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Abstract: Incremental sheet forming has emerged as an excellent alternative to other material forming
procedures, incrementally deforming flat metal sheets into complex three-dimensional profiles. The
main characteristics of this process are its versatility and cost-effectiveness; additionally, it allows
for greater formability compared to conventional sheet forming processes. Recently, its application
has been extended to polymers and composites. The following review aims to present the current
state of the art in the incremental sheet forming of polycarbonate, an outstanding engineering
plastic, beginning with initial studies on the feasibility of this process for polymers. Attention is
given to the advantages, drawbacks, and main applications of incrementally formed polycarbonate
sheets, as well as the influence of process parameters and toolpath strategies on features such as
formability, forming forces, deformation and failure mechanisms, geometric accuracy, surface quality,
etc. Additionally, new hybrid forming methods for process optimisation are presented. Finally, a
discussion is provided on the technical challenges and future research directions for incremental
sheet forming of polycarbonate and, more generally, thermoplastics. Thus, this review aims to offer
an extensive overview of the incremental forming of polycarbonate sheets, useful to both academic
and industrial researchers working on this topic.

Keywords: thermoplastic forming; formability; defectiveness; forming forces; surface quality; hybrid
processes; numerical modelling; future perspectives

1. Introduction

This section provides a general introduction to incremental sheet forming, tracing its
origins, followed by the current state of the art of this technology as applied to thermoplastics.

1.1. General Introduction to the Process

The interest in developing highly flexible procedures, such as additive manufacturing
technologies, has been bolstered by recent significant advances in computer applications
in manufacturing [1]. Incremental sheet forming (ISF) fits into this context. This relatively
recent technology is widely used as a rapid prototyping method [2] and is cost-effective
because it does not require dedicated equipment in its basic variants. It also allows for
the high customisation of small-batch, non-axisymmetric sheet parts, making it suitable
for potential applications in aerospace, automotives, and other fields [3,4], thanks to the
layered manufacturing principle typical of rapid prototyping.

The principal concept of the ISF process (with various types developed; see Figure 1 for
the most common ones) is the progressive deformation of a clamped sheet of pure metals,
alloys, polymers, and composites [5,6] through the action of a forming tool controlled by a
computerised numerical control (CNC) machine that follows a path and deforms the sheet
progressively into its final shape [7].

The basic and most common version of the process is single-point incremental forming
(SPIF; see Figure 1a), which uses only the forming tool and a blank holder to keep the sheet
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in a fixed position without additional support. In this variant, the sheet is deformed from
the outside to the inside, with its centre gradually moving downwards [8].

In double-side incremental forming (DSIF; see Figure 1b), a second tool is used on
the opposite side of the sheet to provide local support [9]. The sheet is then deformed
under the cooperative effect of the two tools, improving deformation stability and reducing
material thinning.

Two-point incremental forming (TPIF) involves using a partial (Figure 1c) or full die
(Figure 1d) to support the sheet on the opposite side [10,11]; in this method, the sheet is
deformed from the inside to the outside, while the flange moves downwards.
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(b) double-side incremental forming (DSIF); (c) two-point incremental forming (TPIF) with partial
die and (d) with full die.

The main process parameters are the shape and dimensions of the tool, the forming
temperature, and the characteristics of the toolpath (step size and forming speeds). They
have been abundantly investigated and an exhaustive overview is provided in the review
by Gatea et al. [12]; the correct selection of them significantly affects features such as the
formability, deformation and failures, springback, accuracy, and surface quality of the
formed parts.

Since its inception, research on ISF has primarily focused on its applicability to different
metallic materials such as aluminium, magnesium, titanium, and their alloys. Several
reviews have been published, tracing the evolution of ISF from its origin. An initial review
by Jeswiet et al. [7] introduced the process from its genesis to 2005, followed by the works
of Echrif and Hrairi [13], Emmens et al. [14], and Behera et al. [6], covering the period up to
2015. More recent literature reviews (up until 2023) have reported the scientific progress
and future developments of ISF [15–17].
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In addition to the general reviews mentioned above, other reviews have focused on
more specific topics such as the improved formability guaranteed by ISF [18], deforma-
tion [19] and failure mechanisms [20], and analyses of the forming forces [21].

The application of ISF for the manufacture of metal parts spans several industrial fields.
For example, applications include the stiffening frame for a hydraulic access door of an
aircraft [22], car exterior skin parts [23], and cranial plates [24], among others; additionally,
a promising research direction is the formation of hole flanging by ISF [25,26]. All these
parts are shown in Figure 2a–d.
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1.2. Incremental Forming of Polymer Sheets

While early research on ISF mainly focused on metals, recent studies have shown in-
creased interest in transferring this knowledge to hard-to-form non-metallic materials [27].
For example, consider the preliminary studies on the incremental forming of sandwich
panels [28] and composite materials [29], advances in the ISF of common polymer-based
composite materials using glass [30,31] and carbon fibres as reinforcement [32], and the
characterisation of nanocomposites suitable for SPIF by mixing polyamide 12 and mont-
morillonite filler clay [33], as well as the SPIF of shape memory polymer foams [34] and
thermoplastics in general.

Thermoplastics have desirable properties such as a light weight, strength, corrosion
resistance, cost-effectiveness, etc., making them widely used in the manufacturing indus-
try [35], especially for mass production. Conventional processes for these materials require
repetitive heating, shaping, and cooling actions [36], leading to high costs in terms of energy
and investments in equipment and tools. Thermoplastic sheet components with various
shapes are frequently manufactured using common sheet metal forming processes that
strongly depend on the temperature and material properties [37]. In this context, ISF can
be an effective alternative to conventional technologies based on heating–shaping–cooling
operations, ensuring high levels of material formability even at room temperature, as well
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as economic benefits [38]; moreover, some studies have highlighted relevant advantages in
terms of impact resistance, temperature resistance, and bearing capacity [39,40].

Thanks to its flexibility, the ISF process is recommended for producing small and
medium-sized batches in several fields [41]. For example, it can be used to manufacture
aircraft canopies from polymer sheets [2] or customised medical prostheses like cranial
implants using biocompatible polymers [42–44].

The first significant attempt to form a thermoplastic by ISF, specifically polyvinylchlo-
ride, was in 2009 [45]. Subsequent investigations explored different kinds of commercial
thermoplastics, as well as new solutions and materials such as biocompatible polycaprolac-
tone [37] and bilayer polymeric sheets [46]. These works confirmed the feasibility of the
process applied to polymers.

Subsequent research analysed the influence of the main process parameters on the
formability of different polymers. For example, preliminary studies on polypropylene [39]
and on polyamide, polycarbonate, polyethylene terephthalate, and polyvinylchloride [47]
examined the effects of forming force and temperature [48], as well as incremental depth
and tool rotation [49] on the ISF of polymers.

Another significant field of investigation in ISF is related to failures and defects, as
they influence the formability and geometrical accuracy of the formed parts [27,37]. Typical
problems affecting polymer parts manufactured by ISF include ductile fracture at the
transition zone between the wall and the corner radius (Figure 3a) and tearing along
the walls (Figure 3b) [45,50], as well as defects like wrinkling (Figure 3c) and twisting
(Figure 3d) [50,51].
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(b) tearing along the walls; (c) wrinkling; (d) twisting.

These defects are strongly connected: wrinkles can twist around the axis of revolution
in the direction of tool rotation. Twisting is caused by the uncontrolled pivoting of the parts
around the clamping frame due to in-plane shear generated by the tangential forces applied
by the forming tool on the sheet. It is more likely with higher and more regular plane
forces, which cause continued strain accumulation and asymmetric strain levels [52,53].
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Although twisting is a common phenomenon for all materials subject to ISF, its magnitude
is particularly significant for materials like thermoplastics that exhibit soft behaviour. For
this family of materials, higher normal forces can produce significant indentation that
accentuates the phenomenon [54]; for example, the twist angles on axisymmetric ISF parts
obtained by a unidirectional toolpath were about 6◦ and 22◦ for aluminium alloy [55] and
polycarbonate sheets [50], respectively.

2. Incremental Forming of Polycarbonate Sheets

In this section, the main characteristics and the ISF formability of polycarbonate
are reported.

2.1. Polycarbonate: Main Properties

Polycarbonate, also known as a “transparency metal” for its fascinating properties [56],
is a lightweight and 100% recyclable amorphous thermoplastic; it is one of the most inter-
esting polymers because it combines significant mechanical and physiochemical properties
such as toughness, stiffness, strength, heat and flame resistance, high durability, shatter
resistance, thermostability, good electrical insulation, and excellent transparency [57,58].
Polycarbonate is an outstanding engineering plastic used in various fields such as com-
munication, optical/lighting, glass replacement, medical apparatus, transport, household
products, aerospace, electrical and safety products, and more [59,60].

Parent polycarbonate is an isotropic elastoplastic material with mechanical behaviour
that is strongly different from that of metals, as it is highly influenced by the working
conditions. While metals exhibit more or less well-ordered crystalline lattices of atoms,
polycarbonate consists of molecules of carbon atoms bonded into long chains, resembling a
tangled collection of yarn scraps, that can rearrange into infinite different conformations
depending on several parameters, such as the stress level [61]; specifically, the chain
orientation is a phenomenon unique to polymers. Anisotropy emerges when molecules
align along a certain direction, resulting from strong covalent bonds along the chain axis
and weaker secondary bonds in the transverse direction [62].

For a better understanding [63], refer to the tensile tests carried out following the
ASTM standard D638-14 [64]; they determine the typical engineering stress–strain curves
for engineering thermoplastics below the glass transition temperature [62], as reported in
Figure 4a for specimens cut at 0, 45, and 90◦ relative to the extrusion direction. The first
linear viscoelastic region is where the polymer chains undergo stretching and disentangle-
ment in response to applied stress. This region ends at the yield point, after which increased
strain occurs with reduced stress. This phase involves the breaking of van der Waals bonds
and the occurrence of permanent deformations such as necking. Subsequently, the mechan-
ically induced orientation of polymer chains (see Figure 4b) results in a steepening slope,
up to the material’s breaking point [65].
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2.2. Formability of Polycarbonate Worked by ISF

The ISF method generates large regions of homogenous deformation, avoiding sig-
nificant stress and strain gradients [66]; consequently, it guarantees a higher material
formability compared to that of conventional sheet forming processes. However, some
research analysing the formability of ISF polymer parts uses metal-derived methods [67],
which are not always representative of the thermoplastics’ behaviour; the occurrence of
failures and defects like twisting and wrinkling in polymer ISF parts greatly affects the
product quality, making it necessary to consolidate established methods or develop new
procedures for formability evaluation.

In Refs. [36,63], Nakajima specimens with different geometries were used to induce
strain in tensile, plane, biaxial, and equibiaxial states through an Erichsen model 142-20
universal sheet metal testing machine, following the ISO standard 12004-2 [68], to determine
the formability limits through the necking and fracture of polycarbonate sheets 1 and 2 mm
in thickness. For the formability limits for necking, the time-dependent methodology for
metals was used [69], while the limits for fracture were determined by measuring the
principal strains through a digital image correlation (DIC) system, due to the significant
springback of polymers. This methodology proved adequate for identifying the onset
of necking in polycarbonate sheets; moreover, the forming limit curves described in the
principal strain space were well represented by straight lines, unlike the typical V-shape
seen in conventional metal forming processes (see Figure 5a).

According to the method proposed by Hussain et al. for metal sheets [66], another way
to investigate the formability of polycarbonate sheets involves conducting varying slope
angle tests that use a curved-line generatrix to create a revolved surface whose slope angle
varies continuously, instead of creating several fixed slope angle geometries with increasing
angle; they are stopped as soon as the workpiece fails, and the corresponding angle is
determined. Durante et al. [51] carried out both fixed and varying slope angle tests on 1.4
and 1.9 mm thick sheets, varying the tool diameter. They investigated cone and pyramid
frusta (with square and triangular bases); the latter introduced significant geometrical
singularities such as sloped ribs to further stress the material’s formability. The tests
highlighted the high formability of the polycarbonate sheets, regardless of the shape of the
parts. The maximum slope angle increased with the tool diameter, while the thickness of the
sheets showed a minor influence; the pyramid frusta recorded a high strain concentration
that reduced the formability of the sheets. Moreover, the varying slope angle tests (see
the corresponding geometries in Figure 5b) overestimated the formability of the sheets
compared to that of the fixed ones (see Figure 5c); under the heaviest conditions (pyramid
frusta with triangular base), the high discrepancy between the two tests made the varying
slope angle test not fully representative of the formability of the polycarbonate sheets.
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3. Enhancement of Incremental Forming of Polycarbonate Sheets

This section presents some solutions and tools for optimising the forming process
applied to polycarbonate sheets. The reasons for this research include attempts to improve
the accuracy and range of feasible geometries, as well as the formability of materials
that are difficult to work with at room temperature using conventional ISF. For example,
considering metal sheets, several methods of heat-assisted ISF developed to improve the
formability of materials like magnesium and titanium alloys are described in a review by
Liu [70]. Additionally, the development of hybrid processes for low-volume production of
sheet metal parts, which combine ISF with stretch forming and laser heat treatment, as well
as the forming of hybrid materials, is presented in [71].

3.1. Toolpath Strategy

Two studies by Formisano et al. [72,73] explore the possibility of reducing the defec-
tiveness of polycarbonate components obtained by SPIF of 1 and 1.5 mm thick sheets by
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choosing a more suitable toolpath strategy; they highlight that monitoring and measuring
the ISF forces represent an efficient tool for controlling process quality [74].

The studies began by observing a significant reduction in twisting for metal [7] and
polycarbonate parts [50] using an alternate toolpath instead of a unidirectional one. How-
ever, this solution proved ineffective against instabilities and wrinkling on thin thermo-
plastic sheets [51]. The experimental campaign included the analysis of forming forces,
deformation states, surface quality, failures, and defects of cone frusta with fixed wall
angles, obtained using a reference and different stair-based unidirectional helical toolpath
strategies, under both lubricated and dry conditions.

The stair paths, while resulting in higher working times, help reduce twisting and,
more generally, defect phenomena due to a discontinuous and lower torque action; in
addition, for these strategies, the influence of the lubrication on surface roughness is quite
irrelevant. Figure 6 reports a not-to-scale representation of the reference (Figure 6a) and
one stair-based toolpath strategy (Figure 6b), and the corresponding cone frusta.
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Figure 6. Not-to-scale representation of (a) the reference and (b) one stair-based toolpath strategy
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3.2. Preliminary Cold-Rolling

This solution involves a preliminary cold-rolling process and investigates its influence
on the SPIF of polycarbonate sheets [75,76]; different thicknesses of the parent sheets (from
1 to 4 mm) and rolling reduction ratios (up to 1/2, along only one or two directions) were
considered for the manufacture of square pyramid frusta with varying or fixed slope angles.
Figure 7a reports the equipment for processing the polycarbonate sheets and Figure 7b
displays the square pyramid frusta for the different forming tests.

Sheet rolling causes work hardening and a decrease in ductility; consequently, the
process experiences an increase in forming forces and reduced formability. The effects
are more evident with an increase in the reduction ratio, making the sheets very brittle,
at a reduction ratio of 1/2. Moreover, due to their anisotropy, a higher risk of failures
and defects is observed for sheets rolled in only one direction. This aspect also influences
the location and propagation of cracks: the higher forming forces and anisotropy cause
wrinkling instability in the sheets rolled in only one direction; on the other hand, twisting
is practically the same for both the parent and rolled sheets. Finally, preliminary rolling can
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be a valid design strategy in some cases; for example, bidirectional rolling can be chosen to
obtain components with low slope angles, while unidirectional rolling can be a solution
if the components show different slope angles, imposing the rolling reduction along the
direction of the shallower faces.

Polymers 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

3.2. Preliminary Cold-Rolling 
This solution involves a preliminary cold-rolling process and investigates its influ-

ence on the SPIF of polycarbonate sheets [75,76]; different thicknesses of the parent sheets 
(from 1 to 4 mm) and rolling reduction ratios (up to 1/2, along only one or two directions) 
were considered for the manufacture of square pyramid frusta with varying or fixed slope 
angles. Figure 7a reports the equipment for processing the polycarbonate sheets and Fig-
ure 7b displays the square pyramid frusta for the different forming tests. 

 
Figure 7. SPIF with preliminary cold-rolling: (a) equipment for the processing of the polycarbonate 
sheets and (b) geometries of the square pyramid frusta for the forming tests. 

Sheet rolling causes work hardening and a decrease in ductility; consequently, the 
process experiences an increase in forming forces and reduced formability. The effects are 
more evident with an increase in the reduction ratio, making the sheets very brittle, at a 
reduction ratio of 1/2. Moreover, due to their anisotropy, a higher risk of failures and de-
fects is observed for sheets rolled in only one direction. This aspect also influences the 
location and propagation of cracks: the higher forming forces and anisotropy cause wrin-
kling instability in the sheets rolled in only one direction; on the other hand, twisting is 
practically the same for both the parent and rolled sheets. Finally, preliminary rolling can 
be a valid design strategy in some cases; for example, bidirectional rolling can be chosen 
to obtain components with low slope angles, while unidirectional rolling can be a solution 
if the components show different slope angles, imposing the rolling reduction along the 
direction of the shallower faces. 

3.3. Self-Heating by Tool Rotation and Travelling Speed 
Other studies [77,78] have examined the self-heating abilities of the polycarbonate 

sheets during SPIF as a result of the travelling speed and the rotation of the tool. This 
allows for the control of the temperature at the tool/workpiece contact surface using 

Figure 7. SPIF with preliminary cold-rolling: (a) equipment for the processing of the polycarbonate
sheets and (b) geometries of the square pyramid frusta for the forming tests.

3.3. Self-Heating by Tool Rotation and Travelling Speed

Other studies [77,78] have examined the self-heating abilities of the polycarbonate
sheets during SPIF as a result of the travelling speed and the rotation of the tool. This allows
for the control of the temperature at the tool/workpiece contact surface using infrared
(IR) cameras (see Figure 8a). The tool rotation (from 0 to 400 rpm) and travelling speed
(from 1000 to 4000 mm/min) were varied for the incremental forming of 2 and 3 mm thick
sheets and their influence on the temperature and processing loads was determined (see
Figure 8b).

These studies show that it is possible to increase the temperature of polycarbonate
sheets by appropriately selecting travelling and tool rotation speeds; the latter has the
highest influence. Using a tool with a flat end enables a higher frictional heat compared to
that with a round-end tool; this allows high temperatures to be reached without excessively
high tool rotation speeds.

Higher temperatures (in the range of 10 0 ÷ 120 ◦C) result in lower processing loads
and significantly reduced springback without surface degradation; these temperatures are
reached with a rotational speed of 200 rpm and a travelling speed of 1000 mm/min. On the
other hand, processing conditions involving temperatures higher than 120 ◦C cause the
opacification of the worked surfaces and a significant deterioration in their quality in terms
of roughness; near the glass transition temperature of polycarbonate (≈150 ◦C), chips are
produced from the worked surface.
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3.4. Contactless Method by Hot Air

In two recent works, Almadani et al. [79,80] propose eliminating the physical interac-
tion between 0.75 mm thick polycarbonate sheets and a rigid forming tool by developing
and optimising a contactless SPIF method based on hot compressed air as a deformation
tool. The initial studies were carried out at an air temperature of 160 ◦C, a pressure of
1 bar, and a nozzle speed of 750 mm/min; then, the process’s effectiveness was assessed
by using a design of experiments (DOE) with 54 different forming conditions, and the
influence of the most significant parameters was evaluated using the response surface
method. Figure 9a,b report, respectively, a schematic diagram and the experimental setup
after the deformation process.
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The studies reveal that the contactless process can be tailored for a wide range of
polymer materials; in addition, they highlight the importance of air pressure, air tempera-
ture, and feed rate, as these factors influence the process’s formability, surface quality, and
variations in profiles and thicknesses.

3.5. Numerical Analyses

Since ISF represents one of the novel manufacturing processes, it has gained much
attention from researchers and practitioners, leading to the development of several ana-
lytical and numerical process models. Consider, for example, artificial intelligence (AI)
techniques such as artificial neural networks, genetic algorithms, support vector regression,
fuzzy logic, etc., and the finite element method (FEM) [81]. FEM is a numerical modelling
technique used to solve a wide range of problems in different fields of engineering and
science; it finds approximate solutions to partial differential equations, producing much
more detailed results than experimental investigations, often more quickly and less expen-
sively [82]. It can provide visual representations of the results, such as stresses, strains,
or temperature fields, which are useful for understanding the behaviour of systems and
identifying potential problems or opportunities for improvement.

The incremental forming of polymer sheets was frequently analysed using FEM
simulations. For example, the axial force in the SPIF of thermoplastic sheets was predicted
in [83], while the feasibility of an advanced robotised polymer ISF was investigated in [84].
Regarding the aim of this review, Figure 10 provides an overview of FEM analyses applied
to the incremental forming of polycarbonate sheets; they are described in this subsection.
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Two authors’ papers aim to identify, through a numerical approach, toolpath strategies
for optimising the ISF of polycarbonate [85,86]. The FEM commercial code LS DYNA was
used to simulate the process; it is a general-purpose FEM programme used for complex
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real-world problems related to, among others, the automobile, aerospace, construction,
military, manufacturing, and bioengineering industries, whose efficiency was guaranteed
by different studies [3,87]. Through an accurate interpretation of the results, FEM analyses
represent a powerful tool for process optimisation both directly (in terms of manufacturing
time and energy states) and indirectly (by predicting defectiveness and risks of failures
through, for example, a careful interpretation of the forming forces; see Figure 10a). Another
study using LS DYNA follows a numerical–experimental approach to investigate wrinkling
in 1 mm thick polycarbonate sheets (Figure 10b,c), highlighting the critical conditions
for the occurrence of this phenomenon and the influence of the toolpath strategy on the
deformation mechanisms [88].

Regarding the above-reported strategy of self-heating through the tool rotation and
travelling speed, a thermo-mechanical FEM model of the process was developed, calibrated,
and validated using an explicit time integration approach within the Abaqus 6.17 frame-
work. It provides accurate predictions of temperature evolution and processing loads [32]
and serves as a key tool to predict adverse processing conditions, i.e., process parameter
values that lead to excessively high temperatures. The same software and approach were
used to determine the stress, strain, and thickness distributions (Figure 10d) during the
manufacturing of cone and pyramid frusta (with square and triangular bases) from sheets
with two different thicknesses [51], providing significant insight into the process. The FEM
predictions show a strong correlation between the sheet thickness distribution and the
differences in failures occurring in square and triangular frusta.

Support for experimental works on contactless incremental forming by hot air was
provided by numerical analyses using ANSYS 21 Workbench (see the temperature evolution
in Figure 10e), employing a computational fluid dynamic (CFD) model [89]. The FEM model
can predict the formed part geometries and the strain progression, thereby establishing a
solid groundwork for advancing and refining the contactless process.

4. Conclusions and Future Perspectives

Although there has been great effort in research on the ISF of metal parts, the process as
applied to polymers needs to be studied more deeply. This review, after a concise overview
of the process from its origins and the state of the art applied to thermoplastics, focuses
on one of the most interesting engineering plastics, polycarbonate. Particular attention is
devoted to describing the main characteristics and formability of polycarbonate sheets as
a function of the main process parameters; the document then reports some strategies to
improve the formability of materials that are difficult to work with at room temperatures
using common ISF variants, as well as the accuracy and range of feasible geometries,
among other aspects. These solutions range from optimised toolpath strategies to hybrid
forming methods.

Regarding technical challenges for the ISF of polycarbonate, and, more generally, ther-
moplastics, they can encompass several fields, including but not limited to the following:

• More effective analytical mechanics—this allows for a better description of the material
behaviour of thermoplastics under ISF conditions;

• The development or improvement of alternative hybrid forming and toolpath strategies—
these solutions represent a viable way to improve the process in terms of the material
formability and the variety and complexity of the components, among others;

• The increased use of thermo-mechanical numerical simulations—the development of
accurate numerical models represents a valid tool to investigate various features, such
as deformations and failure mechanisms.

Finally, new research directions are strongly oriented towards aspects involving energy
implications, as they are of relevant interest from a sustainable manufacturing perspective.
The optimisation of ISF processes represents a viable way towards more efficient and
green manufacturing processes [90]; for example, a study on the ISF of polycarbonate and
polyvinylchloride, aimed at developing a methodology to appropriately set the process
parameters to obtain the best and most cost-effective parts [91], highlighted the ability
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of ISF to reduce energy consumption compared to conventional processes, resulting in a
positive impact on the environment.
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59. Beşliu, I.; Tamaşag, I.; Slătineanu, L. An Experimental Study on Incremental Forming Process of Polycarbonate Sheets. Macromol.
Symp. 2021, 395, 2000282. [CrossRef]

60. Kyriacos, D. Polycarbonates. In Brydson’s Plastics Materials, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 17;
pp. 457–485, ISBN 978-0-323-35824-8.

61. Rey Calderón, A.A.; Díaz Díaz, A. New Aspects in the Mechanical Behavior of a Polycarbonate Found by an Experimental Study.
Adv. Mater. Sci. Eng. 2018, 2018, 1540919. [CrossRef]

62. Gedde, U.W. Polymer Physics; Springer: Berlin/Heidelberg, Germany, 1999.
63. Rosa-Sainz, A.; Magrinho, J.P.; Vaz, M.F.; Silva, M.B.; Centeno, G.; Vallellano, C. Analysing the Mechanisms of Failure in

Polycarbonate Sheets Deformed by SPIF. J. Mater. Res. Technol. 2024, 31, 2156–2168. [CrossRef]
64. ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
65. Lampman, S. Characterization and Failure Analysis of Plastics; ASM International: Novelty, OH, USA, 2004; ISBN 978 0 87170 789 5.
66. Hussain, G.; Gao, L.; Zhang, Z.Y. Formability Evaluation of a Pure Titanium Sheet in the Cold Incremental Forming Process. Int. J.

Adv. Manuf. Technol. 2008, 37, 920–926. [CrossRef]
67. Formisano, A.; Durante, M.; Boccarusso, L.; Astarita, A. The Influence of Thermal Oxidation and Tool-Sheet Contact Conditions

on the Formability and the Surface Quality of Incrementally Formed Grade 1 Titanium Thin Sheets. Int. J. Adv. Manuf. Technol.
2017, 93, 3723–3732. [CrossRef]

68. ISO12004-2; Metallic Materials-Sheet and Strip-Determination of Forming Limit Curves Part 2: Determination of Forming Limit
Curves in Laboratory. ISO: Geneva, Switzerland, 2008.

69. Martínez-Donaire, A.J.; García-Lomas, F.J.; Vallellano, C. New Approaches to Detect the Onset of Localised Necking in Sheets
under Through-Thickness Strain Gradients. Mater. Des. 2014, 57, 135–145. [CrossRef]

70. Liu, Z. Heat-Assisted Incremental Sheet Forming: A State-of-the-Art Review. Int. J. Adv. Manuf. Technol. 2018, 98, 2987–3003.
[CrossRef]

71. Araghi, B.T.; Göttmann, A.; Bambach, M.; Hirt, G.; Bergweiler, G.; Diettrich, J.; Steiners, M.; Saeed-Akbari, A. Review on the
Development of a Hybrid Incremental Sheet Forming System for Small Batch Sizes and Individualized Production. Prod. Eng.
2011, 5, 393–404. [CrossRef]

72. Formisano, A.; Boccarusso, L.; De Fazio, D.; Durante, M. Effects of Toolpath on Defect Phenomena in the Incremental Forming of
Thin Polycarbonate Sheets. Int. J. Adv. Manuf. Technol. 2024, 133, 4957–4966. [CrossRef]

73. Formisano, A.; Boccarusso, L.; De Fazio, D.; Durante, M. Experimental Evidence on Incremental Formed Polymer Sheets Using a
Stair Toolpath Strategy. J. Manuf. Mater. Process. 2024, 8, 105. [CrossRef]

74. Wang, J.; Nair, M.; Zhang, Y. An Efficient Force Prediction Strategy for Single Point Incremental Sheet Forming. Int. J. Adv. Manuf.
Technol. 2017, 92, 3931–3939. [CrossRef]

75. Durante, M.; Formisano, A.; Boccarusso, L.; Langella, A. Influence of Cold-Rolling on Incremental Sheet Forming of Polycarbonate.
Mater. Manuf. Process. 2020, 35, 328–336. [CrossRef]

76. Durante, M.; Formisano, A.; Boccarusso, L.; Astarita, A.; Langella, A. Single Point Incremental Forming of Cold-Rolled Polycar-
bonate Sheets. AIP Publ. 2019, 2113, 060007.

77. Formisano, A.; Lambiase, F.; Durante, M. Polymer Self-Heating during Incremental Forming. J. Manuf. Process. 2020, 58,
1189–1199. [CrossRef]

https://doi.org/10.1016/j.jmatprotec.2015.03.014
https://doi.org/10.1016/j.jmatprotec.2017.11.005
https://doi.org/10.1007/s00170-019-03298-w
https://doi.org/10.1016/j.jmatprotec.2019.116396
https://doi.org/10.1016/j.cirp.2010.03.018
https://doi.org/10.1177/0954405413512812
https://doi.org/10.1080/10426914.2016.1232810
https://doi.org/10.1177/0954408913475562
https://doi.org/10.1016/j.jmatprotec.2018.11.043
https://doi.org/10.1016/j.jmatprotec.2004.04.080
https://doi.org/10.1002/masy.202000282
https://doi.org/10.1155/2018/1540919
https://doi.org/10.1016/j.jmrt.2024.06.139
https://doi.org/10.1007/s00170-007-1043-7
https://doi.org/10.1007/s00170-017-0805-0
https://doi.org/10.1016/j.matdes.2014.01.012
https://doi.org/10.1007/s00170-018-2470-3
https://doi.org/10.1007/s11740-011-0325-y
https://doi.org/10.1007/s00170-024-14047-z
https://doi.org/10.3390/jmmp8030105
https://doi.org/10.1007/s00170-017-0422-y
https://doi.org/10.1080/10426914.2020.1726946
https://doi.org/10.1016/j.jmapro.2020.09.031


Polymers 2024, 16, 3098 16 of 16

78. Formisano, A.; Durante, M.; Langella, A.; Minutolo, F.M.C. Localized Heat Assisted Incremental Forming of Polycarbonate Sheets
by Tool Rotation. AIP Conf. Proc. 2019, 2113, 110002. [CrossRef]

79. Almadani, M.; Guner, A.; Hassanin, H.; Essa, K. Hot-Air Contactless Single-Point Incremental Forming. J. Manuf. Mater. Process.
2023, 7, 179. [CrossRef]

80. Almadani, M.; Guner, A.; Hassanin, H.; Essa, K. Optimisation of a Novel Hot Air Contactless Single Incremental Point Forming
of Polymers. J. Manuf. Process. 2024, 117, 302–314. [CrossRef]

81. Nagargoje, A.; Kankar, P.K.; Jain, P.K.; Tandon, P. Application of Artificial Intelligence Techniques in Incremental Forming: A
State-of-the-Art Review. J. Intell. Manuf. 2023, 34, 985–1002. [CrossRef]

82. Gómez-López, L.M.; Miguel, V.; Martínez, A.; Coello, J.; Calatayud, A. Simulation and Modeling of Single Point Incremental
Forming Processes within a Solidworks Environment. Procedia Eng. 2013, 63, 632–641. [CrossRef]

83. Medina-Sanchez, G.; Garcia-Collado, A.; Carou, D.; Dorado-Vicente, R. Force Prediction for Incremental Forming of Polymer
Sheets. Materials 2018, 11, 1597. [CrossRef]

84. Ostasevicius, V.; Eidukynas, D.; Grigaliunas, V.; Jurenas, V.; Paleviciute, I.; Gudauskis, M. Investigation of Advanced Robotized
Polymer Sheet Incremental Forming Process. Sensors 2021, 21, 7459. [CrossRef]

85. Formisano, A.; Durante, M.; Boccarusso, L.; Memola Capece, F. A Numerical Approach to Optimize the Toolpath Strategy for
Polymers Forming. Mater. Res. Proc. 2023, 28, 1697–1702. [CrossRef]

86. Formisano, A.; Boccarusso, L.; Durante, M. Optimization of Single-Point Incremental Forming of Polymer Sheets through FEM.
Materials 2023, 16, 451. [CrossRef]

87. Suresh, K.; Bagade, S.D.; Regalla, S.P. Deformation Behavior of Extra Deep Drawing Steel in Single-Point Incremental Forming.
Mater. Manuf. Process. 2015, 30, 1202–1209. [CrossRef]

88. Formisano, A.; Durante, M.; Formisano, A.; Durante, M. A Numerical-Experimental Investigation of the Wrinkling Defect in
Incremental Forming of Thin Polycarbonate Sheets. Int. Rev. Model. Simul. 2019, 12, 206–211. [CrossRef]

89. Almadani, M.; Guner, A.; Hassanin, H.; De Lisi, M.; Essa, K. Contactless Single Point Incremental Forming: Experimental and
Numerical Simulation. Int. J. Adv. Manuf. Technol. 2023, 129, 5167–5179. [CrossRef]

90. Zhang, C.; Wang, C.; Gao, M.; Liu, C. Emergy-Based Sustainability Measurement and Evaluation of Industrial Production Systems.
Environ. Sci. Pollut. Res. 2022, 1, 1–13. [CrossRef] [PubMed]

91. Bagudanch, I.; Garcia-Romeu, M.L.; Sabater, M. Incremental Forming of Polymers: Process Parameters Selection from the
Perspective of Electric Energy Consumption and Cost. J. Clean. Prod. 2016, 112, 1013–1024. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1063/1.5112645
https://doi.org/10.3390/jmmp7050179
https://doi.org/10.1016/j.jmapro.2024.02.042
https://doi.org/10.1007/s10845-021-01868-y
https://doi.org/10.1016/j.proeng.2013.08.253
https://doi.org/10.3390/ma11091597
https://doi.org/10.3390/s21227459
https://doi.org/10.21741/9781644902479-183
https://doi.org/10.3390/ma16010451
https://doi.org/10.1080/10426914.2014.994755
https://doi.org/10.15866/iremos.v12i4.17614
https://doi.org/10.1007/s00170-023-12401-1
https://doi.org/10.1007/s11356-022-23749-4
https://www.ncbi.nlm.nih.gov/pubmed/36284043
https://doi.org/10.1016/j.jclepro.2015.08.087

	Introduction 
	General Introduction to the Process 
	Incremental Forming of Polymer Sheets 

	Incremental Forming of Polycarbonate Sheets 
	Polycarbonate: Main Properties 
	Formability of Polycarbonate Worked by ISF 

	Enhancement of Incremental Forming of Polycarbonate Sheets 
	Toolpath Strategy 
	Preliminary Cold-Rolling 
	Self-Heating by Tool Rotation and Travelling Speed 
	Contactless Method by Hot Air 
	Numerical Analyses 

	Conclusions and Future Perspectives 
	References

