
Citation: Polanowski, P.; Sikorski, A.

The Kinetics of Polymer Brush

Growth in the Frame of the Reaction

Diffusion Front Formalism. Polymers

2024, 16, 2963. https://doi.org/

10.3390/polym16212963

Academic Editor: Costas H. Vlahos

Received: 27 September 2024

Revised: 18 October 2024

Accepted: 20 October 2024

Published: 23 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

The Kinetics of Polymer Brush Growth in the Frame of the
Reaction Diffusion Front Formalism
Piotr Polanowski 1 and Andrzej Sikorski 2,*

1 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
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Abstract: We studied the properties of a reaction front that forms in irreversible reaction–diffusion
systems with concentration-dependent diffusivities during the synthesis of polymer brushes. A
coarse-grained model of the polymerization process during the formation of polymer brushes was
designed and investigated for this purpose. In this model, a certain amount of initiator was placed
on an impenetrable surface, and the “grafted from” procedure of polymerization was carried out.
The system consisted of monomer molecules and growing chains. The obtained brush consisted of
linear chains embedded in nodes of a face-centered cubic lattice with excluded volume interactions
only. The simulations were carried out for high rafting densities of 0.1, 0.3, and 0.6 and for reaction
probabilities of 0.02, 0.002, and 0.0002. Simulations were performed by means of the Monte Carlo
method while employing the Dynamic Lattice Liquid model. Some universal behavior was found,
i.e., irrespective of reaction rate and grafting density, the width of the reaction front as well as the
height of the front show for long times the same scaling with respect to time. During the formation of
the polymer layer despite the observed difference in dispersion of chain lengths for different grafting
densities and reaction rates at a given layer height, the quality of the polymer layer does not seem to
depend on these parameters.

Keywords: dynamic lattice liquid model; Monte Carlo method; polymer brushes; polymerization;
reaction–diffusion front

1. Introduction

Polymer brushes are formed of polymer chains terminally attached to a surface. They
have been a subject of numerous studies because of their practical importance for catalysis,
drug delivery, optoelectronics, nanolithography, lubrication, and others [1–4]. Polymer
brushes can be synthetized using two techniques: by tethering the chains that were already
polymerized (“grafting to”) and by growing chains from initiators anchored on the surface
(“grafting from”) [5–10]. The properties of polymer brushes were also determined using
theoretical considerations [11–20] and computer simulations [11,21–40]. Recent simulation
studies based on the Dynamic Lattice Liquid (DLL) model concerned the polymerization
process and the dynamics of dense opposite brushes [41,42]. It was shown that there is a
strong correlation between the dynamics of solvent and the local structure of the brush.
The kinetics of the polymer brushes’ growth can also be regarded as a modified reaction
diffusion front problem. The reaction diffusion front problem is usually formulated as
follows [43–47]: Initially, an impenetrable barrier separates two kinds of species denoted
as A and B. After the barrier is removed at time t = 0, reactants A and B start to form a
reaction front. The reactant species mix before they react if their mobility is high enough in
comparison with their reactivity. This leads to various kinetic regimes between the initial
behavior and an asymptotic long-time behavior. In order to describe an irreversible reaction–
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diffusion process (A + B → 2C), where C is an inert product, the following mean-field-type
equations for the concentration profiles ρA(x,t) and ρB(x,t) were used [48]:

∂ρA
∂t

= DA
∂2ρA
∂x2 − kρAρB (1a)

∂ρB
∂t

= DB
∂2ρB

∂x2 − kρAρB (1b)

where DA and DB are the diffusion coefficients of both species, while k is the microscopic
reaction rate constant. Equation (1a,b) must satisfy the initial separation condition along
the separation axis x:

ρA(x, 0) = a0Θ(x) (2a)

ρAB(x, 0) = b0[1 − Θ(x)] (2b)

where a0 and b0 are the initial concentrations of species A and B, and θ(x) is the Heaviside
step function. The problem formulated in Equation (1a,b) was investigated in a real experi-
ment [49–51], in theoretical considerations [48,52–67], and in computer simulations [68–75].
In the above considerations, it was assumed that diffusion is the only transport mechanism
of molecular transport and that the diffusion coefficients were constant for all species
regardless of the spatial location and concentrations of the reactants and products. This
means that it was assumed that the correlation of movement between the A, B (reactants),
and C (product) species was neglected. Such treatment can be considered as appropriate
only in three cases: if the time range is short enough when compared to the inverse of the
reaction rate (i), if the concentrations of species A and B are low enough, i.e., the correlation
between the movements of the reactants and product is very weak (ii), and when the
mobilities of all molecules are the same (iii). These conditions, however, are satisfied only
in some exceptional systems, while in general, the mobilities of species are different and the
correlation between their movements cannot be neglected in dense systems, especially for
high concentrations of reactants. A correlation in motion of all species results in a variation
in their diffusion coefficients within the reaction zone, which changes the kinetic behavior
formulated in Equation (1a,b). In order to study more general cases, the problem has to be
reformulated [76]. A correlation in the motions of species A, B, and C and the presence of
an inert solvent, M, require the following extension of Equation (1a,b):

∂ρA
∂t = ∂

∂x

(
DA(x, t) ∂ρA(x,t)

∂x

)
− kρA(x, t)ρB(x, t)

∂ρB
∂t = ∂

∂x

(
DB(x, t) ∂ρB(x,t)

∂x

)
− kρA(x, t)ρB(x, t)

∂ρc
∂t = ∂

∂x

(
Dc(x, t) ∂ρc(x,t)

∂x

)
+ kρA(x, t)ρB(x, t)

(3)

where ρA(x,t), ρB(x,t), and ρC(x,t) are the local concentrations of reactants A and B, and
products C, DA(x,t), DB(x,t), and DC(x,t) are the local diffusion coefficients. In the case of the
polymerization process of a polymer brush composed of linear chains, two reactions occur:

(i) The chain initiation reaction

I + M → RI − End (4)

(ii) The chain propagation reaction

End + M → . . ..RM + End (5)

where I describes the initiator molecule, M is the monomer molecule from which the chain
is built, RI is the reacted initiator, and End is the active end of the chain. In the reaction
described in Equation (5), a new RM element is formed, which corresponds to the reacted
monomer forming the polymer chain. It is obvious that in the case of the growth of polymer
brushes grafted onto a surface, the reaction front will be formed by reacting chain ends
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and unreacted monomer molecules, while the product will be the elements of the chain.
Thus, the propagating reaction front (active ends of chains) consumes reactants and leaves
products behind (between the front and the surface).

In this paper, a coarse-grained model of brush synthesis was designed and studied.
Due to complex architecture resulting from the large size and high density of polymer
chains, these systems were studied by means of a lattice model. Fully flexible chains were
immersed in a good solvent (monomer), and solvent molecules were explicitly included
in the model. The process of polymerization was studied using the Monte Carlo method
by means of the DLL model [77,78]. The “grafting from” approach was chosen, and thus,
polymerization started from the initiator anchored to the surface, and all chains grew (the
“grafting to” procedure does not enable the study of the polymerization process in dense
brushes). Determining the influence of the reaction probabilities and the grafting density
on the dynamic behavior of the reaction–diffusion front was the main goal of this study.

2. The Model and the Simulation Method

Model chains were coarse-grained, and therefore, the macromolecule consisted of
a linear sequence of beads. The positions of these beads and the beads representing the
monomer molecules were restricted to the nodes of the face-centered cubic lattice (fcc).
The simulation box consisted of 100 × 100 × 100 lattice sites. The layers x = 1 and 2 were
immobilized and represented a hard flat surface. Positions of the initiator in these layers
were selected at random, and the first polymer segment was thus usually located in the layer
x = 3. At the beginning of each simulation run, the entire system was filled with monomer
molecules. Periodic boundary conditions were used in all directions, so immobilized layers
x = 1 and 2 acted as a reflecting surface in the x-direction. Monomers were attached to the
initiator and then to the active ends of the chain, as described in Equations (4) and (5). The
pseudo-bonds between the chain beads were fcc lattice vectors. Attachment of monomer
occurred with specific probability of 0.02, 0.002, and 0.0002. The monomer is a good solvent
for the polymer formed from it; therefore, it was assumed that the components of the
system (monomer molecules and polymer beads) do not interact (athermal system). The
dynamics of the system was realized using the DLL model. This model was described
in detail elsewhere [79,80], and here, we include only a brief presentation in order to
point out its main features. In one Monte Carlo step, a field of unit vectors representing
motion attempts is randomly generated and assigned to all objects in the system. Only
those attempts are successful, which coincide in such a way that the sum of displacements
along a closed path (a cooperative loop) is equal to zero (the condition of continuity). In
such a loop, each object is moved to a neighboring lattice site along this loop, while all
objects that did not contribute to these loops stay in their previous positions (Figure 1a).
Polymer beads can also participate in cooperative movement loops, provided that the bond
in the chain is not broken during displacement. Polymer bonds are also impenetrable
to liquid molecules. For longer times, this kind of dynamics leads to displacements of
individual objects along random walk trajectories. The most important advantage of this
method is that it naturally takes into account the heterogeneity of the system and introduces
changes in the local mobility of the system components and steric hindrances resulting from
the polymerization [81]. The DLL model suits conditions required for simulation of the
polymer brush’s reaction front formation very well [76] due to both a good agreement with
fundamental dynamical properties of liquids and a simple way of controlling mobilities
of different constituents [82,83]. Moreover, this algorithm has already been successfully
used several times in the study of double polymer brushes [41,42], polymer brushes grafted
onto surfaces of different geometries [34,84,85], and copolymer branched brushes [86]. The
scheme in Figure 1b shows the process of building chains using the DLL algorithm.
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Figure 1. Panel (a): An example of a vector field representing attempts to move molecules towards 
neighboring lattice sites in the DLL model. The colored group of beads correspond to the following 
cases: a pair of beads trying to exchange places in the lattice (unsuccessful attempt, yellow), the 
attempt to move taking place from a point to which no other bead can achieve (unsuccessful attempt, 
violet), beads that do not properly form a cooperative loop (unsuccessful attempt, red), and each 
element exchanging its location with its neighbor (successful attempt, green). Panel (b): A cross-
section in two dimensions of the process of creating brushes within the frame of the DLL method. 
In red are the active ends of the chains, in green is the unreacted monomer, and in white are the 
polymer chains. The arrows indicate attempts at achieving cooperative DLL movement. 

The polymerization process was monitored by the following commonly used quan-
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Figure 1. Panel (a): An example of a vector field representing attempts to move molecules towards
neighboring lattice sites in the DLL model. The colored group of beads correspond to the following
cases: a pair of beads trying to exchange places in the lattice (unsuccessful attempt, yellow), the
attempt to move taking place from a point to which no other bead can achieve (unsuccessful attempt,
violet), beads that do not properly form a cooperative loop (unsuccessful attempt, red), and each
element exchanging its location with its neighbor (successful attempt, green). Panel (b): A cross-
section in two dimensions of the process of creating brushes within the frame of the DLL method. In
red are the active ends of the chains, in green is the unreacted monomer, and in white are the polymer
chains. The arrows indicate attempts at achieving cooperative DLL movement.

The polymerization process was monitored by the following commonly used
quantities:

(i) The averaged degree of polymerization
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DPn =
∑i ni pi

∑i pi
(6)

where ni corresponds to the given chain length and pi describes the fraction of chains with
the length ni.

(ii) The weight-averaged degree of polymerization defined asn

DPw =
∑i n2

i pi

∑i ni pi
(7)

(iii) The distribution of the chain length is characterized by the dispersity D that is defined
as the ratio DPw

DPn
.

(iv) The parameter that describes the structure of the entire brush is the mean brush
thickness <x>, defined as [87]

⟨x⟩ = ∑xmax
x=1 p(x)x

∑xmax
x=1 p(x)

(8)

where p(x) is the polymer density along the direction normal to the grafting surface, and
xmax is the maximum distance of the polymer bead form the surface. In order to describe
the dynamic behavior of the reaction–diffusion front during brush polymerization, the
following parameters are considered: the local production rate R(x,t), the width of the front
w(t), and the height of the front R(xf,t). The local production rate that results in the growth
of polymer chains in the reaction described in Equation (5) can be described as

R(x, t) = k · ρEnd(x, t) · ρM(x, t) (9)

where ρEnd(x,t) corresponds to a local density of active chain ends and ρM(x,t) is a local
density of monomers, and k is the reaction rate coefficient. In this work, we use a reaction
probability p instead of reaction rate based on our previous study [76]. The R(x,t) function
describes the local kinetics, but it is a basis of the dynamic behavior of the entire system.
The spatial integration over R(x,t) leads to the following:

R(t) = ∑x R(x, t) (10)

R(x,t) is called the global production rate, which describes the reaction rate at the
macroscopic level. The position of the center of the reaction front xf(t) is defined as a
position where the R(x,t) function reaches its maximum. The width of the front w(t) is
described by the following equation:

w2(t) =
∑x

(
x − x f (t)

)2
R(x, t)

∑x R(x, t)
(11)

And the height of the front (local rate at xf − R(xf,t)) is the last important quantity
describing the diffusion reaction front.

3. Results and Discussion

The grafting density, GD, was defined as the ratio of the sites occupied by the initiator
on the plane to the area of that plane (100 × 100). Simulations during which brush growth
was observed were performed for GD = 0.1, 0.3, and 0.6. The polymerization reaction,
i.e., the attachment of a monomer to a growing chain, can take place if the end of the
chain and the monomer in question occupy adjacent positions on the lattice but with a
certain assumed probability. Simulations were carried out for the following probabilities of
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polymerization: p = 0.02, 0.002, and 0.0002. A scheme of a reaction front in a growing brush
is presented in Figure 2.
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Figure 2. A scheme of the reaction front in a brush growing from the surface (blue). The red circles
mark active chain ends, the yellow circles mark unreacted monomer molecules, and the green line
shows approximately the middle of the reaction front.

3.1. The Properties of the Obtained Brushes

First, the changes in the monomer conversion rate with time (the number of Monte
Carlo steps) were investigated for several grafting densities and several probabilities of
polymerization reaction occurrence. Figure 3 shows monomer conversion as a function of
time for some grafting densities and reaction probabilities.
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Figure 3. Monomer conversion for various grafting densities and the probability of chain propagation
as a function of time. The values of GD and p are given in the inset.

One can observe that all curves are similar in the early stages of synthesis. Later on,
monomer conversion becomes slower, especially for high grafting densities and higher
reaction probabilities. As expected, the rate of monomer conversion is the highest for the
highest reaction probabilities and the highest grafting densities due to the number of active
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chain ends (the higher the grafting density, the more active chain ends present). Due to the
observed differences in monomer conversion, two types of characteristics regarding chain
mass and dispersion may be useful in studying the brush growth process: against time and
against the degree of monomer conversion. Figure 4 shows the changes in both degrees of
polymerization, Pn and Pw, as well as in Pw/Pn, which can be treated as a measure of chain
dispersion as a function of time (dispersity).
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Figure 4. The averaged degree of polymerization Pn (a), the weight-averaged degree of polymeriza-
tion Pw (b), and dispersity (c) as a function of time. The values of GD and p are given in the inset.

In Figure 4, it can be observed, as expected, that the average mass of the chain Pn grows
the fastest in the case of the smallest grafting density, which is obvious, and it depends
on the reaction rate (for high reaction rates, it increases). It is possible to distinguish three
phases in the process of brush synthesis: the first one in which the growth is slow, the
second one, which has fast growth, and the third one in which the polymer mass reaches a
plateau, which is connected with geometrical limitations of the system. The brush does
not grow because it has reached the maximum height (it should be noted here that the
brush does not grow despite the fact that the whole monomer has not been exhausted
because the ends of chains do not have access to it as it is located in lower layers and ends
cannot react with it). It is worth noting that the dispersion is considerably lower with
decreasing grafting density and reaction rate, indicating that the resulting polymer layer
is more homogeneous. It is important to note that the situation we are considering takes
place during brush growth, i.e., during a non-equilibrium process.

The changes in the parameters discussed above, i.e., Pn, Pw, and Pw/Pn, can also be
studied depending on the degree of monomer over-reactivity.

Figure 5 shows Pn, Pw, and dispersity as a function of monomer conversion. It can be
seen that for a given grafting density, irrespective of the reaction rate, the average mass of
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the chains increases in the same way as the monomer reactivity increases. The maximum
molecular weight (the chain length) after the polymerization process is completed decreases
with the grafting density: the number of chains is higher, while the amount of the monomer
available in the system remains the same. The dispersity is considerably higher for higher
grafting densities and for a low reaction probability. For higher values of the reaction
probability and low grafting densities, the differences in dispersity remains small during
almost the entire polymerization process.
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Figure 5. The average degree of polymerization Pn (a,d), the weight-averaged degree of polymeriza-
tion Pw (b,e), and dispersity (c,f) as a function of monomer conversion. The values of GD and p are
given in the inset. The semi-log plot is on the left, and the linear plot is on the right.

The above results can be confirmed by the behavior of the brush height <h> with
time. Figure 6a shows the changes in the mean brush height as a function of time in the
considered range of grafting density and the chain propagation probability. The growth rate
of the brush height decreases with a decreasing reaction rate; however, changes in height
over time show a certain universality, i.e., the mean value of the brush height approximately
shows a similar variation in time <h>~t.

A good measure of polymer layer homogeneity is the deviation from the mean value
of the brush height:

∆h =

√√√√ ⟨h2⟩ − ⟨h⟩2

⟨h⟩2 (12)

Figure 6b presents the deviation ∆h as a function of the brush height. The average
deviation ∆h can be taken as a measure of the quality of the polymer layers: a small value
of ∆h means that the layer (the brush) is less rough. One can see that regardless of the
grafting density and the reaction probability, the deviation ∆h is practically the same for
a given brush height. Thus, we see that the dispersion value alone, presented above in
Figure 4c, does not tell us the quality of the polymer layer.
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Figure 6. The mean height of the brush as a function of time (a) and the deviation from the mean
brush height as a function of the brush height (b). The values of GD and p are given in the inset.

3.2. Reaction–Diffusion Front

In the classical case in which the reaction front problem is considered [48], the densities
of the reacting substrates on both sides of the front are the same, and the diffusion coeffi-
cients appearing in Equation (1a,b) are also the same. Galfi and Racz [48], using arguments
based on a scaling theory, obtained some surprising results, the most unexpected of which
was concerning the scaling of the width of the reaction front for long times, w(t)~tα, where
α = 1/6 and the reaction rate at the center of the front R(xf, t) ranges with time as t−2/3.
Additional studies based on the perturbation theory [72] have found time dependencies for
reaction fronts over the entire time range, and the results are presented in the Table 1.

Table 1. The scaling exponents of parameters describing the reaction–diffusion front (from Ref. [72]).

Quantity Short-Time Behavior Long-Time Behavior

R(t) t1/2 t−1/2

W(t) t1/2 t1/6

R(xf, t) const t−2/3

The case described above is a special case in which, due to the equality of substrate
concentrations and mobility, the position of the front’s center does not change. In the
general case where such conditions are not met, the center of the front of the system may
shift [63].

Figure 7a shows the concentrations of the components in the system in which the
brush is synthetized after 2.5 × 105 simulation steps. Due to the differences in the mobility
and concentration of the monomer and active ends of the chain, a clear shift in the center of
the reaction front in the direction opposite to the grafting surface can be seen, as illustrated
by Figure 7b in which the positions of the reaction front center for the indicated times are
shown by vertical dashed lines.
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Figure 7. The concentration of the system components in the direction perpendicular to the grafting
surface for DG = 0.3, and p = 0.002 after 2.5 × 105 simulation steps. The black line denotes the
concentration of polymer beads, the red line denotes the concentration of unreacted monomer, the
blue line indicates the concentration of active chain ends, and the green line indicates the concentration
of products of active chain ends and the concentration of unreacted monomer (a). The concentration
of products of active chain ends and the concentration of unreacted monomer for DG = 0.3 are shown,
and p = 0.002 after various simulation steps. The dashed lines indicate the positions of the reaction
diffusion front center xf (b).

Figure 8a shows the reaction rate at the center of the front. For long times, it decreases
with time as R(xf,t)~t−4/5, which is much faster than in the classical case where the scaling
exponent is −2/3 [72]. For small reaction probabilities of 0.0002, one can see the exact
short-time regime in which the reaction rate increases very rapidly as R(i,t)~t7/5. Figure 8a
also suggests that the change from the short-time regime to the long-time regime is shifting
towards shorter times with increasing grafting density and reaction rate. The position of
the center of the reaction front xf is presented in Figure 8b. It is clearly seen that the rate of
the shifting front increases with the reaction rate and is weakly dependent on the grafting
density (it seems to be higher for larger inoculations) but, irrespective of the grafting density,
the scaling is approximately the same with time, i.e., xf~t3/4.
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Figure 8. The reaction rate at the reaction front center as a function of time (a). The position of the
reaction front center as a function of time (b). The values of GD and p are given in the inset.
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Figure 9 shows the time dependence of the reaction front width w(t). The width of the
reaction front during the synthesis process and the growth of the polymer brush increases
with an increasing reaction rate and approaches approximately the same values regardless
of the grafting density. As in the case of the reaction rate in the center of the front, in the
case of the width of the front, we observe a certain universality in the form of a similar
increase in time manifested by a scaling of w(t)~t1/2; this relationship is much stronger than
in the classical case for small reaction rates as one can also observe a short-time regime in
which the front grows very slowly.
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Figure 9. The reaction diffusion front width w(t) as a function of time. The values of GD and p are
given in the inset.

The changes in the reaction rate R(t) over time are presented in Figure 10. The reaction
rate depends on the two parameters considered here, that is, the reaction probability and
the grafting density. Note, however, that in comparison, the dependence on the former is
significantly greater, and with an increasing number of Monte Carlo steps, the dependence
on grafting density disappears. The fact that R(t) increases as the reaction probability
increases is understandable. However, it is also the highest in systems with the highest
grafting density. This is because a large number of chains (and therefore active ends) attach
more monomer molecules. In the case of this parameter, two regimes are also visible: for a
short time, R(t) increases, while for a long time, it decreases (with the exception of a high
probability of polymerization, p = 2 × 10−2, where there is no regime with an increase in R).
It is difficult to determine the behavior in the long term because, as one can see, these curves
asymptotically approach each other, but it is impossible to carry out any scaling, although
it possible that all curves converge to the scaling close to the theoretical t−1/2 value [72].
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4. Conclusions

The process of polymer brush formation was studied using Monte Carlo computer
simulations. A suitable coarse-grained and lattice model of the brush was designed,
and its properties were determined within a Dynamic Lattice Liquid framework. Brush
polymerization was carried out in a system completely filled with monomer with the
initiator placed randomly on an impenetrable surface. The effects of the polymerization
reaction rate (the probability of the reaction) and chain grafting density on the structure
and quality of the resulting polymer layer and on the properties of the reaction front
were studied.

The parameters describing the brush were studied during the polymerization process.
It turned out that, despite the differences in the dispersion of chain lengths, the brush
increases in the same way, i.e., the mean deviation of the brush height does not depend
on the grafting density and the reaction rate. Within the formalism of reaction fronts, we
observed universality in the width of the front and height of the front: for long times, they
exhibit the same exponents. In general, the polymer layers are more homogeneous at large
grafting densities and small probabilities of polymerization reaction. So, we can show
how the quality of the polymer layer, which is a polymer brush, can be controlled with
selected parameters in order to obtain the quality and homogeneity of the surface coating.
In addition to the practical issue, there is an important aspect related to the development of
the theory of non-equilibrium processes. The process of reaction front formation can be
considered as an example of the simplest non-equilibrium process. In the work presented
here, a study of the formation and propagation of the reaction front in the case of polymer
brushes was carried out, and new scaling was obtained, which seems to be a contribution
to the theory of reaction fronts and indicates that, in this case, the behavior of the front
deviates from that previously observed.
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