]
- Vadakke Neelamana, H.; Rekha, S.M.; Bhat, S.V. Ti3C2Tx MXene: A new promising 2D material for optoelectronics. Chem. Mater. 2023, 35, 7386–7405. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef]
- Samejo, B.A.; Naseer, K.; Samejo, S.; Janjhi, F.A.; Memon, N.; Castro-Muñoz, R.; Boczkaj, G. MXene-based composites for capacitive deionization-The advantages, progress, and their role in desalination-A review. Water Resour. Ind. 2024, 31, 100230. [Google Scholar] [CrossRef]
- Zhang, Z.; Karimi-Maleh, H.; Wen, Y.; Darabi, R.; Wu, T.; Alostani, P.; Ghalkhani, M. Nanohybrid of antimonene@Ti3C2Tx-based electrochemical aptasensor for lead detection. Environ. Res. 2023, 233, 116355. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.; Zhong, J.; Lin, S.; Xiao, Y.; Zhong, Q.; Jiang, H.; Wu, N.; Li, W.; Chen, S.; et al. Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy 2017, 34, 562–569. [Google Scholar] [CrossRef]
- Han, C.B.; Jiang, T.; Zhang, C.; Li, X.; Zhang, C.; Cao, X.; Wang, Z.L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561. [Google Scholar] [CrossRef]
- Bai, Y.; Han, C.B.; He, C.; Gu, G.Q.; Nie, J.H.; Shao, J.J.; Xiao, T.X.; Deng, C.R.; Wang, Z.L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater. 2018, 28, 1706680. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Khan, U.; Kim, S.W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432. [Google Scholar] [CrossRef] [PubMed]
- Ru, F.; Tian, Z.; Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhu, Q.H.; Zhang, L.; Yong, F.; Zhang, Z.; Wang, S.L.; Wang, Y.; He, L.; Tao, G.H. High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nat. Commun. 2020, 11, 1653. [Google Scholar] [CrossRef]
- Gu, G.; Han, C.; Lu, C.; He, C.; Jiang, T.; Gao, Z.; Li, C.; Wang, Z. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano 2017, 11, 6211–6217. [Google Scholar] [CrossRef]
- Senthil, R.; Sumathi, V.; Tamilselvi, A.; Kavukcu, S.B.; Aruni, A.W. Functionalized electrospun nanofibers for high efficiency removal of particulate matter. Sci. Rep. 2022, 12, 8411. [Google Scholar] [CrossRef]
- Leung, W.W.F.; Sun, Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols. Sep. Purif. Technol. 2020, 250, 116886. [Google Scholar] [CrossRef]
- Wang, L.; Bian, Y.; Lim, C.K.; Niu, Z.; Lee, P.K.H.; Chen, C.; Zhang, L.; Daoud, W.A.; Zi, Y. Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy 2021, 85, 106015. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Zhang, Y.; Huang, X.; Ye, Y.; Xia, Y.; Gong, Z.; Qin, X.; Liu, Y.; Guo, S. P(VDF-TrFE)/BaTiO3 nanofibrous membrane with enhanced piezoelectricity for high PM0.3 filtration and reusable face masks. ACS Appl Mater Interfaces 2023, 15, 5845–5855. [Google Scholar] [CrossRef]
- Toptas, A.; Calisir, M.D.; Gungor, M.; Kilic, A. Enhancing filtration performance of submicron particle filter media through bimodal structural design. Polym. Eng. Sci. 2023, 64, 901–912. [Google Scholar] [CrossRef]
- Tsaia, P.P.; Schreuder-Gibsonb, H.; Gibson, P. Different electrostatic methods for making electret filters. J. Electrost. 2002, 54, 333–341. [Google Scholar] [CrossRef]
- Junninen, H.; March, N.M.F.; Vana, M.; Tamme, K.; Lipp, H.; Mirme, S.; Pikker, S.; Hussein, T.; Kulmala, M. Particle filtration efficiency, breathability, and reusability of common masks. Aerosol Air Qual. Res. 2024, 24, 240021. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.C.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; et al. Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research 2020, 2020, 7286735. [Google Scholar] [CrossRef]
- Gouda, M.H.; Elessawy, N.A.; Toghan, A. Novel crosslinked sulfonated PVA/PEO doped with phosphated titanium oxide nanotubes as effective green cation exchange membrane for direct borohydride fuel cells. Polymers 2021, 13, 2050. [Google Scholar] [CrossRef]
- Costa, V.L.D.; Simões, R.M.S. Hydrophobicity improvement of cellulose nanofibrils films by stearic acid and modified precipitated calcium carbonate coating. J. Mater. Sci. 2022, 57, 11443–11459. [Google Scholar] [CrossRef]
Filtration Efficiency (%) | Pressure Drop (Pa) | Quality Factor (kPa−1) | Challenge Particle Size (μm) | Charging Source | Reference |
---|---|---|---|---|---|
94 | 110 | 25 | 0.3 | TENG with high output voltage | [49] |
96 | 182 | 25 | 0.3 | High voltage power supply | [50] |
99.52 | 148 | 44 | 0.3 | TENG with high output voltage | [51] |
92.7 | 86 | 30.5 | 0.3 | Self-charging with triboelectrification | [19] |
95.7 | 135.8 | 23.4 | 0.3 | Self-powered with triboelectrification | This work |
Self-Charging | Onsite Charging | Offsite Charging | Electret Treatment | Without Charging | |
---|---|---|---|---|---|
Rating | 5 | 4 | 3 | 2 | 1 |
SAF Component | Price (USD) | Usage Per SAF | Cost Per SAF (USD) |
---|---|---|---|
PVA | 106/Kg | 0.085 | 0.0090 |
PEO | 125/Kg | 0.0085 | 0.0011 |
CNF | 202/Kg | 0.00187 | 0.00038 |
Stearic acid | 88/Kg | 0.001 | 0.000088 |
CCA | 99/Kg | 0.0675 | 0.0067 |
Ti3C2Tx | 492/Kg | 0.15 | 0.0738 |
Total | - | - | 0.0911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wu, Y.; Ma, Z.; Wu, Y.; Ding, Z.; Yin, L. Application of Biomass-Based Triboelectrification for Particulate Matter Removal. Polymers 2024, 16, 2933. https://doi.org/10.3390/polym16202933
Chen H, Wu Y, Ma Z, Wu Y, Ding Z, Yin L. Application of Biomass-Based Triboelectrification for Particulate Matter Removal. Polymers. 2024; 16(20):2933. https://doi.org/10.3390/polym16202933
Chicago/Turabian StyleChen, Hui, Yabo Wu, Zheng Ma, Yefei Wu, Zhaodong Ding, and Lianghong Yin. 2024. "Application of Biomass-Based Triboelectrification for Particulate Matter Removal" Polymers 16, no. 20: 2933. https://doi.org/10.3390/polym16202933
APA StyleChen, H., Wu, Y., Ma, Z., Wu, Y., Ding, Z., & Yin, L. (2024). Application of Biomass-Based Triboelectrification for Particulate Matter Removal. Polymers, 16(20), 2933. https://doi.org/10.3390/polym16202933