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Abstract: To enhance the fire safety performance in polystyrene (PS), a novel organic–inorganic hybrid
material (FGO–AHP) was successfully prepared by the combination of functionalized graphene oxide
(FGO) and aluminum hypophosphite (AHP) via a chemical deposition method. The resulting
FGO–AHP nanohybrids were incorporated into PS via a masterbatch-melt blending to produce
PS/FGO–AHP nanocomposites. Scanning electron microscope images confirm the homogeneous
dispersion and exfoliation state of FGO–AHP in the PS matrix. Incorporating FGO–AHP significantly
improves the thermal behavior and fire safety performance of PS. By incorporating 5 wt% FGO–AHP,
the maximum mass loss rate (MMLR) in air, total heat release (THR), and maximum smoke density
value (Dsmax) of PS nanocomposite achieve a reduction of 53.1%, 23.4%, and 50.9%, respectively,
as compared to the pure PS. In addition, thermogravimetry–Fourier transform infrared (TG–FTIR)
results indicate that introducing FGO–AHP notably inhibits the evolution of volatile products from
PS decomposition. Further, scanning electron microscopy (SEM), FTIR, and Raman spectroscopy
were employed to investigate the char residue of PS nanocomposite samples, elaborating the flame-
retardant mechanism in PS/FGO–AHP nanocomposites.

Keywords: polystyrene; FGO–AHP nanohybrids; thermal property; fire safety performance

1. Introduction

As a two-dimensional, one-atom-thick carbon material, graphene has attracted in-
creasing attention in many fields due to its unique structure and mechanical and electrical
properties [1]. However, the intrinsically strong van der Waals force and high surface area
between graphene nanosheets give rise to the stacking and agglomeration in graphene,
limiting its application in preparing high-performance materials [2]. To solve this issue,
there has been a growing exploration to modify graphene surfaces and immobilize, anchor,
and embed nanoparticles or other materials on graphene in different arrangements [3–5].
Benefiting from the numerous reactive groups (e.g., epoxide, hydroxyl, carboxyl, carbonyl
groups, etc.), graphene oxide (GO), the precursor of graphene, has the unique advantage
of being introduced into polymers to improve the mechanical and electrical properties [6].
Compared with zero-dimensional nanoparticles or one-dimensional nanowires, GO with
a larger specific surface area displays improved dispersion in the polymer matrix [7].
However, one drawback of GO is its unstable thermal-oxidative properties, and the oxy-
gen moieties on the GO surface can be easily destroyed by heating or chemical reagents,
restricting its further application in some fields [8,9].

In recent years, surface modification has been utilized to enhance the thermal stability
of GO and optimize its performance in polymer matrix by grafting functional molecules
onto the GO surface [10,11]. For instance, organic halogen-free compounds, such as nitro-
gen and phosphorus-based flame retardants, have been grafted onto GO and exhibited
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enhanced flame-retardant efficiency in polypropylene [12] and epoxy [13]. It is worthy of
note that 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), a phosphorus-
containing flame retardant with low toxicity, can exert flame retardancy in both condensed
and vapor phases, significantly enhancing the fire safety of polymers [14]. In addition to
catalyzing stable char formation, DOPO can produce P· and PO· radicals to quench the
chain radical reaction of combustion, thereby enhancing the fire safety performance of
polymers [15,16]. For instance, DOPO-phosphonimide grafted graphene nanosheets were
introduced into epoxy resin, achieving significantly enhanced flame retardancy [17]. A
multi-structured synergistic composite was synthesized by grafting nitrogen-containing
polymers and DOPO on the surface of GO nanosheets, which demonstrated much-reduced
heat release capacity (HRC) and significantly improved char yield [18].

As an extensively utilized plastic, PS exhibits many intriguing merits, including promi-
nent chemical and thermal resistance, the convenience of processing and molding, and low
cost, and has been widely applied in industrial fields such as foams [19], thermal insula-
tion [20], and architecture [21]. However, PS is highly flammable, and the severe dripping
accompanying the released toxic smoke during combustion greatly hinders the applications
of PS in industry fields. Consequently, developing effective strategies to conquer these limi-
tations and enhance the fire safety of PS is imperative. Recent studies have demonstrated
that the combination of inorganic nanomaterials, including carbon nitride [22], layered
double hydroxides (LDH) [23], and metal-loaded graphene [24], with organic compounds
to prepare organic–inorganic nanohybrids can significantly enhance the fire resistance
of polymer materials. Aluminum hypophosphite (AHP), a recently developed inorganic
component with high phosphorus content, has been utilized as an effective flame retardant
in a variety of polymer materials, including polybutylene terephthalate (PBT), polyethylene
terephthalate (PET), and polyamide 6 (PA6) [25–27]. Lou et al. developed AHP@HNTs via
the combination of halloysite nanotubes (HNTs) with aluminum hypophosphite using a
one-pot method [28], and the prepared AHP@HNTs achieve superior flame retardancy in
epoxy resin (EP) with a low addition (3 wt%), as evidenced by reductions in heat and smoke
release. However, AHP also encounters drawbacks, including poor compatibility with
polymer matrix and fire risk. Particularly, impact or heating can lead to the decomposing
of AHP and release phosphine, which is spontaneously flammable in air, burning with
a luminous flame, and even forming explosive mixtures in extreme cases. To conquer
these limitations, melamine cyanurate encapsulated AHP (MCA@AHP) in polyamide 6
(PA6) was reported [29]. After microencapsulation, MCA showed a protection layer that
inhibited the degradation of AHP and postponed the generation of phosphine, displaying
high thermal stability and excellent inflammability.

Recently, the combination of graphene nanomaterials and other compounds to prepare
composites/hybrids has exhibited intriguing properties in application [30,31]. Based on
the organic-inorganic hybrid technology, FGO was combined with AHP to obtain an ideal
flame retardant (FGO–AHP) with excellent performance in fire safety. The prepared FGO
is a covalently functionalized GO, which was prepared by grating DOPO, a phosphorus-
containing flame retardant, to GO. DOPO-containing additives and AHP as flame retardants
are known to suppress combustion in both the condensed and gas phases [17,18]. The
functionalization of GO greatly ameliorates the self-agglomeration of nanosheets in polymer
composites, and the π-π conjunction between the benzene structures of DOPO and PS
enhances the interaction with the matrix [17]. Moreover, the co-deposition of AHP to FGO
can not only improve the thermal stability of graphene nanosheets but also facilitate the
homogeneous dispersion of AHP and greatly enlarge its contacting area with the polymer
matrix, fully exerting the flame retardancy efficiency in combustion. It is the first example
of utilizing the co-deposition of AHP to FGO and the first incorporation of FGO–AHP into
PS with high performance in fire safety. Then, the microstructure and thermal and flame-
retardant behaviors of the resultant PS/FGO–AHP nanocomposites were characterized
and discussed.
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2. Experimental Section
2.1. Materials

Graphite powder (purity > 99.95%) and paraformaldehyde (HCHO) were obtained from
Aladdin Industrial Corp. (Shanghai, China). Dimethylbenzene, N, N-dimethylformamide
(DMF), triethylamine (TEA), and styrene were purchased from Damao Chemical Reagent
Factory Co., Ltd. (Tianjin, China). 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
(DOPO) was supplied by Shenzhen Jinlong Chemical Co., Ltd. (Shenzhen, China). Phos-
phorus oxychloride (POCl3, AR), sodium hypophosphite (NaH2PO2, AR), and aluminum
sulfate (Al2(SO4)3·18H2O, AR) were purchased from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China). All other chemicals were purchased from Guangzhou Chemical
Co., Ltd. (Guangzhou, China) and used as obtained. Both DMF and TEA were dried
with 4 Å molecular sieves before use. Polystyrene (PS, 158 K) was obtained from BASF-
YPC Co., Ltd. (Nanjing, China). Other chemical reagents were used as received without
further purification.

2.2. Fabrication of FGO and FGO–AHP

DOPO-OH was prepared from DOPO using a formaldehyde method [32]. The func-
tionalized graphene oxide (FGO) was synthesized as follows: Briefly, POCl3 (0.06 mol,
9.252 g) was added into a three-necked round-bottom flask containing DMF (40 mL) with
stirring under a nitrogen atmosphere at 0 ◦C. Triethylamine (0.2 mol, 20.258 g) dispersed in
10 mL DMF was dropped into the mixture with stirring. Then, 1.0 g of GO prepared from
graphite was added to the flask, and vigorous mechanical stirring was maintained for 4 h,
followed by setting and keeping at 60 ◦C for 20 min. Subsequently, 14.772 g of DOPO-OH
dissolved in DMF (80 mL) was slowly dropped into the flask under vigorous stirring at
60 ◦C for 4 h. After that, the white powder DOPO-OH (0.06 mol, 14.772 g) was added to the
flask. The mixture was kept vigorously stirred at 60 ◦C for 6 h with a nitrogen condition.
After cooling, the crude product was filtered and washed 5 times with deionized water,
followed by freeze-drying to obtain the product, coded as FGO (illustrated in Scheme 1a).
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FGO–AHP was synthesized by a chemical deposition method as shown in Scheme 1b.
In brief, 1.0 g of FGO and 7.922 g of NaH2PO2 were dispersed in 40 mL of deionized water
by stirring and ultrasonication for 1 h. The system was conducted at 90 ◦C for 30 min.
Then, 4.504 g of Al2(SO4)3·18H2O in 20 mL deionized water was added dropwise into
the mixture with vigorous stirring. The reaction was allowed to continue at 90 ◦C for 6 h.
Afterward, the resultant product was separated by filtration and rinsing copiously with
deionized water. Finally, a black powder was obtained, which was then dried at 70 ◦C
overnight, designated as FGO–AHP (illustrated in Scheme 1b).

2.3. Preparation of PS and PS Nanocomposites

PS nanocomposites with nanofillers (GO, FGO, and FGO–AHP) were prepared by
masterbatch-melt blending (Scheme 1b). In a typical example, the preparation procedure of
PS/FGO–AHP 2.0 was described as follows: PS spheres (9.0 g of PS and 1.0 g of FGO–AHP)
were added to a three-necked flask equipped with DMF, following strong mechanical
stirring and ultrasonication to obtain homogeneous suspension. FGO–AHP (1.0 g) was
dispersed in 20 mL DMF by ultrasonication for 1 h and then was added to a three-necked
flask equipped with a PS/DMF blend. After 2 h of ultrasonication and vigorous mechanical
stirring, the obtained black slurry was dried under a vacuum at 120 ◦C for 12 h, cut into
small granules, and further dried at 130 ◦C for 6 h.

Subsequently, all samples of the masterbatch were mixed with PS by melt blending at
180 ◦C at a constant speed of 50 rpm for about 8 min. PS/GO, PS/FGO, and PS/FGO–AHP
were prepared on an XSS-300 twin-roller mill (SU-60ML, Shanghai Kechuang Rubber and
Plastic Machinery Equipment Co., Ltd., Shanghai, China). The samples were hot-pressed
into sheets with a thickness of 3.0 mm at 190 ◦C under 10 MPa for 10 min. According to the
amount of GO/FGO/FGO–AHP in PS composites, the prepared samples are referred to
hereafter as PS/GO2.0, PS/FGO2.0, and PS/FGO–AHP (2.0, 3.0, 4.0, and 5.0).

2.4. Characterization

The X-ray diffraction (XRD) patterns were recorded on a D/MAX-IIIC X-ray diffrac-
tion instrument using Cu Kα radiation (40 kV, 300 mA) from 5◦ to 80◦. Fourier transform
infrared (FTIR) spectra were recorded in the 4000–500 cm−1 region on a Nicolet 6700 spec-
trometer (Nicolet Instrument Company, Waltham, MA, USA) using the KBr discs method.
The morphologies of the samples were examined via a SEM solver p47 pro using charge
contrast imaging mode. Transmission electron microscopy (TEM) analysis was performed
on a JEM-2100 transmission electron microscope at 200 kV. Thermogravimetric analysis
(TGA) was conducted on a PE TGA-7 calorimeter from room temperature to 700 ◦C with a
linear heating rate of 20 ◦C/min under nitrogen or air atmosphere, and all samples were
kept with 5–10 mg. Micro combustion calorimeter (MCC) test was carried out in an MCC-2
(Govmark Inc., New York, NY, USA). According to ASTM D 7309, 5–7 mg of powdery
samples were heated to 700 ◦C at a heating rate of 1 ◦C/s in an inert gas steam (80 mL/min).
NBS smoke density chamber test (NBS Test) was conducted according to ISO 5659-2 stan-
dard, and the smoke density of the specimens was tested by an NBS smoke density test
chamber (model SDB, Kunshan Modisco Combustion Technology Instrument Co., Ltd.,
Kunshan, China) with a heat flux of 25 kW/m2. Thermogravimetric analysis/infrared
spectrometry (TG-IR) of PS and PS/FGO–AHP nanocomposite was performed using a
TGA Q5000 IR thermogravimetric analyzer that was interfaced with a Nicolet IS 50 FTIR
spectrophotometer. The sample was put in an alumina crucible and heated from room
temperature to 800 ◦C at a heating rate of 20 ◦C/min under nitrogen. Raman spectroscopy
measurements were conducted at room temperature using a Lab RAMHR 800UV Laser
Raman spectrometer with a laser wavelength of 633 nm, and the Gaussian peak type in
the Peak Fitting Module of Origin 8.0 software was employed in curve fitting to determine
spectral parameters.
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3. Result and Discussion
3.1. Characterization of GO, FGO, and FGO–AHP

The functionalized groups on GO, FGO, and FGO–AHP were investigated by FTIR
spectroscopy measurements, as illustrated in Figure 1a. The spectrum of GO exhibits several
characteristic absorption peaks, including the stretching vibration of O-H (3408 cm−1), C=O
(1728 cm−1), C=C (1624 cm−1), C-OH (1384 cm−1), and C-O (1130 cm−1) [33]. In contrast,
some new peaks can be seen in the spectrum of FGO. The peaks at 3000 cm−1–2500 cm−1

are attributed to C-H stretching vibration, and a new band appeared at 1204 cm−1, which
can be ascribed to the P=O characteristic peak in DOPO [16]. In addition, the bands located
at 1067 and 763 cm−1 are attributed to the stretching vibration of P-O-Ph in DOPO and the
stretching vibration of aromatic rings, respectively [34]. The results demonstrate that DOPO-
OH has been successfully grafted onto the surface of GO. For the FGO–AHP spectrum,
the absorption peak of -OH at 3408 cm−1 decreases significantly, and the band of C-OH at
1384 cm−1 disappears, suggesting the hydrophobic nature of FGO–AHP. Furthermore, the
FTIR spectrum of FGO–AHP reveals the characteristic peaks of AHP at 2405 (stretching
vibration of -PH2), 1190 (bending vibration of -PH2), and 1080 cm−1 (P-O vibration) [35],
indicating that AHP has been successfully loaded onto FGO.
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Further, the structure of these samples was investigated using X-ray diffraction (XRD),
and the corresponding XRD patterns are shown in Figure 1b. In the GO sample, a sharp
peak at 2θ = 10.3◦ corresponding to the (002) graphitic lattice diffraction is observed,
indicating an interlayer spacing of 0.796 nm [36]. Additionally, a weak peak at 42◦ is
attributed to the (100) reflection in GO. In the FGO pattern, the (002) characteristic peak
is shifted to 8.9◦, suggesting an enlarged interlayer spacing due to the intercalation of
functional phosphate and DOPO groups into the GO nanosheets. Furthermore, in the XRD
of FGO–AHP, the characteristic (002) diffraction peak of FGO is much weakened, indicating
significant deposition of AHP on the surface of FGO and hindering the penetration of X-ray
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into the interior of FGO–AHP [37]. In addition, the observed peaks between 15 and 55◦

can be attributed to the diffraction of AHP [38], further confirming the existence of AHP
in FGO–AHP.

The thermal stability of GO, FGO, and FGO–AHP was characterized by TGA under
a nitrogen atmosphere, and the corresponding TG curves are shown in Figure 1c and
Table 1. A severe weight loss below 250 ◦C is seen for GO, giving rise to a 48.2 wt% char
residue at 800 ◦C. This unstable thermal behavior is due to the existence of numerous
oxygen-containing groups on the GO surface, which accelerate the degradation of GO in
high temperatures [39]. In contrast, FGO exhibits significantly improved thermal behavior,
as the T0.1 (the temperature at 10% weight loss) and T0.2 (the temperature at 20 wt% weight
loss) are much higher than those in GO. This improvement can be attributed to the removal
of oxygenous groups via reacting with the introduced functional groups. Notably, the
hybridization of FGO and AHP contributes to the highest T0.1 and T0.2 in FGO–AHP, and
the observed 73.6 wt% char residue corroborates the strong charring ability in FGO–AHP.

Table 1. TG data of GO, FGO, and FGO–AHP in N2 condition.

Sample T0.1 (◦C) T0.2 (◦C) Char Residue (800 ◦C, wt%)

GO 117.4 211.7 48.2

FGO 189.3 274.5 55.1

FGO–AHP 295.6 334.3 73.6

TEM is a widely utilized technique for studying the structure of nanomaterials and
their dispersion state within a polymer matrix. The TEM images of the structure of GO,
FGO, and FGO–AHP are shown in Figure 2. It is clearly observed that GO exhibits a
transparent smooth lamellar structure (Figure 2a), indicating the presence of large single
GO sheets due to their extremely thin nature and the presence of oxygenous groups. For
FGO, some black shadows are observed on the nanosheets (Figure 2b), suggesting that the
functional phosphorus-containing molecules were grafted onto the surface, as confirmed
by FTIR results. In Figure 2c, spherical morphology in FGO–AHP can be observed, with
a sophisticated distribution in surface homogeneity [40]. The dark speckles observed in
FGO–AHP are assumed to be AHP. This indicates that AHP molecules were deposited
onto the FGO surface to form the FGO–AHP nanohybrids. Further, the element types and
relative contents of FGO–AHP are tabulated as shown in Figure 2d, and the detected Al
and P elements in this EDS image indicate the introduced phosphate groups and AHP in
the material.

Furthermore, the dispersibility of GO and FGO–AHP in deionized water and DMF
solvent was assessed. Photos of the dispersion states are shown in Figure 3. GO is readily
exfoliated in aqueous solution due to the presence of numerous hydrophilic groups (e.g.,
carboxyl and hydroxyl groups), leading to the formation of stable colloidal suspensions of
nanosheets [32]. After ultrasonication and two days of standing, the GO is stably dispersed
in H2O but settles at the bottom of the DMF solvent, as shown in Figure 3a,b. On the
other hand, FGO–AHP is well dispersed in the highly polar DMF solvent, forming a deep
black solution. This phenomenon can be attributed to the strong polarity of AHP, which
facilitates the dispersion of FGO–AHP in DMF.
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3.2. Morphological Analysis

It is well established that the interfacial interaction between nanohybrids and polymer
matrix plays a crucial role in influencing the properties of polymer nanocomposites [41,42].
The fracture surfaces of PS nanocomposite samples were characterized by SEM to analyze
the dispersion of GO, FGO, and FGO–AHP in the PS matrix. As depicted in Figure 4a,
the freeze-fractured surface of PS/GO2.0 is rough. The strong van der Waals attractions
among GO nanosheets can account for this unfavorable interfacial interaction between
the GO and PS matrix [43]. In contrast, the fracture surface of PS/FGO2.0 exhibits rarely
embedded particles (Figure 4b), demonstrating the desirable compatibility between FGO
and PS. This is likely due to the covalently functionalized molecules on the surface of FGO,
which contribute to better dispersion in the PS matrix. Furthermore, the incorporation of
FGO–AHP results in integrated nanohybrids within the PS matrix without aggregation or
stacked graphene nanosheets (Figure 4c), indicating a strong interfacial interaction between
the decorated AHP on the surface of nanohybrids and the PS matrix. This analysis confirms
the favorable compatibility of FGO–AHP in the PS matrix, which is expected to enhance
the thermal stability of PS/FGO–AHP nanocomposites.
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3.3. Thermal Stability

The TG curves and detailed data of neat PS and PS nanocomposites are presented in
Figure 5 and Table 2, respectively. Under an N2 condition, the TG curves show that all
samples undergo a one-stage thermal decomposition process in the temperature range of
320–470 ◦C, corresponding to the degradation of the chain-scissoring process in PS molecu-
lar chains [44]. The primary weight loss observed in neat PS is attributed to the release of
CO, CO2, H2O, and hydrocarbon fragments [16], and similar decomposition behavior can
be seen in PS/GO2.0 and PS/FGO2.0, suggesting the addition of GO and FGO has a limited
effect on the initial thermal stability of PS, with a T0.1 of 397 and 401 ◦C for PS/GO2.0
and PS/FGO2.0, respectively. Notably, the 0.89 wt% char yield of PS/FGO2.0 at 700 ◦C
is higher than that of PS/GO2.0 (0.61 wt%), indicating the improved thermal stability of
FGO. With the incorporation of FGO–AHP, the decomposition behavior of PS/FGO–AHP
nanocomposites is significantly altered. In Table 2, results indicate that the addition of FGO–
AHP decreases the initial decomposition temperature (T0.1) (approximately 7–17 ◦C lower
than that of pure PS). This phenomenon mainly arises from the decomposition of AHP at
low temperatures to produce aluminum pyrophosphate and phosphine [35]. The gener-
ated aluminum pyrophosphate combined with the functionalized graphene nanosheets
can act as a more effective physical barrier to prevent the PS matrix from degradation.
Consequently, the nanocomposites containing FGO–AHP exhibit much-improved thermal
stability at high temperatures, as the char residue of PS/FGO–AHP5.0 reaches 4.66 wt%,
significantly higher than the limited 0.53 wt% char residue of neat PS. Moreover, compared
with the neat PS, a slight reduction in the T0.1 value of all PS nanocomposites is observed
in the air. However, the Tmax (the temperature at the maximum mass loss rate) value of PS
nanocomposites is increased with a lower maximum mass loss rate (MMLR), indicating
that incorporating these nanomaterials inhibits the thermo-oxidation degradation of PS.
Meanwhile, a higher char yield can be seen for all PS nanocomposites, compared to that
in the nitrogen condition. For FGO–AHP nanohybrids, their homogeneous dispersion in
PS facilitates the interaction between FGO–AHP and the matrix. After the decomposition
of AHP, the generated phosphine is easily combined with the oxygen in the air to form
phospho-acid, which acts as a flame retardant to catalyze the char formation of these
nanocomposites rather than decomposition [35]. In addition, the graphene nanosheets not
only act as a physical barrier to hinder the decomposition of the matrix but also provide ad-
equate specific surface area for the reactions between phosphorous-containing compounds
and PS molecules [45]. These effects contribute to a much-decreased MMLR and a notably
enhanced char yield in PS/FGO–AHP nanocomposites, as presented in the TGA results
(see Table 2).
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Table 2. TGA data of PS and PS nanocomposites in nitrogen and air conditions.

Samples T0.1 (◦C)
(N2/Air)

Tmax (◦C)
(N2/Air)

MMLR (%/◦C)
(N2/Air)

Residues at 700 ◦C
(wt%) (N2/Air)

Error ±1 ±1 ±0.01 ±0.01

PS 395/335 420/378 2.76/2.75 0.53/0.46

PS/GO2.0 397/322 420/384 2.60/2.00 0.61/1.04

PS/FGO2.0 401/332 416/390 2.49/1.98 0.89/1.34

PS/FGO–AHP2.0 378/330 420/379 2.45/1.82 1.19/1.80

PS/FGO–AHP3.0 382/325 420/384 2.42/1.46 1.83/2.49

PS/FGO–AHP4.0 386/323 419/381 2.40/1.38 3.24/3.32

PS/FGO–AHP5.0 388/321 418/383 2.34/1.29 4.66/4.73

3.4. Flammability of PS Nanocomposites

The flammability of PS nanocomposites was characterized by Microscale Combus-
tion Calorimetry (MCC), which is employed to measure the heat release, reflecting the
combustion behavior of the materials, such as heat release rate (HRR), total heat release
(THR), and heat release capacity (HRC), etc. The HRR curves of PS and PS nanocomposites
and corresponding MCC data are shown in Figure 6 and Table 3. The neat PS presents a
high peak of heat release rate (PHRR) value (1063 W/g), indicating its highly flammable
nature. With the introduction of GO and FGO, the heat release of PS nanocomposites
was retarded, as the PHRR values of PS/GO2.0 and PS/FGO2.0 are reduced to 964 and
925 W/g, respectively. Meanwhile, the PS/FGO–AHP nanocomposites demonstrate much
decreased PHRR. Along with the increasing amount of FGO–AHP in PS, the PHRR values
of PS/FGO–AHP nanocomposites (PS/FGO–AHP2.0, PS/FGO–AHP3.0, PS/FGO–AHP4.0,
and PS/FGO–AHP5.0) exhibit a reduction of 27.2%, 33.4%, 37.5%, and 39.9%, respectively,
as compared with that of virgin PS. Similarly, a significant decrease in THR can also be seen
in PS/FGO–AHP nanocomposites. The THR value shifts from 45.6 kJ/g (PS) to 34.9 kJ/g
(PS/FGO–AHP5.0), exhibiting a reduction of 21.5%. The following effects can account
for the high efficiency of FGO–AHP in reducing heat release: FGO nanosheets act as a
robust physical barrier during combustion, which catalyzes char formation and restrains
the thermal degradation of the polymer matrix. Moreover, phosphate and pyrophosphate,
the decomposition product of AHP, combine with FGO to form a solid physical shield,
slowing down the heat and mass transfer between the gas and condensed phases and
preventing further degradation of the underlying polymer matrix [46]. In addition, a
significant reduction in HRC is observed, and the maximum reduction in HRC (PS/FGO–
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AHP5.0) reaches 40.3%. This achievement is attributed to the much-reduced MMLR and
the combustion heat at the decomposition temperature [32]. As can be seen in Table 4, the
flame retardancy of FGO–AHP is superior to that of the listed flame retardants, indicative
of its high efficiency in PS nanocomposites.
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Figure 6. HRR curves of PS and PS nanocomposites.

Table 3. MCC data of PS and PS nanocomposites.

Samples PHRR
(W/g)

HRC
(J/g·K)

THR
(kJ/g)

Error ±1 ±1 ±0.1
PS 1063 1051 45.6

PS/GO2.0 964 963 42.5
PS/FGO2.0 925 921 41.4

PS/FGO–AHP2.0 774 764 39.6
PS/FGO–AHP3.0 708 702 37.9
PS/FGO–AHP4.0 664 656 35.8
PS/FGO–AHP5. 0 639 627 34.9

Table 4. Comparison of the flame retardancy of various fillers in PS matrix.

Matrix Filler (wt%) Reduction in
PHRR (%)

Reduction in
THR (%) Reference

PS TGO (5%) 23.9% 20.0% [3]
PS MP-EG (20%) 35.3% 21.8% [47]
PS hBN-SBC (20%) 29.0% 14.1% [48]
PS SiAPP/aMWCNT (20%) 29.6% 25.2% [49]
PS Fc-GNS (2%) 27.0% 12.0% [50]
PS FGO–AHP (2%) 27.2% 13.2% Present work
PS FGO–AHP (3%) 33.4% 16.9% Present work
PS FGO–AHP (4%) 37.5% 21.5% Present work
PS FGO–AHP (5%) 39.9% 23.5% Present work

To sum up, introducing FGO–AHP into PS significantly improves the flame-retardant
properties of PS nanocomposites. Based on the MCC results, FGO and AHP demonstrate a
favorable flame-retardant synergistic effect in PS.
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3.5. Toxic Smoke and Gaseous Volatiles Analysis

In the event of a fire, in addition to the heat release, the production of smoke, smoke
particulates, and toxic gases during combustion is also life-threatening. To evaluate the
smoke emission behavior of PS and PS nanocomposite, the NBS smoke density chamber test
was conducted. The results, shown in Figure 7, indicate that the maximum smoke density
value (Dsmax) of pure PS is 396.3, whereas PS/FGO–AHP5.0 is significantly reduced to
194.6. This reduction is due to the combination of FGO and AHP, which lead to a decrease
in smoke production. Higher transmittance values in the test indicate better visibility in the
event of a fire. As shown in Figure 7b, the transmittance of pure PS is only 0.98% at 180 s
(prime time for rescue in a fire), while the transmittance of PS/FGO–AHP5.0 is elevated
to 7.9%. This suggests that the flame retardant FGO–AHP effectively reduces the smoke
release of PS, providing more opportunities for escape during a fire.
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Further, TG-IR was employed for continuous monitoring of gas variation with time
and weight of residues, which is helpful for comprehension of the differences in thermal
degradation mechanisms between pure polymers and their composites. Figure 8 illustrates
the Gram–Schmidt (GS) curves for PS and PS/FGO–AHP5.0, and the results represent
the evolution of the total pyrolysis gas products of the materials. It can be seen that the
addition of FGO–AHP significantly reduces the total pyrolysis gas production of PS. In
addition, the observed absorption peak at 335 ◦C for the PS/FGO–AHP5.0 nanocomposite
corresponds to phosphine generated from the degradation of aluminum hypophosphite,
which is consistent with the weight loss of PS/FGO–AHP5.0 in TG results.

Previous studies have demonstrated that under inert conditions, neat PS decomposes
mainly into monomers, dimers, and trimers of phenyl alkenyl groups as aromatic com-
pounds [50]. The absorbance versus temperature curves of the pyrolysis products of PS
and PS/FGO–AHP5.0 are shown in Figure 8. A significant decrease in the absorbance
intensity of combustible volatiles (hydrocarbons and aromatic compounds) is observed
in PS/FGO–AHP5.0 compared to those of pure PS, indicating that the pyrolysis process
of the PS molecular chain is inhibited. This improvement is assigned to the barrier effect
of the well-dispersed FGO–AHP nanohybrids and the catalytic char formation. At high
temperatures, aluminum pyrophosphate, the decomposition product of AHP, covers the
surface of GO nanosheets, enhancing the physical shielding effect to protect the polymer
matrix from degradation, and the produced phosphors-containing acid from AHP pro-
motes the carbonization of decomposition products. Meanwhile, numerous PO ·and P· free
radicals generated by DOPO and aluminum hypophosphite decomposition can capture H
·and OH· free radicals, quenching the combustion chain reaction [51]. As the combustible
volatiles from PS pyrolysis diminish, the HRR and Ds values will decline. These results are
in accordance with the MCC and smoke density test results.
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Furthermore, absorbance intensities of pyrolysis products for neat PS and PS/FGO–
AHP5.0 vs. temperature are exhibited in Figure 9. It is observed that PS/FGO–AHP5.0
exhibits a significantly reduced absorption capacity for smoke and toxic gases (CO2 and
CO), as compared to pure PS, indicating the excellent smoke suppression effects of FGO–
AHP nanohybrids as well as the strong interfacial bonding with the material matrix.
Therefore, the lower heat release value and excellent flue gas shielding efficiency con-
firm that PS/FGO–AHP is a reliable fire-retardant nanomaterial. It is also observed that
PS/FGO–AHP5.0 exhibits significantly decreased hydrocarbon and aromatic compound
intensities compared with those of pure PS, further corroborating the strong barrier effect
of FGO–AHP nanohybrids.
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3.6. Char Residue Analysis

Figure 10a,b shows digital SEM images of the residual char for PS nanocomposites.
It is clearly shown that the residual char of PS/GO2.0 appears as an irregular surface
with numerous small holes and pits with a loose structure (Figure 10a), which can act as
channels to facilitate the exchange of oxygen, heat, and combustible gas products between
the burning matrix and the flame zone. As observed from Figure 10b, PS/FGO–AHP5.0
appears a continuous and smooth surface with a compact structure, suggesting a superior
barrier effect during the polymer combustion. The above results confirm the favorable
flame-retardant effect on PS-AHP nanocomposites.
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Furthermore, the char residues of PS/GO2.0 and PS/FGO–AHP5.0 were obtained by
heating the samples in a muffle furnace at 600 ◦C for 5 min, which were characterized by
Raman spectroscopy. The spectra of PS/GO2.0 and PS/FGO–AHP5.0 were fitted into two
peaks, corresponding to the D band (1323 cm−1) and the G band (1580 cm−1), respectively
(Figure 10c,d). The G band represents the first-order scattering E2g phonon of a sp2 hybrid
carbon atom, whereas the D band is assigned to a breathing mode of k-point photons with
A1g symmetry, which accounts for the oscillation of the rocking carbon atom of disordered
carbon or glassy carbon layer [52]. The integrated area ratio of the D band to the G band
(ID/IG) can be employed to assess the degree of disorder and crystal size of graphitization in
carbon materials. A lower ID/IG value represents a better microstructure in the char residue
with fewer defects. In Figure 10c,d, the ID/IG ratios of PS/GO2.0 and PS/FGO–AHP5.0 are
2.60 and 2.10, respectively, suggesting a higher graphitization degree and higher thermally
stable char structure for PS/FGO–AHP5.0. This improvement is attributed to the grafted
flame-retardant molecules and anchored AHP molecules on the GO surface, which catalyze
the formation of a cohesive char layer to protect the GO nanosheets from severe damage,
resulting in an improved microstructure in char residue.

To further understand the flame-retardant action of PS/FGO–AHP nanocomposites in
the condensed phase, the chemical structure of PS/GO2.0 and PS/FGO–AHP5.0 residual
char was characterized by FTIR (Figure 11). For PS/GO2.0, the peaks at 1550 and 1650 cm−1

are assigned to the vibration of benzene rings [53]. The absorption peak at 1187 cm−1 for
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C-O bonds indicates the oxidation of graphene under combustion [54]. The characteristic
peaks at 718 and 610 cm−1 are due to the C-H out-of-plane bending vibration [32]. In the
spectrum of PS/FGO–AHP5.0, the new characteristic peak at 1165 cm−1 corresponds to
the PO3

2−/PO4
3− anion or the characteristic of P-O-Ar, demonstrating the formation of a

phosphocarbonaceous structure in the char [55]. The stretch vibration of P-O-P and P-O-Ph
can be reflected at 998 cm−1 and 684 cm−1, respectively, in polyphosphate species. The
strong peak at 483 cm−1 is ascribed to the degradation product of AHP (Al-O bond stretch
modes), suggesting that the aluminum phosphate can further facilitate the charring cross-
linking reaction, providing an effective barrier against mass transfer and heat diffusion [56].
These results reveal the presence of phosphorus-containing compounds and aluminum
hypophosphite in the condensed phase, which contribute to forming a more compact char
layer, as confirmed by both SEM and Raman spectroscopy results. The resulting char
residue can serve as an effective barrier to restrain heat and mass transfer and weaken
exothermic reactions, optimizing the fire safety performance of PS nanocomposites in
condensed and gas phases.
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4. Conclusions

In conclusion, an organic–inorganic nanohybrid material, FGO–AHP, was prepared by
combining phosphorus-containing molecules functionalized GO with aluminum hypophos-
phite. Microstructural characterization confirms the successful preparation of FGO–AHP
nanohybrids. The prepared FGO–AHP nanohybrids were melt blended with PS to obtain
PS/FGO–AHP nanocomposites. SEM observation shows a uniform dispersion of FGO–
AHP in PS nanocomposites, which can be attributed to the strong interaction between the
nanohybrids and the PS matrix. The TGA results suggest that the well-designed FGO–
AHP nanofillers significantly improve the high-temperature stability of UPR, leading to a
much-decreased MMLR and a notably enhanced char yield in PS/FGO–AHP nanocom-
posites. Moreover, microcalorimetry and smoke density tests show that the incorporation
of FGO–AHP into PS significantly reduces heat release and toxic smoke emission, as the
PHRR and Dsmax values of PS/FGO–AHP5.0 are reduced by 39.9% and 50.9%, respectively.
TG–FTIR and char residue analysis results confirm the optimized fire safety performance
in PS/FGO–AHP nanocomposites. These improvements are attributed to the catalytic char
formation in the condensed phase, the physical barrier effect, and the quenching effect in
the vapor phase. The proposed strategy for hybridizing FGO and AHP harnesses the ad-



Polymers 2024, 16, 3083 15 of 17

vantages of graphene nanosheets and AHP for enhanced fire safety protection, establishing
a solid foundation for the development of high-performance flame retardants.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym16213083/s1, Table S1: Tensile testing data of PS and PS nanocomposites.
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