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Abstract: This study aims to optimise the water vapour adsorption capacity of polylactic acid
(PLA) and wood composite materials for application in dehumidification systems through material
extrusion additive manufacturing. By analysing key process parameters, including nozzle diameter,
layer height, and temperature, the research evaluates their impact on the porosity and adsorption
performance of the composite. Additionally, the influence of different infill densities on moisture
absorption is investigated. The results show that increasing wood content significantly enhances
water vapour adsorption, with nozzle diameter and layer height identified as the most critical factors.
These findings confirm that composite materials, especially those with higher wood content and
optimised printing parameters, offer promising solutions for improving dehumidification efficiency.
Potential applications include heating, ventilation, and air conditioning systems or environmental
control. This work introduces an innovative approach to using composite materials in desiccant-based
dehumidification and provides a solid foundation for future research. Further studies could focus on
optimising material formulations and scaling this approach for broader industrial applications.

Keywords: polylactic acid (PLA); wood; material extrusion; desiccant materials; water adsorption

1. Introduction

Material Extrusion (MEX) is an additive manufacturing (AM) process that allows the
production of parts or components layer by layer by melting and depositing a thermoplastic-
based filament [1]. MEX is a very popular technology due to several reasons [2–4]: it enables
the production of complex, functional parts on demand in a single step; it allows for multi-
material fabrication; the equipment is cost-effective, easy to operate, and maintain; it
supports the production of large-format parts; and it offers numerous adjustable printing
parameters to suit various applications.

The demand for and research into Multi-Material Additive Manufacturing (MMAM) is
continually growing [5–7], and the catalogue of materials is increasing year by year, thanks
to the work of companies, universities, and research centres [8–10]. In this context, renew-
able organic polymers are widely used in MEX technology and combined with synthetic
materials to achieve the desired printability and features of 3D printed structures [11]. Some
of these composites are collagen and polymer composites, or graphene architectures [12,13].
Polylactic acid (PLA)/Wood is one of the most promising materials [14]. In Figure 1, the
interest in wood-based materials used in this technology can be observed. PLA/wood
is known as wood polymer composite (WPC) [15], and it has several benefits: it is easy
to print, thanks to PLA [16]; it also allows the production of lighter parts (the density of
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wood is lower than that of PLA), although rougher and with a higher number of pores [17];
and PLA/wood has an organic origin and is biodegradable [18], a fact that contributes
to generating a circular economy [19,20]. Some authors have studied the recyclability of
emergent biocomposites [21] as well as wood polymer composites (WPCs). Although
recycling composite materials presents challenges due to the combination of materials,
recent studies have demonstrated effective reuse solutions. Copenhaver et al. [22] showed
that wood polymer composite (WPC) components can be shredded and reused via 3D
printing or injection molding to create new parts. Ngaowthong et al. [23] also highlighted
that incorporating agricultural waste into polymer composites improves their recyclability.
Additionally, the environmental impact of PLA/wood parts printed via 3D printing is
considerably lower than that of similar metal components. At the end of its life cycle, PLA
is recyclable without quality degradation [24], making it a sustainable choice compared to
conventional materials. Industrial composting, recycling, and reuse represent key solutions
to reduce the ecological footprint of these composites. Previous studies have shown that
PLA/wood has a higher porosity than virgin PLA, leading to reduced cross-sectional
strength and increased stiffness [25,26].
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Several authors have analysed the water absorption capacity of PLA/wood compos-
ite materials [27,28]. Water sorption in solid materials can be identified in four phases:
hydration water, surface water, interstitial water, and free water. Each phase has distinct
characteristics and retention mechanisms within the material [29]. Hydration water, or
intracellular water, is chemically bonded within the material, exhibiting the strongest bond-
ing force among the phases. Surface water is bound through hydrogen bonds, adsorption,
and adhesion or chemical adsorption. The thickness of the water layer is approximately
3–5 nm. Interstitial water is retained by capillary forces within the material. Free water
does not exhibit any binding force and is the easiest to remove. The first two types of water,
hydration water and surface water, can only be removed through the application of thermal
energy [29].

Recent research works found that absorption capacity increased in materials with
high surface roughness and porosity, and discovered how the mechanical properties of
the material vary when water sorption occurs, showing that these properties can be re-
duced [30]. For this reason, some authors have studied how to reduce this affinity for water.
Elumalai et al. has verified that the use of epoxy coating like Araldite LY556 reduced the
water absorption by 89.96% [31]. On the other hand, Shulga et al. have verified that the
incorporation of lubricants in the composite formulation leads to a decrease in the water
absorption [32]. Krapez-Tomec et al. have shown that the use of thermally modified wood
decreases water absorption under humid conditions [33]. Segerhom et al. have found
that PLA/wood with acetylated or heat-treated wood reduces water sorption compared
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to untreated PLA/wood [34]. Therefore, these works have shown that materials with
PLA/wood have a high affinity for water.

In certain sectors such as the manufacture of air handling equipment, the adsorption
of moisture by PLA/wood can be considered as a property of interest, and the mechanical
properties are not a limiting factor. Authors’ studies show the promising potential of 3D
printing and green desiccant materials for manufacturing ecological air dehumidification
systems [35]. Using MEX and PLA/wood, it is possible to manufacture elements that allow
air flows to be dehumidified in an efficient, eco-friendly, and low-cost way, compared to
other conventional systems based on the use of vapour compression cycles [36].

The complex inter-relationship between process, structure, and properties in the
context of MEX-manufactured biocomposites is still not fully understood. This results
in a lower reliability of this technology in the context of biocomposites. The extrusion
temperature of PLA/wood is slightly higher than that of pure PLA. Several authors have
carried out tests to determine how the properties of the specimens change when they are
printed at different temperatures between 195 ◦C and 300 ◦C [37]. Specimens printed at
higher temperatures have lower porosity [38]. The recommended temperature for printing
PLA/wood specimens is around 220 ◦C [39].

In this respect, the printing parameters can play a role in the sorption capacity of the
printed PLA/wood. The layer height has influence on the amount of water absorbed when
the printed specimen is immersed in water, showing a positive linear relationship between
water absorption and layer height of the 3D printed samples [40]. However, the influence
of this parameter on the water vapour adsorption capacity in saturated moist environment
has not been studied. The relationship between the printing width and the absorption
capacity of MEX printed specimens with PLA/PHA/wood filaments has been studied by
Le Duigou et al. [41]; according to these authors, larger printing width is associated with
higher adsorption capacity. On the other hand, Ang et al. [42] have studied the relationship
between the raster width and the percentage of macropores in MEX printed structures that
can serve as scaffolds for cell growth. They have concluded that lower raster width values
are linked to higher porosity percentages.

There are authors who have investigated the impact of infill density on water pu-
rification filters made with PLA–carbon black fibres using MEX. Lagalante et al. have
experimentally proven that filters made with a larger infill pattern (smaller channels) have
a higher adsorption capacity of volatile organic compounds [43]. In turn, Zhang et al.
have printed filters capable of retaining heavy metals and experimentally proved that
infill patterns with a larger relative surface area per gram of printed material improve the
retention efficiency of heavy metals [44].

In the context of PLA/wood 3D printing materials, several authors have explored
different applications and behaviours of these composites. Le Duigou et al. have studied
the dynamic hygromorphic behaviour of PLA/wood composites printed using FDM,
focusing on a 4D printing application [41], since the material can evolve over time in
response to an external stimulus. Krapez Tomec et al. have investigated the application
of PLA/wood materials printed via FDM as 3D-printed shape-changing actuators [45].
Despite the promising applications of PLA/wood composites, there is a notable lack of
research on the relationship between printing parameters and the actuation properties
induced by natural-fibre composites, especially in the context of desiccant materials for air
dehumidification.

This study addresses a significant gap in the literature by systematically investigating
the primary water absorption mechanisms in PLA/wood composites with varying pine
wood content, focusing on how nozzle diameter, layer height, and extrusion temperature
influence porosity, surface roughness, and water vapor adsorption capacity. In contrast
to previous studies, which aimed to reduce the water absorption capacity of PLA/wood
composites through the use of coatings, heat treatments, or additives, the present work
explores how to enhance this capacity for use in dehumidification applications. This
approach turns what has traditionally been viewed as a limitation of the material into
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an advantage, offering a green and sustainable solution for the production of desiccant
systems. This provides critical insights for optimising eco-friendly desiccant materials in
air dehumidification systems.

2. Materials and Methods

In this work, various methods to improve water vapour adsorption in dehumidifica-
tion elements manufactured via MEX by manipulating printing parameters were explored.
First, three commercial PLA/wood filaments with different wood percentages were stud-
ied. For each material, water immersion tests were carried out to evaluate the relationship
between the amount of wood and its water sorption capacity. Once the material with the
highest water sorption was selected, an analysis was conducted on how several additive
manufacturing parameters influence porosity, roughness, and water vapour adsorption
capacity. Finally, three prototypes of water vapour adsorption systems were fabricated
using the printing parameter values that provided the highest adsorption capacity and
varying infill density. The infill density was used to generate air passage channels.

2.1. Material Evaluation
2.1.1. Absorption Tests

Three filaments composed of PLA/wood with different percentages of wood were
analysed in the present work. These percentages were chosen based on previous studies
indicating that they offer a balance between mechanical stability, ease of processing in
additive manufacturing technologies, and moisture adsorption capacity. Exceeding 25%
wood content in a filament often poses challenges, as it negatively affects both printability
and material strength, making it too fragile for functional applications [33]. The materials
were composed of 5 wt.% pine wood (S5), 15 wt.% pine wood (S15), and 25 wt.% pine
wood (S25); see Table 1.

Table 1. Density and percent of pine wood in composites of S5, S15, and S25.

Material Density (g/cm3)
Percent of Wood

(wt.%)
Percent of PLA

(wt.%)

S25 1.0119 25 75
S15 1.0952 15 85
S5 1.2012 5 95

The water sorption capacity was evaluated for the three materials following the ISO
62 standard [46]. For this analysis, three disc-shaped specimens of each material were
manufactured. The dimensions of the specimens were 3.2 mm thick and 50.8 mm in
diameter. An image with a specimen of each material is shown in Figure 2. The specimens
were manufactured with a Creality Ender 3 printer (Shenzhen Creality 3D Technology
Company, Shenzhen, China). The printing parameters used to obtain the specimens are
shown in Table 2.
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Table 2. Printing parameters used to manufacture the specimens for absorption test.

Parameter Value

Infill Pattern Line
Infill Density (%) 100

Printing Speed (mm/s) 50
Printing Acceleration (mm/s2) 500

Flow (%) 100
Build Plate Temperature (◦C) 50

The testing process began by drying the specimens at 50 ◦C for 24 h, and then the
dried specimens were weighed. The specimens were immersed in distilled water at 23 ◦C
for 24 h. During the first 3 h, the specimens were weighed every 30 min after removing the
surface water to measure the adsorbed water over time, and finally these were weighed
after 24 h. The water sorption capacity of each material was obtained with the percentage
of retained water, calculated with Equation (1).

∆m =
m f − mi

mi
·100 (1)

The diffusion (D), solubility (S), and permeability (PM) parameters were also obtained
for each experimental test. D is one of the main mechanisms of water absorption of polymer
composites with organic materials. This parameter was calculated according to Equation (2),
where b is the thickness of the specimen, θ is the initial slope of the plot of M(t) vs. t1/2,
and Mm is the maximum gained weight of the specimen. S is related to the mass gain of
water, as shown in Equation (3), where mw is the mass of water adsorbed at equilibrium
state and min is the initial mass of the material. PM is defined as the product of D and S;
see Equation (4).

D = π·
[

b·θ
4·Mm

]2
(2)

S =
mw

min
(3)

PM = D·S (4)

2.1.2. Fourier Transform Infrared Spectral Analysis (FTIR)

The infrared spectroscopy analysis of the different composites was recorded using
a FT-MIR spectrophotometer with a Bruke Tensor 27 microscope (Bruker Optik GmbH,
Ettlingen, Germany). The samples were formed in a potassium bromide matrix, and the
scanning range was between 400 cm−1 and 4000 cm−1 with a resolution of 4 cm−1.

2.2. Evaluation of Printing Parameters
2.2.1. Design of Experiments

Once the material was selected, the influence of the printing parameters on the poros-
ity and water vapour adsorption capacity was studied. A Taguchi L8-type Design of
Experiments (DOE) was carried out for this purpose. The input variables included in
the DOE were extrusion temperature, layer height, and nozzle diameter. These variables
were chosen based on information from the literature [47]. The extrusion temperature (T)
values were varied from 210 ◦C to 230 ◦C, the nozzle diameter (D) values from 0.4 mm to
1.0 mm, and the layer height (LH) values from 0.1 mm to 0.3 mm. The combinations of the
input variables used during the printing of the specimens are summarised in Table 3. The
remaining printing parameters were kept constant; see Table 4.
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Table 3. DOE (Taguchi L8) used in the work.

Specimen Extrusion
Temperature, T (◦C)

Nozzle Diameter, D
(mm)

Layer Height, LH
(mm)

E1 210.0 0.4 0.1
E2 230.0 0.4 0.1
E3 210.0 0.4 0.3
E4 230.0 0.4 0.3
E5 210.0 1.0 0.1
E6 230.0 1.0 0.1
E7 210.0 1.0 0.3
E8 230.0 1.0 0.3

Table 4. Constant printing parameters of the manufacturing process.

Parameter Value

Infill Pattern Triangle
Infill Density (%) 45

Printing Speed (mm/s) 50
Printing Acceleration (mm/s2) 500

Flow (%) 100
Build Plate Temperature (◦C) 50

In this analysis, the specimens were also designed and manufactured in the shape of a
disc, but an infill density of 45% was used to generate greater contact surface area between
the water vapour molecules and the material. The configuration of the printing process
was performed using CURA software v. 5.2.1 [48]. For each specimen, a G-code file was
generated, using the values indicated by DOE. As previously mentioned, a Creality Ender 3
printer was used. An image of the specimens manufactured according to the DOE is shown
in Figure 3. The experimental results allowed obtaining analysis of variance (ANOVA) of
porosity and water vapour adsorption capacity, determining the most influential input
variables on these response variables, as well as generating main effects diagrams. The
results of the DOE were processed in Minitab software v. 19.2 [49].
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2.2.2. Porosity

The porosity of each specimen was determined geometrically, assuming a cylindrical
geometry. From the bulk density (ρapp), and knowing the theoretical density (ρtheo) of
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the filament, the relative densities (ρrel) and total porosities (PTotal) of the specimens were
obtained using Equation (5) and Equation (6), respectively.

ρrel =
ρapp

ρtheo
(5)

PTotal = (1 − ρrel)·100 (6)

The total porosity values obtained included the values of closed porosity and open
porosity of different ranges or sizes, so it can be represented according to Equation (7).

PTotal = Pclosed + Pmicro−meso + Pmacro + Psupra macro (7)

where Pclosed is the closed porosity (obtained by helium pycnometry), Pmicro−meso corre-
sponds to micro and mesoporosity (pore size < 50 nm, determined by N2 adsorption–
desorption); Pmacro is the macroporous porosity (pores in the range from 50 nm to 100 µm
determined by Hg intrusion porosimetry); and Psupra macro corresponds to porosity higher
than 100 µm.

2.2.3. Water Vapour Adsorption

Moisture dehumidification systems are not immersed in water but work under moist
air conditions. Therefore, experimental tests to evaluate the water vapour adsorption
capacity under a saturated humid environment (relative humidity of 100%) were carried
out. First, the specimens were placed in an oven at 50 ± 3 ◦C for 24 h, cooled in a desiccator,
and immediately weighed on a balance (accuracy of 0.001 g). Subsequently, they were
placed for 24 h in a closed chamber with a relative humidity equal to 100%. After 24 h,
the surface water was removed from the specimens with a dry cloth, and they were
weighed again on the balance. The amount of moisture adsorbed by the specimens was
also calculated with Equation (1).

2.3. Surface Analysis

Surface quality is assessed using the surface area roughness parameter Sa (arithmetical
mean height), as defined by ISO 25178 [50], in order to verify the relationship between water
vapour adsorption and surface roughness. This parameter represents the arithmetic mean
of the absolute height values relative to the surface’s mean plane. Commonly, the average
arithmetic deviation Ra is used to characterise the surface texture along a section of the
machined part. Among various roughness parameters, Ra is valued for providing extensive
information about the future operational performance of the surface it characterises. When
evaluating the roughness of a particular surface, the Sa parameter holds similar significance
and relevance to the Ra parameter used for surface profile roughness in sectional analysis.
Two specimens were manufactured with printing parameters that allowed the highest
and lowest water vapour adsorption capacity, the EA and EB samples, respectively, with
dimensions of 39 × 39 × 2 mm, as shown in Figure 4. Roughness and primary surface were
measured by means of a LEICA model DCM8 confocal microscope and scanning electron
microscopy (SEM).

Additionally, the relationship of the printing parameters on the moisture adsorption
capacity was evaluated using water vapour adsorption–desorption isotherms to find the
amount of moisture adsorbed by each material under different relative pressures. These
tests were carried out at 298 K. A Micromeritics 3Flex Surface Characterization system
(Micromeritics, Lincoln, UK) was used to obtain these sorption isotherms.
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2.4. Evaluation of Infill Density on Moisture Removal Capacity

Three prototypes of water vapour adsorption systems were manufactured using the
printing parameters that, according to the adsorption tests in the previous stage, provided
the highest adsorption capacity. Each prototype was developed by varying the infill
density value: 30%, 45%, 60%; see Figure 5. The infill density was used to generate air
passage channels. The objective of this analysis was to evaluate how the infill density,
and thus the size of the channels, influences the adsorption performance when a humid
air flow circulates over its surface. The three prototypes had external dimensions of
50 × 50 × 150 mm (height × width × length).
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The three manufactured water vapour adsorption systems were tested in an air han-
dling laboratory (Figure 6). The technical characteristics of the experimental setup were
shown in previous work [35]. This experimental setup was designed to generate different
values of temperature, humidity, and air flow rate. Several sensors of dry bulb temperature
and dew point temperature were located at the inlet and outlet of the prototypes. In this
study, dynamic experimental tests were carried out, setting the inlet air conditions at a dry
bulb temperature of 32 ◦C, an air humidity ratio of 15 g/kg, and an air flow rate of 40 m3/h.
For each experimental test, the moisture adsorption capacity was determined according to
Equation (8), where ωi and ωo are inlet and outlet air humidity ratio values, respectively.

∆ω = ωi − ωo (8)
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3. Results
3.1. Water Absorption Capacity and Chemical Composition of PLA/Wood Composites

The water adsorption for the three selected materials composed of PLA and wood
was analysed. The results of the absorption capacity tests are shown in Figure 7. The S25
material was the one that reached the highest ∆m, up to a value of 3.2% at 24 h. The S25
curve also showed that the absorption capacity was faster. However, the material with the
lowest ∆m values was S5, with a maximum value of 1.5% at 24 h. This suggests that the
greater the amount of wood contained in the composite, the greater the absorption capacity.
These results are in agreement with those obtained by other authors in previous work [25].
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The water absorption results allowed the diffusion coefficient (D), thermodynamic
solubility (S), and permeability (PM) to be obtained for each material. The results of
D, S, and PM for the three materials are shown in Table 5. These results showed that
water molecules diffuse more easily in filaments with higher pine wood content (S25),
that is, the diffusion process was faster. In addition, S25 was the material that had the
highest values of solubility and permeability to water. The main factors affecting the water
absorption of wood composites were the following: fibre volume fraction, fibre orientation,
exposed surface area and temperature. PLA has less affinity for water than wood, so the
amount of wood was mainly responsible for absorbable water [28]. Therefore, based on the
results obtained, the S25 material was selected to evaluate the printing parameters, as it
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exhibited the highest values of water absorption capacity, diffusion coefficient, solubility,
and permeability.

Table 5. Results of diffusion coefficient, solubility, and permeability for the three materials.

Material D (m2/s) S (kg/kg) PM (m2/s)

S25 3.70 × 10−7 0.031 1.15 × 10−8

S15 3.182 × 10−7 0.024 7.67 × 10−9

S5 2.512 × 10−7 0.014 3.57 × 10−9

The FTIR spectra of pure PLA and PLA/wood composites (S5, S15, S25) are shown
in Figure 8. The distinct absorption bands characteristic of their respective chemical
compositions can be appreciated. In the region between 3000 cm−1 and 3600 cm−1, a broad
absorption band is observed, corresponding to O–H stretching vibrations. This band is
associated with hydroxyl groups from water and cellulose. As the wood content increases
in the samples (S5, S15, and S25), the intensity of this band grows, reflecting the increasing
presence of lignocellulosic materials, particularly cellulose and water adsorbed onto the
wood fibres.
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Around 2800 cm−1–3100 cm−1, the C–H stretching bands characteristic of alkanes are
present in all samples. This band is associated with both PLA and the cellulose/hemicellulose
components of wood. The increased intensity in the wood composites can be attributed
to the contribution of lignocellulosic components, as confirmed by previous studies [51].
These C–H stretches are particularly relevant for identifying the polysaccharide structure
of the wood.

In the region between 1700 and 1800 cm−1, a strong absorption band is observed for
all samples, which corresponds to the C=O stretching vibrations of ester groups in PLA.
This peak, however, decreases in intensity as the wood content increases, likely due to the
dilution of PLA by wood particles. This region is also associated with carbonyl groups
from hemicellulose and lignin, which may further contribute to the spectral features of the
composite samples.

At approximately 1600–1610 cm−1, a minor absorption peak is present in the wood-
containing samples, corresponding to O–H hydroxyl and C=O stretching vibrations. This
peak is characteristic of lignin and water, as seen in the S15 and S25 spectra. The absence
of significant intensity in the PLA sample supports the hypothesis that these signals arise
from the wood components.
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The region between 1455 and 1370 cm−1 shows increased absorption in the wood
composites, which can be attributed to C–H bending vibrations associated with cellulose,
hemicellulose, and lignin. The intensity of these bands correlates with the wood content,
particularly in the S15 and S25 samples, confirming the presence of polysaccharides within
the composites. These bands are not as prominent in the PLA spectrum, indicating the
absence of such lignocellulosic material.

Significant absorption is observed between 1250 and 1150 cm−1, which corresponds
to C–O–C stretching vibrations. This region is characteristic of lignin and hemicellulose
and shows a clear increase in intensity as the wood content rises. While PLA also exhibits
C–O–C stretching due to its polyester structure, the increased intensity in this region in S15
and S25 indicates the additional contribution from wood components.

Lastly, the absorption peak around 1030 cm−1 is notably more intense in the wood
composites, particularly in S15 and S25, and is associated with C–O stretching vibrations of
lignin. The PLA sample shows a much weaker absorption in this region, highlighting the
distinct contribution of the lignocellulosic matrix in the wood composites. These results
validate the composition of the material used in the water adsorption tests.

3.2. Analysis of the Influence of Printing Parameters

The relationship between porosity and water vapour adsorption capacity for different
manufacturing parameters was analysed for the S25 material.

3.2.1. Analysis of Porosity

The total porosity values obtained for each specimen are shown in Table 6. The
specimens with the highest porosity were E1, E3, and E4, while E5 and E6 were the
specimens with the lowest porosity. The main effects plot for porosity is shown in Figure 9.
There was a tendency to generate higher porosity with smaller nozzle diameter in the
studied range of 0.4 mm to 1 mm. Increasing the layer height from 0.1 mm to 0.3 mm,
higher porosity was also observed, while the temperature had a minor effect on porosity,
although a slight tendency for porosity to decrease with increasing temperature could
be seen.

Table 6. Total porosity calculated for each specimen, in percentage.

Specimen mi (g) V (cm3) ρapp (g/cm3) ρrel (g/cm3) PT (%)

E1 2.69 5.87 0.46 0.42 57.93
E2 2.76 5.92 0.47 0.43 57.26
E3 2.06 5.82 0.35 0.32 67.51
E4 2.52 5.93 0.42 0.39 61.04
E5 4.56 6.17 0.74 0.68 32.17
E6 4.76 6.08 0.78 0.72 28.19
E7 3.91 6.36 0.62 0.56 43.57
E8 3.77 5.99 0.63 0.58 42.27

These results have allowed an analysis of variance (ANOVA) to be carried out (Table 7).
The diameter of the nozzle was the most influential parameter (p-value = 0.001). The
porosity was also influenced by the layer height (p-value = 0.007), although to a minor
degree (Figure 8). Temperature had no significant influence on adsorption capacity. These
results indicated that the lowest porosity obtained in the manufacturing process is for the
largest nozzle diameter (1.0 mm) and the smallest layer height (0.1 mm), while the smallest
nozzle diameter (0.4 mm) and the largest layer height (0.3 mm) generated the highest
porosity in the manufacturing process with MEX AM in the range studied. The relation of
porosity and nozzle diameter and layer height were consistent with those obtained with
Fischer et al. [47].
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Table 7. Analysis of variance (ANOVA) of T, D, and LH for porosity.

Source DOF Seq SS Contribution Adj SS Adj MS F p-Value

T 1 19.31 1.35 19.31 19.31 2.67 0.178
D 1 1189.35 83.40 1189.35 1189.35 164.28 0.000

LH 1 188.54 13.22 188.54 188.54 26.04 0.007
Error 4 28.96 2.03 28.96 7.24
Total 7 1426.16 100.00

3.2.2. Evaluation of Adsorption Capacity

The percentages of water vapour adsorption by each of the printed specimens during
the test carried out in a saturated humid environment are shown in Table 8. The specimens
E1, E3, and E4 adsorbed the greatest amount of water vapour, while E5 and E6 adsorbed the
least amount. From these values, the main effects plot is shown in Figure 10. A tendency to
adsorb more water vapour was observed with smaller nozzle diameter in the studied range
of 0.4 mm to 1 mm. An increase in water vapor adsorption was also observed as the layer
height increased from 0.1 mm to 0.3 mm. Temperature variation showed no significant
trend in water vapour adsorption.

Table 8. Water vapour adsorbed by the specimens.

Specimen ∆m (%)

E1 31.97
E2 26.45
E3 31.71
E4 32.53
E5 12.58
E6 14.47
E7 21.13
E8 20.64
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A statistical analysis using ANOVA was conducted to determine the significance
of the observed differences in water adsorption capacity with respect to process param-
eters such as nozzle diameter and layer height (Table 9). The p-values obtained from
the variance analysis were included to validate the influence of printing parameters on
moisture adsorption capacity. A p-value below 0.05 was considered statistically significant.
Printing parameters that had the most influence on the adsorption capacity of specimens
when they were introduced in a saturated humid environment were the nozzle diameter
(p-value = 0.002) and the layer height (p-value = 0.047). Therefore, these results indicated
that the lowest water vapour adsorption capacity obtained in the manufacturing process
was for the largest nozzle diameter (1.0 mm) and the smallest layer height (0.1 mm), while
for the smallest nozzle diameter (0.4 mm) and the largest layer height (0.3 mm), the highest
water vapour adsorption capacity was achieved in the manufacturing process with MEX
AM in the range studied.

Table 9. Analysis of variance (ANOVA) of T, D, and LH for adsorption capacity.

Source DOF Seq SS Contribution Adj SS Adj MS F p-Value

T 1 1.361 0.31 1.361 1.361 0.21 0.671
D 1 362.343 81.89 362.343 362.343 55.71 0.002

LH 1 52.736 11.92 52.736 52.736 8.11 0.047
Error 4 26.017 5.88 26.017 6.504
Total 4 442.458 100.00

The relationship between porosity and adsorption capacity is shown in Figure 11.
The relationship between both variables follows a linear trend, so that the higher the
porosity, the higher the water vapour adsorption. The correlation obtained has an R2 value
of 0.9284. The adsorption capacity of each specimen is clearly correlated to its porosity
(Figure 11). The desiccant elements with higher porosity were those with higher adsorption
capacity, that is, E1, E3, and E4 were the specimens with the highest values of porosity and
consequently adsorption capacity. The porosity of the printed samples was determined
using geometric methods and evaluated based on printing parameters (nozzle diameter,
layer height, extrusion temperature). A direct relationship was observed between increased
porosity and both larger layer heights and smaller nozzle diameters. This increase in
porosity significantly contributed to the enhancement of water adsorption capacity, as
higher porosity provides a greater surface area for interaction with water molecules. These
results are consistent with findings from other authors [41,42], who have demonstrated that
optimising printing parameters can increase the porosity of printed materials to enhance
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their functional capacity. Optimising porosity and these parameters is key for applications
requiring high-performance moisture adsorption [52].
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3.3. Analysis of Roughness and Primary Surface

The surfaces of the specimens with the printing parameters that allowed the highest
and lowest water vapour adsorption capacity were analysed. The manufacturing parame-
ters with the highest adsorption capacity were D = 0.4 mm, LH = 0.3 mm, and T = 210 ◦C
(EA sample), and those with the least were D = 1.0 mm, LH = 0.1 mm, and T = 230 ◦C (EB
sample). Images of both samples, made with a scanning electron microscope (SEM), are
shown in Figure 12. It can be observed that a greater concentration of holes and deformities
was obtained in the EA sample compared to the EB sample. The diameter of the filament
generated in the EA sample was also much larger than that of the EB sample, because the
layer height was higher in EA than in EB.
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Profiles of the primary surface and roughness of these two specimens were obtained
with a confocal microscope; see Figure 13. Significant differences are seen in the surface of
the EA sample with respect to that of EB. The EA sample exhibited more pronounced peaks
and valleys, showing a rougher texture. The configuration of the EA sample contributed to
this roughness, as each deposited layer was thicker. In contrast, the EB sample exhibited a
smoother texture with less pronounced height variations, largely influenced by the smaller
layer height. The results of roughness (Ra) and primary surface (Sa) are also shown in
Table 10. The values of Ra and Sa for the EA sample were 40% and 35% higher, respectively,
compared to the EB sample, indicating a higher surface roughness of sample EA. Previous
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work has also shown that manufacturing parameters modify the roughness and primary
surface [53,54].
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Table 10. Surface roughness parameters for each specimen.

Parameters EA EB

Primary surface Sa [µm] 16.45 12.20
Rugosity Ra [µm] 11.28 8.05

Adsorption–desorption isotherms were carried out for samples EA and EB, as shown
in Figure 14. The trends of the adsorption–desorption curves were similar for both printing
parameter settings, with a visible hysteresis occurring. This suggests that strong bonds
were formed between the material and the water molecules. The maximum adsorption
values for EA and EB were 1.2 mmol/g and 0.9 mmol/g, respectively, at a relative pressure
of 0.9. Therefore, the SA sample, with its greater roughness and primary surface area,
adsorbed 25% more water than the SB sample.
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3.4. Impact of Infill Density in Capacity of Adsorption

Three prototypes of a desiccant system with different infill density (30%, 45% and
60%) were printed and experimentally tested in an air conditioning laboratory to analyse
their water vapour adsorption capacity. The infill density was used to generate air passage
channels. A humid air flow of 40 m3/h was circulated through the prototypes. The inlet
air temperature and inlet air humidity ratio were 35 ◦C and 15 g/kg, respectively. The
results of the difference in humidity ratio (∆ω) between the inlet and outlet airflow for the



Polymers 2024, 16, 2934 16 of 20

three prototypes are shown in Figure 15. It can be observed than the desiccant prototype
with the infill density of 60%, i.e., with the smallest channel size, had the highest moisture
adsorption capacity over time. Following this was the prototype with the infill density of
45%, and finally, the prototype with a filling density of 30%, i.e., with the largest channel
size, had the least moisture adsorption capacity. Therefore, the mass transfer from air to
the desiccant material was greater when the size of the channels was smaller, increasing
the moisture adsorption capacity.
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The maximum ∆ω values were reached at the beginning of the dehumidification
process, 3.7 g/kg, 3 g/kg, and 1 g/kg for the prototypes with filling densites of 60%, 45%,
and 30%, respectively, as shown in Figure 15, due to the water vapour pressure difference
between the humid air flow and the dry material. The increase in moisture adsorption
when raising the infill density from 30% to 45% was noticeable. However, from 45% to
60%, the increase was much smaller. Therefore, an infill density between 45% and 60% may
be optimal for improved water vapour adsorption. These ∆ω values decreased over time
as the material retained moisture, and therefore, the difference in water vapour between
the air and the material was reduced. All prototypes were saturated with moisture after
2.5 min, as shown in Figure 15, so ∆ω was close to 0 g/kg. These trends agreed with those
obtained in previous works on desiccant dehumidification systems [35]. These results show
the importance of adjusting the fill density to increase the desiccant capacity of the system.

PLA/wood composites exhibited lower moisture adsorption capacity compared to
traditional desiccant materials such as silica gel [55]. However, they offer significant
advantages, including lower production costs and the ability to be fabricated via 3D
printing, providing greater flexibility in design and application [4]. Furthermore, these
materials are biodegradable, which aligns with the current trend towards more sustainable
materials in the industry [22]. Comparatively, PLA/wood composites demonstrate similar
adsorption capacities to other eco-friendly desiccant materials made from polymers and
agricultural waste. For example, Robledo-Ortiz et al. [56] showed that polyethylene/agave
composites achieved water adsorption of 11.7% to 20%. These findings indicate that
PLA/wood composites are competitive with other bio-based materials, offering the added
advantage of customisable 3D printing capabilities.

4. Conclusions

This study explored the potential of using PLA/wood composites to produce desiccant
elements for air dehumidification via extrusion-based additive manufacturing. The research
focused on evaluating the influence of printing parameters on water vapour adsorption
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and understanding the primary mechanisms of water absorption for materials with varying
pine wood content. The main conclusions of this experimental work were:

• The investigation into the water absorption capacity of PLA/wood composites con-
firmed a direct correlation with pine wood content. The material with the highest
wood content (S25) showed superior performance in water absorption, diffusion co-
efficient, solubility, and permeability compared to those with lower wood content
(S15, S5). Thus, S25 was identified as optimal for further analysis of printing parame-
ters, validating the hypothesis that higher wood content significantly enhances water
absorption capacity, making it more effective for moisture management applications.

• Analysis of printing parameters revealed the importance of nozzle diameter and layer
height in influencing water vapor adsorption. A smaller nozzle diameter and larger
layer height increased porosity and surface roughness, leading to higher water vapor
adsorption. On the other hand, extrusion temperature had minimal impact within the
studied range.

• The impact of infill density on water vapor adsorption was evident, with higher
densities resulting in greater adsorption. Although the 60% infill density yielded
the best results, the 45% density achieved similar outcomes. This finding has both
technological and economic significance, as the use of lower densities is associated
with reduced printing times and material savings.

These findings provide valuable insights into how material composition and print-
ing parameters affect the performance of PLA/wood composites in moisture adsorption
applications. While this study focused on optimising the printing parameters to enhance
moisture adsorption capacity, the biodegradability of the PLA/wood composite material is
a crucial characteristic for sustainable applications. The evaluation of the longevity and
biodegradability of both the filament and the printed parts will be addressed in future
studies, providing a more complete perspective on their environmental impact. Addition-
ally, these insights could be utilised to manufacture efficient desiccant dehumidification
systems, such as desiccant wheels, and to study how temperature and humidity of the air
influence their adsorption capacity.
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