Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Film Preparation
2.2. Characterization
3. Results and Discussion
3.1. Physicochemical Property
3.2. Dielectric Properties
3.3. Energy Storage Properties
3.4. Electrical Breakdown Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.; Kumar, A.; Biswas, A.; Singh, R.; Gehlot, A.; Akram, S.V.; Verma, A.S. Advances in micro and nano-engineered materials for high-value capacitors for miniaturized electronics. J. Energy Storage 2022, 55, 105591. [Google Scholar] [CrossRef]
- Tan, D.Q. Review of Polymer-Based Nanodielectric Exploration and Film Scale-Up for Advanced Capacitors. Adv. Funct. Mater. 2019, 30, 18. [Google Scholar] [CrossRef]
- Fan, B.; Zhou, M.; Zhang, C.; He, D.; Bai, J. Polymer-based materials for achieving high energy density film capacitors. Prog. Polym. Sci. 2019, 97, 101143. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z.; Han, M.; Tang, Q.; Xie, P.; Fan, R. All-polymeric multilayer para/ferroelectric dielectric films utilizing a gradient structure toward concurrent high discharge efficiency and energy density. Mater. Today Energy 2022, 29, 101119. [Google Scholar] [CrossRef]
- Wang, J.; Peng, B.; Zhang, Y.; Gong, H.; Wang, B.; Wu, W.; He, L.; Liang, S.; Xie, Y. Voltage-assisted 3D printing of polymer composite dielectric films with low energy loss and high energy storage density. J. Power Sources 2024, 608, 234649. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, S. Polymer nanocomposites for high-energy-density capacitor dielectrics: Fundamentals and recent progress. IEEE Electr. Insul. Mag. 2020, 36, 7–28. [Google Scholar] [CrossRef]
- Ji, M.; Huang, J.; Zhu, C. Methods for Synthesizing Polymer Nanocomposites and Their Applications. Funct. Nanomater. Synth. Prop. Appl. 2022, 11, 447–490. [Google Scholar] [CrossRef]
- Prateek, N.; Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C.-H. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 2020, 74, 104844. [Google Scholar] [CrossRef]
- Dou, L.; Lin, Y.-H.; Nan, C.-W. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Molecules 2021, 26, 6148. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, X.; Zhang, C.; Zhang, Y.; Zhang, Y.; Feng, Y.; Chi, Q.; Chen, Q. Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chem. Eng. J. 2020, 408, 127314. [Google Scholar] [CrossRef]
- Dang, Z.; Yuan, J.; Yao, S.; Liao, R. Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Wang, X.; Bi, K.; Zhang, J.; Huang, Y.; Wu, L.; Zhao, P.; Xu, K.; Lei, M.; Li, L. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 2016, 31, 49–56. [Google Scholar] [CrossRef]
- Yuan, J.-K.; Dang, Z.-M.; Yao, S.-H.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Bai, J. Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J. Mater. Chem. 2010, 20, 2441. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, Z.; Li, Y.; Chai, B.; Chen, J.; Jiang, P.; Huang, X. High Conduction Band Inorganic Layers for Distinct Enhancement of Electrical Energy Storage in Polymer Nanocomposites. Nano-Micro Lett. 2022, 14, 151. [Google Scholar] [CrossRef]
- Wen, R.; Guo, J.; Zhao, C.; Liu, Y. Nanocomposite Capacitors with Significantly Enhanced Energy Density and Breakdown Strength Utilizing a Small Loading of Monolayer Titania. Adv. Mater. Interfaces 2017, 5, 105412. [Google Scholar] [CrossRef]
- Guo, N.; Chen, C.; Zhang, G.; Sun, R.; Wang, Y.; Gao, J. Effect of nanofillers with different energy levels on the electrical properties of epoxy-based nanocomposites. High Volt. 2024, 9, 948–956. [Google Scholar] [CrossRef]
- Min, D.; Song, X.; Yang, L.; Zhang, Y.; Wang, S.; Li, S. High-Temperature Polymer Dielectrics for Aerospace Electrical Equipment. High Temp. Polym. Dielectr. 2023, 8, 269–311. [Google Scholar] [CrossRef]
- Larson, B.W.; Whitaker, J.B.; Wang, X.-B.; Popov, A.A.; Rumbles, G.; Kopidakis, N.; Strauss, S.H.; Boltalina, O.V. Electron Affinity of Phenyl–C61–Butyric Acid Methyl Ester (PCBM). J. Phys. Chem. C 2013, 117, 14958–14964. [Google Scholar] [CrossRef]
- Ran, Z.; Zhang, Y.; Luo, Z.; Zhu, Y.; Wang, M.; Wang, R.; Fu, J.; Shao, Q.; Quan, H.; Yuan, H.; et al. Significantly improved high-temperature capacitive performance in polypropylene based on molecular semiconductor grafting. Mater. Today Energy 2023, 38, 101429. [Google Scholar] [CrossRef]
- Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and Phase Segregation of Spin-Casted Films of Polyfluorene/PCBM Blends. Macromolecules 2007, 40, 8291–8301. [Google Scholar] [CrossRef]
- Machui, F.; Langner, S.; Zhu, X.; Abbott, S.; Brabec, C.J. Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance. Sol. Energy Mater. Sol. Cells 2012, 100, 138–146. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, T.; Feng, M.; Cui, Y.; Zhang, T.; Zhang, Y.; Feng, Y.; Zhang, Y.; Chi, Q.; Liu, X. Significantly Improved Energy Storage Performance of PVDF Ferroelectric Films by Blending PMMA and Filling PCBM. ACS Sustain. Chem. Eng. 2021, 9, 16291–16303. [Google Scholar] [CrossRef]
- El-Aziz, A.M.A.; Afifi, M. Influence the β-PVDF phase on structural and elastic properties of PVDF/PLZT composites. Mater. Sci. Eng. B 2024, 301, 117152. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2013, 39, 683–706. [Google Scholar] [CrossRef]
- Mattsson, B.; Ericson, H.; Torell, L.M.; Sundholm, F. Micro-Raman investigations of PVDF-based proton-conducting membranes. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 3317–3327. [Google Scholar] [CrossRef]
- Sousa, R.E.; Nunes-Pereira, J.; Ferreira, J.C.C.; Costa, C.M.; Machado, A.V.; Silva, M.M.; Lanceros-Mendez, S. Microstructural variations of poly(vinylidene fluoride co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym. Test. 2014, 40, 245–255. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 2020, 11, 3919. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Huang, K.; Zhao, P.; Ouyang, B.; Liu, S. Comparative analysis of atructure and properties of different modified polypropylene cable insulation materials. Electr. Power Eng. Technol. 2022, 41, 233–239. [Google Scholar] [CrossRef]
- Bouharras, F.E.; Atlas, S.; Capaccioli, S.; Labardi, M.; Hajlane, A.; Ameduri, B.; Raihane, M. Synthesis and Characterization of Core–Double-Shell-Structured PVDF-grafted-BaTiO3/P(VDF-co-HFP) Nanocomposite Films. Polymers 2023, 15, 3126. [Google Scholar] [CrossRef]
- Divya, S.; Hemalatha, J. Study on the enhancement of ferroelectric β phase in P(VDF-HFP) films under heating and poling conditions. Eur. Polym. J. 2017, 88, 136–147. [Google Scholar] [CrossRef]
- Divya, S.; Shakthi, T.; Hemalatha, J. Synthesis and ferroelectric investigations of poly(vinylidene fluoride-co-hexafluoropropylene)-Mg(NO3)2 films. J. Appl. Polym. Sci. 2016, 133, 44008. [Google Scholar] [CrossRef]
- Constantinou, I.; Yi, X.; Shewmon, N.T.; Klump, E.D.; Peng, C.; Garakyaraghi, S.; Lo, C.K.; Reynolds, J.R.; Castellano, F.N.; So, F. Effect of Polymer–Fullerene Interaction on the Dielectric Properties of the Blend. Adv. Energy Mater. 2017, 7, 1601947. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Jiang, W.; Cao, W. Losses in ferroelectric materials. Mater. Sci. Eng. R Rep. 2015, 89, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tseng, J.-K.; Treufeld, I.; Mackey, M.; Schuele, D.E.; Li, R.; Fukuto, M.; Baer, E.; Zhu, L. Enhanced dielectric properties due to space charge-induced interfacial polarization in multilayer polymer films. J. Mater. Chem. C 2017, 5, 10417–10426. [Google Scholar] [CrossRef]
- Tseng, J.-K.; Tang, S.; Zhou, Z.; Mackey, M.; Carr, J.M.; Mu, R.; Flandin, L.; Schuele, D.E.; Baer, E.; Zhu, L. Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films. Polymer 2014, 55, 8–14. [Google Scholar] [CrossRef]
- Zhang, G.; Brannum, D.; Dong, D.; Tang, L.; Allahyarov, E.; Tang, S.; Kodweis, K.; Lee, J.-K.; Zhu, L. Interfacial Polarization-Induced Loss Mechanisms in Polypropylene/BaTiO3 Nanocomposite Dielectrics. Chem. Mater. 2016, 28, 4646–4660. [Google Scholar] [CrossRef]
- Zare, Y.; Rhee, K.Y.; Hui, D. Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos. Part B Eng. 2017, 122, 41–46. [Google Scholar] [CrossRef]
- Ji, W.; Deng, H.; Guo, C.; Sun, C.; Guo, X.; Chen, F.; Fu, Q. The effect of filler morphology on the dielectric performance of polyvinylidene fluoride (PVDF) based composites. Compos. Part A Appl. Sci. Manuf. 2019, 118, 336–343. [Google Scholar] [CrossRef]
- Zhou, J.; Hou, D.; Cheng, S.; Zhang, J.; Chen, W.; Zhou, L.; Zhang, P. Recent advances in dispersion and alignment of fillers in PVDF-based composites for high-performance dielectric energy storage. Mater. Today Energy 2022, 31, 101208. [Google Scholar] [CrossRef]
- Ding, S.; Jia, J.; Dai, Z.; Wang, Y.; Shen, S.; Yin, Y.; Li, X. Superior dielectric energy storage performance for high-temperature film capacitors through molecular structure design. Chem. Eng. J. 2024, 493, 152623. [Google Scholar] [CrossRef]
- Yuan, M.; Li, B.; Zhang, S.; Rajagopalan, R.; Lanagan, M.T. High-Field Dielectric Properties of Oriented Poly(vinylidene fluoride-co-hexafluoropropylene): Structure–Dielectric Property Relationship and Implications for Energy Storage Applications. ACS Appl. Polym. Mater. 2020, 2, 1356–1368. [Google Scholar] [CrossRef]
- Ai, D.; Wu, C.; Han, Y.; Chang, Y.; Xie, Z.; Yu, H.; Ma, Y.; Cheng, Y.; Wu, G. Polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength at high temperature enabled by rationally designed core-shell structured nanofillers. J. Mater. Sci. Technol. 2025, 210, 170–178. [Google Scholar] [CrossRef]
- Zhang, T.; Dan, Z.; Shen, Z.; Jiang, J.; Guo, M.; Chen, B.; Lin, Y.; Nan, C.-W.; Shen, Y. An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites. RSC Adv. 2020, 10, 5886–5893. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ren, J.; Li, L.; Liu, J.; Li, L.; Wang, G. Enhanced Breakdown Strength of Ferroelectric Polymer Films for Capacitive Energy Storage by Incorporating Oriented Fluorographene. ACS Appl. Nano Mater. 2023, 6, 1272–1284. [Google Scholar] [CrossRef]
- Prezas, P.R.; Melo, B.M.G.; Costa, L.C.; Valente, M.A.; Lança, M.C.; Ventura, J.M.G.; Pinto, L.F.V.; Graça, M.P.F. TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics. Appl. Surf. Sci. 2017, 424, 28–38. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Xu, W.; Wang, Q. Molecular Trap Engineering Enables Superior High-Temperature Capacitive Energy Storage Performance in All-Organic Composite at 200 °C. Adv. Energy Mater. 2023, 13, 2203961. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Gadinski, M.R.; Zhang, S.; Zhang, G.; Li, H.U.; Iagodkine, E.; Haque, A.; Chen, L.-Q.; Jackson, T.N.; et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579. [Google Scholar] [CrossRef]
- Xia, X.; Weng, G.J.; Hou, D.; Wen, W. Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles. Int. J. Eng. Sci. 2019, 142, 1–19. [Google Scholar] [CrossRef]
- Cao, W.; Li, Z.; Sheng, G.; Jiang, X. Insulating property of polypropylene nanocomposites filled with nano-MgO of different concentration. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1430–1437. [Google Scholar] [CrossRef]
- Blundell, D.J. On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer 1987, 28, 2248–2251. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Tsubakihara, S.; Sugimoto, Y.; Nakafuku, C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J. Polym. Sci. Part B Polym. Phys. 2003, 42, 25–32. [Google Scholar] [CrossRef]
- Wu, H.; Qiu, Z. A Comparative Study of Crystallization, Melting Behavior, and Morphology of Biodegradable Poly(ethylene adipate) and Poly(ethylene adipate-co-5 mol % ethylene succinate). Ind. Eng. Chem. Res. 2012, 51, 13323–13328. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Liang, X.; Qu, M.; Fan, M.; Zhang, R.; Nakajima, K.; Bin, Y. Structural revolution of PVDF crystallized on MWCNT film on a gradient temperature stage and its dielectric properties. CrystEngComm 2024, 26, 4458–4469. [Google Scholar] [CrossRef]
- Si, S.K.; Karan, S.K.; Paria, S.; Maitra, A.; Das, A.K.; Bera, R.; Bera, A.; Halder, L.; Khatua, B.B. A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted γ-phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application. Mater. Chem. Phys. 2018, 213, 525–537. [Google Scholar] [CrossRef]
- Mendes, S.F.; Costa, C.M.; Sencadas, V.; Nunes, J.S.; Costa, P.; Gregorio, R.; Ribelles, J.L.G.; Lanceros-Méndez, S. Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride) Pb(Zr0.53Ti0.47)O3 composites. Appl. Phys. A 2009, 96, 1037. [Google Scholar] [CrossRef]
- Costa, C.M.; Mendes, S.F.; Sencadas, V.; Ferreira, A.; Gregorio, R.; Ribelles, J.L.G.; Lanceros-Méndez, S. Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. J. Non-Cryst. Solids 2010, 356, 2127–2133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Qiao, J.; Sun, H.; Yang, W.; Wei, L.; Zhao, X. Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance. Polymers 2024, 16, 3030. https://doi.org/10.3390/polym16213030
Yang Y, Qiao J, Sun H, Yang W, Wei L, Zhao X. Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance. Polymers. 2024; 16(21):3030. https://doi.org/10.3390/polym16213030
Chicago/Turabian StyleYang, Yantao, Jingqi Qiao, Haiyu Sun, Wenhao Yang, Liangliang Wei, and Xuetong Zhao. 2024. "Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance" Polymers 16, no. 21: 3030. https://doi.org/10.3390/polym16213030
APA StyleYang, Y., Qiao, J., Sun, H., Yang, W., Wei, L., & Zhao, X. (2024). Induced Electron Traps via the PCBM in P(VDF-HFP) Composites to Enhance Dielectric and Energy Storage Performance. Polymers, 16(21), 3030. https://doi.org/10.3390/polym16213030