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Abstract: The emergence of 3D and 4D printing has transformed the field of polymer composites,
facilitating the fabrication of complex structures. As these manufacturing techniques continue to
progress, the integration of machine learning (ML) is widely utilized to enhance aspects of these
processes. This includes optimizing material properties, refining process parameters, predicting
performance outcomes, and enabling real-time monitoring. This paper aims to provide an overview
of the recent applications of ML in the 3D and 4D printing of polymer composites. By highlighting
the intersection of these technologies, this paper seeks to identify existing trends and challenges, and
outline future directions.
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1. Introduction

In recent years, 3D and 4D printing of polymer composites have gained attention
across various industries, ranging from healthcare [1,2] to aerospace [3,4]. Simultaneously,
machine learning (ML) is emerging as a key tool for optimizing additive manufacturing
(AM) processes, offering methods to predict material properties, improve printing parame-
ters, and enhance overall efficiency. Despite the growing interest in this intersection, the
number of studies combining ML with 4D printing (4DP) of polymer composites remains
relatively limited, with most publications focusing on specific applications of ML. Accord-
ing to data from Scopus, there are currently 47 publications that include the terms “machine
learning”, “polymer composites”, and “3D or 4D printing”. Notably, the year 2024 has
seen the highest output, with 21 publications, suggesting a significant increase in research
activity in this area.

Figure 1 presents visualizations of the analysis of publications related to machine
learning, polymer composites, and 3D/4D printing based on Scopus data. Figure 1a
illustrates the changes in the number of publications on this topic over time, providing
insights into the relevance and growing interest in this research area. Figure 1b shows
the distribution of these publications across various fields, highlighting the most active
research directions. Figure 1c depicts the geographical distribution of publications from
different countries, revealing the regions that are actively contributing to this field of study.
Finally, Figure 1d presents the types of documents prevalent in this area, whether they are
articles, conference papers, or other formats.
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Figure 1. Data visualizations illustrating various distributions: (a) annual publication counts over the
years, (b) distribution of fields in the analyzed dataset, (c) geographical distribution of contributions
by country, and (d) distribution of document types. According to Scopus data.

The aim of this review is to systematically analyze the existing literature, discuss
current advancements, and identify key challenges in the application of ML to 3DP and
4DP of polymer composites. Additionally, this review provides recommendations for
future research to integrate these technologies. The structure of the paper covers the role
of ML in material enhancement, process optimization, property prediction, and quality
monitoring, as well as a discussion of the future prospects in this field.

To facilitate the reader’s understanding of these topics, the paper presents a structured
outline. It begins with an overview of 3D and 4D printing technologies in Section 2, laying
the groundwork for understanding various additive manufacturing methods. This includes
examining material extrusion (Section 2.1) and stereolithography (Section 2.2), followed
by an exploration of selective laser sintering (Section 2.3) and digital light processing
(Section 2.4). Next, the paper delves into jetting technologies (Section 2.5) and direct ink
writing (Section 2.6), highlighting their unique features and applications. The concept of 4D
printing is introduced (Section 2.7), showcasing its potential for creating adaptive materials.
The properties of polymer composites used in these technologies are analyzed (Section 3),
followed by a discussion on the applications of machine learning in both 3D (Section 4) and
4D printing (Section 5) of polymer composites. This leads into a section on transforming
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polymer composites into ceramics and other materials (Section 6), addressing relevant
processes and implications. The paper also discusses challenges and limitations associated
with these technologies (Section 7), providing a critical perspective on their current state. It
concludes with future directions for research and development (Section 8), emphasizing
the importance of continued innovation in additive manufacturing, before wrapping up
with a summary of the key findings (Section 9).

2. 3D and 4D Printing: An Overview

Three-dimensional printing (3DP) is a technology that enables the creation of complex
structures by layering materials according to digital models. The most common techniques
used in 3DP of polymer composites include fused deposition modeling (FDM), stereolithog-
raphy (SLA), and selective laser sintering (SLS). These methods allow for high precision
and customization in the production of functional parts [5], which makes 3DP suitable for
a wide range of applications, from rapid prototyping to the production of end-use products
in industries like aerospace, automotive, healthcare, and consumer goods.

Table 1 outlines key 3DP and extrusion techniques, including their processes, common
materials, potential applications, advantages, and associated challenges.

Table 1. Summary of 3DP techniques with updated terminology according to ASTM 52900:2021.

Technique Process Materials Applications Advantages Challenges

Fused Deposition
Modeling

(FDM) [6–8]/
Fused Filament

Fabrication
(FFF) [9–11]

Material Extrusion

PLA, ABS, PETG,
nylon, composite

filaments (e.g.,
carbon

fiber-reinforced)

Prototypes,
consumer
products,

lightweight
structures

Low cost, widely
accessible, variety

of materials
available

Rough surface
finish, limited

mechanical
strength

Stereolithography
(SLA) [12–14]

Vat Photopolymer-
ization

Photopolymer
resins (tough,

flexible,
bio-compatible)

High-detail
prototypes,

medical/dental
models

High precision,
smooth surface

finish, fine details

Brittle materials,
requires

post-processing
(curing)

Selective Laser
Sintering

(SLS) [15–17]

Powder Bed
Fusion

Nylon, polyamide,
TPU, composites

Functional
prototypes,
aerospace/

automotive parts

No support
structures needed,
strong mechanical

properties

Rough surface,
more expensive
than FDM/SLA

Digital Light
Processing

(DLP) [18–20]

Vat Photopolymer-
ization

Photopolymer
resins

Jewelry, dental
devices,

high-resolution
prototypes

Faster than SLA,
high resolution

Relies on
photosensitive
resins, requires
post-curing and

washing to ensure
full polymerization

Multi Jet Fusion
(MJF) [21–23]

Powder Bed
Fusion Nylon, TPU

Functional parts,
small batch

manufacturing

Excellent
mechanical

properties, no
supports required

Rough surface
finish, requires
post-processing

(dyeing, etc.)

Material Jetting
(PolyJet by

Stratasys) [24–26]
Material Jetting

Photopolymers
(rigid, rubber-like,

transparent)

Multi-material
prints, medical
models, tactile

products

High resolution,
smooth finish,
multi-material

printing

Material durability
limitations,

complex
post-processing

Direct Ink Writing
(DIW) [27–29] Material Extrusion

Hydrogels,
silicones,

composite pastes

Soft robotics,
biomedical devices,
tissue engineering

Can print
functional/

biologically active
materials

Limited material
types, weaker

mechanical
properties

Four-dimensional printing extends the capabilities of 3DP by introducing time as a
fourth dimension (all techniques are summarized in Table 2). It involves the fabrication of
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smart materials or structures that can change shape, properties, or behavior over time in
response to external stimuli, such as heat, moisture, or light [30].

Table 2. Summary of 4DP techniques.

Technique Process Materials Applications Advantages Challenges

Shape Memory
Polymer

(SMP)-Based
4DP [31–34]

Printed using
techniques like

FDM, SLA, or SLS,
incorporating
shape memory
polymers that
“remember” a
programmed

shape and return
to it when exposed

to stimuli (e.g.,
heat).

Shape memory
polymers,

composites

Self-assembling
structures,

biomedical devices
(e.g., stents),

robotics, adaptive
products

Programmable and
responsive to

stimuli

Limited
availability of

high-performance
SMP materials,

complex control
over

transformations

Hydrogel-Based
4DP [35–39]

Hydrogels are
printed using DIW,

PolyJet, or SLA,
designed to change
shape or properties

in response to
water or humidity.

Hydrogels,
stimuli-responsive

polymers (e.g.,
pH-responsive,

temperature-
responsive)

Tissue scaffolds,
drug delivery

systems, wearable
electronics

Biocompatibility,
highly responsive
to environmental

conditions

Control over
swelling, ensuring
long-term stability

Stimuli-
Responsive

Composite-Based
4DP [40–45]

Printed using
standard 3DP

methods (FDM,
SLS, etc.) but with

composite
materials that react
to stimuli such as

light, magnetic
fields, or heat.

Composites with
nanoparticles,
liquid crystal
elastomers,

magnetically active
particles

Soft robotics,
aerospace

components,
deployable
structures

Tailored responses
to specific external

stimuli

Complex
fabrication
processes,

challenges in
controlling

transformations

These dynamic transformations open up possibilities for creating self-assembling
systems, adaptive materials, and responsive structures, which are particularly relevant in
fields like biomedical devices, robotics, and adaptive architectures. To better understand
these aspects, a Venn diagram in Figure 2 illustrates the key components of different AM
techniques, including process types, materials used, and applications. Surrounding petals
emphasize the main advantages and limitations associated with each technology.

However, both 3D and 4DP of polymer composites come with inherent challenges. The
mechanical properties of printed parts can depending on the printing parameters, the type
of polymer matrix used, and the incorporation of reinforcing fillers. In 4DP, the complexity
increases further, as materials need to exhibit predictable and controllable transformations.
The quality and functionality of printed parts are influenced by numerous factors, such
as material selection, process control, and post-processing, making it difficult to optimize
production efficiently using traditional trial-and-error methods [46,47].
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Material Extrusion
(FDM, DIW)

Photopolymers
(SLA, DLP)

Powder Bed Fusion
(SLS, MJF)

Strong Materials

Prototyping
(FDM, SLA)

Consumer & Soft Robotics
(DIW)

Medical Applications
(SLA, DLP, PolyJet)

Advanced Applications
(Composite and Multi-Material Printing)

Process Type Materials

Applications

Machine Learning Applications
(Process Optimization, Quality Control)

Advantages:
- Low Cost

- High Precision
- Material Variety

Advantages:
- Strong Materials

- Multi-Material Options
- No Supports Needed

Limitations:
- Post-Processing Required

- Surface Finish Issues
- Material Limitations

Limitations:
- High Cost

- Limited Flexibility
- Brittle Materials

3D Printing Techniques with Process, Materials, Applications, Advantages, and Limitations

Figure 2. Venn diagram illustrating key aspects of various 3DP techniques.

Figure 3 presents a conceptual graph that illustrates the interconnections among key
concepts in this domain. The graph includes elements, such as ML methods (e.g., artificial
neural networks, variational autoencoders, and generative adversarial networks), as well
as their applications in quality control, defect detection, and process optimization.

This approach helps us to better understand how different components interact with
each other and identifies promising directions for further research and development in the
fields of ML and AM. ML has the potential to predict the performance of polymer compos-
ites in various environmental conditions and assist in real-time monitoring of the printing
process, ensuring quality and consistency [48,49]. By leveraging ML, the development of
smart materials and structures can become more efficient, reducing experimentation time
and enhancing the overall reliability of 3D- and 4D-printed products.
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Figure 3. Bibliometric network visualization.

2.1. Material Extrusion

Material extrusion, the FDM process, also known as FFF, is an AM technique in which
a 3D object is constructed layer by layer using melted material [50–59]. The process begins
with model preparation, where a 3D model is created using CAD (Computer-Aided Design)
software. This model is then processed by slicing software, which divides the model into
horizontal layers and generates instructions, or G-code, for the 3D printer. A schematic
representation of the process is shown in Figure 4.
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Heating Chamber

Drive Wheels

Extrusion Head

Object/Model

Build Platform

Nozzle

Extruder

Polymer Filament
Filament Spool

X - Axis

Y - Axis

Z - Axis

Figure 4. Schematic representation of FDM process.

Next is the material feeding stage. The material, typically a thermoplastic filament,
is fed into the printer’s extruder, which heats it until it reaches a semi-liquid state [60].
Extrusion and deposition follow, where the melted material is extruded through a nozzle
onto the build platform. The print head follows a set path, depositing material layer by
layer. As each layer is completed, the nozzle or build platform moves up to prepare for the
next layer [61].

The object is then built layer by layer, with the material gradually forming the 3D
shape. For complex geometries or overhangs, the printer can deposit a secondary, support
material alongside the main material to hold these structures in place [62].

After deposition, each layer cools and solidifies, locking into the layer below. This
process repeats until the entire model is complete. In the final stage, the object is removed
from the platform, and any support structures are detached, either mechanically or by
dissolving if they are water-soluble. Final steps may include surface treatments, such as
sanding, polishing, or painting, to improve surface quality [63].

2.1.1. Fused Deposition Modeling

Subramani et al. identify optimal FDM parameters for ABS components; Melentiev et
al. improve adhesion in multi-material parts by combining FDM with chemical deposition
and electroplating; Bahrami et al. enhance wear resistance in Fe–ABS composites using a
GA-ANN optimization model; and Hajjaj compares the mechanical properties of zirconia
restorations produced by FDM and CAD/CAM milling, finding FDM-printed zirconia to
be mechanically inferior.
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Subramani et al. [64] investigate how various FDM parameters, such as infill den-
sity, printing speed, platform, and extruder temperature, affect the mechanical properties
of ABS components produced on a Creality Ender-3 3D printer [64]. Mechanical prop-
erties like tensile strength, yield strength, and elastic modulus were evaluated using a
Multi-Criteria Decision-Making (MCDM) [65] approach [66]. The optimal printing set-
tings—35% infill, 0.25 mm layer height, 40 mm/s speed, 75 °C platform, and 210 °C extruder
temperature—were identified for manufacturing impellers. Additionally, field emission
scanning electron microscopy (FESEM) [67] provided insights into surface defects and
material behavior.

Melentiev et al. [68] explore multiprocess additive manufacturing (MPAM) to produce
multi-material components, focusing on improving the adhesion strength between metal
and polymer interfaces in 3D-printed parts. By combining FDM with chemical deposition
and electroplating [69], the research aims to enhance the structural integrity of metalized
plastic components, which typically suffer from poor adhesion. The study focused on
creating a hierarchically structured surface on ABS parts through 3DP and acid etching
copper adhesion [70]. The experiment involved 3DP, surface treatment, copper deposition,
electroplating, and adhesion testing, offering insights for industries using MPAM for
advanced electronics and multi-material devices.

FDM has limitations in wear resistance [71]. To address this, Fe particles (10%, 20%,
and 30%) were added [72] to ABS to create Fe–ABS composite filaments, and parts were
printed using varying filling patterns, nozzle temperatures, and layer thicknesses. Wear
testing showed that Fe percentage had the greatest effect on wear reduction, followed
by filling pattern, while nozzle temperature had the least impact. For optimization, a
genetic algorithm–artificial neural network (GA-ANN) [73] model slightly outperformed
the response surface methodology (RSM) [74], with results closely matching experimental
data at a 0.25% error rate.

Hajjaj [75] compares the mechanical properties of zirconia dental restorations made
using 3DP (FDM) and CAD/CAM milling, focusing on the effects of conventional versus
speed sintering. A total of 60 bars were tested for flexural strength and modulus, while
40 discs were used for Vickers microhardness testing. Results showed that milled zirconia
had higher flexural strength and modulus than FDM-printed zirconia. The sintering cycle
did not affect flexural properties, but speed sintering the Vickers microhardness of milled
zirconia did have an effect. Overall, FDM-printed zirconia was mechanically inferior to
milled zirconia.

2.1.2. Fused Filament Fabrication

This section summarizes recent studies on FFF. Khan reviews how process parame-
ters affect the mechanical properties of lightweight polymers; Kariuki identifies optimal
printing parameters for carbon fiber-reinforced polyamide 12; Garcia compares FFF, Metal
Injection Molding, and Powder Metallurgy for 17-4 PH stainless steel, noting FFF’s superior
tribocorrosion resistance; and Kalinke explores sustainable practices in FFF using renewable
and recycled materials to enhance environmental sustainability.

Fused filament fabrication (FFF) is a cost-effective 3DP method for lightweight polymer
structures. Key mechanical properties like flexural and impact strength are influenced by
process parameters and material selection [76]. Filled polymers often perform better, and
crystallinity plays a key role in the final properties. Review [76] discusses emerging trends
such as topology optimization and polymer recyclability, while highlighting research gaps
and proposing directions for further in FFF technology.

Kariuki et al. [77] investigate the flexural behavior of 3D-printed short carbon fiber-
reinforced polyamide 12 (PA12-CF) [78] parts produced using fused filament fabrication
(FFF). Using an L18 Taguchi design and Gray relational analysis, the optimal printing
parameters were identified. Build orientation had the most impact on flexural properties,
with a rectilinear infill pattern producing a flexural strength of 119.9 MPa and modulus
of 3038 MPa, while a concentric pattern improved strength by 15.8%. This work provides
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valuable insights into optimizing FFF parameters for enhanced mechanical performance in
carbon fiber composites.

Garcia et al. [79] compare the effects of different manufacturing methods— FFF, Metal
Injection Molding (MIM), and conventional Powder Metallurgy (PM)—on the properties
of 17-4 PH stainless steel. FFF and MIM both produced near-dense parts, but MIM sam-
ples showed the highest hardness. Corrosion behavior was similar for FFF and MIM,
both outperforming PM. However, FFF parts exhibited superior tribocorrosion resistance,
attributed to higher proportions of delta ferrite and retained austenite in their microstruc-
ture. These findings highlight the potential of FFF for producing corrosion-resistant,
durable components.

Kalinke et al. [80] explore sustainable methods for enhancing the development, treat-
ment, and applications of 3D-printed objects, particularly in FFF. The paper discusses
various conductive and non-conductive filaments made from renewable biopolymers [81],
bioplasticizers, and recycled materials, detailing how these choices impact material prop-
erties. They also highlight alternative strategies for sustainability, including recycling,
adjusting printing parameters, and system miniaturization. These approaches aim to
reduce environmental impact while producing high-quality, cost-effective 3D-printed prod-
ucts, aligning with Green Chemistry principles and Circular Economy concepts.

2.2. Stereolithography

In SLA printing for polymer composites [44,57–59,82–87], the process is adapted to
use specialized resin blends that incorporate composite materials, such as ceramic, carbon,
or glass fibers, to enhance the mechanical properties, thermal resistance, or surface finish
of the printed object. This approach combines the precision and detail of SLA with the
strength and functionality of composite materials, creating parts that are suitable for more
demanding applications.

The process begins with model preparation in CAD software, where a 3D model
is designed and then sliced into layers. The composite resin is prepared in a vat and
often contains finely distributed particles (e.g., glass, ceramic, or carbon fibers) that are
suspended within the photopolymer base. This composite resin is carefully formulated
to maintain a uniform consistency, ensuring that particles do not settle and are evenly
distributed throughout each layer of the print.

In the layer curing phase, a UV laser or projector selectively cures each layer, hardening
both the photopolymer and the embedded particles simultaneously. The UV laser follows
a precise path to solidify each layer, bonding the particles into a matrix that enhances the
overall strength and durability of the printed part [88]. Between each layer, the platform
moves incrementally to allow the next thin layer of resin to coat the surface [89].

The layer-by-layer bonding process creates a composite structure, embedding the
particles within the cured photopolymer matrix [90]. Support structures are added au-
tomatically by the slicing software when needed, especially for overhangs or complex
geometries, and are printed in the same composite material [91].

Once the print is completed, post-processing begins. The part is removed from the
resin vat, cleaned of any excess resin, and may undergo an additional UV curing process to
fully harden the composite [92]. Support structures are then removed, and the object may
be further processed through sanding, polishing, or coating, depending on the application’s
requirements [93].

SLA printing with polymer composites enables the production of parts with improved
mechanical properties [94], thermal stability [95], and surface quality [96], making it ideal
for engineering prototypes, end-use parts, and high-performance applications in industries
such as aerospace, automotive, and medical devices. This technique expands the scope of
SLA by providing a balance between high resolution and enhanced material strength, tai-
lored to meet the specific demands of advanced manufacturing. A schematic representation
of the SLA process is shown in Figure 5.
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Liquid Polymer

Laser Source
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Mirror

Object

Vat

Platform

Figure 5. Schematic representation of SLA process.

Hydrogel-based electronics are promising for wearable devices but face challenges
like low conductivity and stretchability. Sun et al. [97] present a projection SLA 3DP
method to create high-conductive, flexible hydrogel antennas for wireless sensing [98]. The
photocurable silver-based hydrogel forms conductive pathways after partial dehydration,
achieving a conductivity of 387 S cm−1. Sealed circuits maintain stable resistance under
100% strain for 30 days, with added features like stretchability and shape memory. Custom
flexible RFID tags were created, enabling accurate eye movement tracking and passive
wireless sensing.

Zhou et al. [99] examine Stereolithography Additive Manufacturing (SLAM) for pro-
ducing advanced ceramic objects with complex geometries [100], highlighting its resolution
and surface quality. It addresses the challenges in achieving the desired performance due to
the necessity of thermal debinding (TD) [99] to remove binders, which can lead to defects
and prolonged processing times. Key topics covered include the impact of raw materials
on photocurable ceramic suspensions, the mechanisms and characterization methods of
the TD process, and strategies for designing effective TD profiles. The review concludes
with insights into the challenges and future directions for TD in ceramic SLAM, providing
a foundational understanding for optimizing TD processes in research and industry.

Kulkarni et al. [101] investigate the use of SLA to print polymer nanocomposite sam-
ples of stimuli-responsive spin crossover (SCO) materials with resins DS3000 and PEGDA-
250. The analysis showed that incorporating SCO particles improved mechanical properties,
with transformation strains of 1.2–1.5% at high loads (13–15 vol.%), enabling thermal ex-
pansion peaks. Two SCO complexes were synthesized and characterized, demonstrating
their suitability for actuator applications due to favorable spin transition properties. The
findings emphasize the importance of effective particle dispersion for optimal performance
in SLA-printed composites.

Pharmaceutical 3DP [102–111] is advancing rapidly, offering the potential for highly
personalized medicine. SLA is a particularly promising technology due to its high res-
olution and compatibility with heat-sensitive drugs. However, the lack of specialized
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excipients for pharmaceutical SLA limits material options. Curti et al. [103] investigate how
formulation factors—such as photoinitiator concentration, polymer size, and liquid filler
type—affect the print quality of SLA 3D-printed medicines. By screening 156 photopolymer
formulations, it highlights how these factors influence print outcomes, providing valuable
insights for future development of personalized 3D-printed pharmaceuticals.

2.3. Selective Laser Sintering

In SLS for polymer composites printing [112–121], a powdered composite mate-
rial—typically a blend of a polymer base like nylon with reinforcing particles such as
carbon fiber, glass beads, or ceramic—is used to create strong, high-performance parts. This
process leverages the strength and durability of composite materials within the flexibility
of polymer-based 3DP, ideal for demanding applications in industries such as aerospace,
automotive, and consumer goods. A schematic representation of the SLS process is shown
in Figure 6.

Polymer Powder

Laser Source

Mirror

Object

Vat

Platform

Piston

Roller

Figure 6. Schematic representation of SLS process.

The process starts with model preparation using CAD software, where a 3D model
is designed and then processed through slicing software to divide the model into thin,
horizontal layers. These layers are used to generate precise instructions for the SLS printer.

In the powder preparation stage, the composite powder is loaded into the build cham-
ber [122]. This powder must be well-mixed to ensure an even distribution of reinforcement
particles, like carbon or glass fibers, throughout the polymer base. A powder bed is formed,
and the printer’s roller or recoater evenly spreads a thin layer of the composite powder
across the build platform [123].

During layer sintering, a laser selectively fuses areas of the powder bed, following
the contours of the sliced model layer [124]. The laser heats the polymer particles to
their melting point, allowing them to fuse together while also bonding the embedded



Polymers 2024, 16, 3125 12 of 52

reinforcement particles within the polymer matrix. Once a layer is completed, the platform
lowers slightly, and a new layer of composite powder is spread over the previous one. This
layer-by-layer sintering process continues until the entire object is formed, with each new
layer bonding to the one beneath it. Because of the self-supporting nature of the powder
bed, support structures are typically not required, allowing for more complex geometries
without additional material waste.

After printing, the object is surrounded by unsintered powder, which acts as a support
and is carefully removed in the post-processing phase. The remaining loose powder is
brushed or blown off, often followed by bead-blasting or compressed air cleaning to reveal
the printed part. Additional finishing steps such as sanding or coating can further enhance
the part’s surface quality and durability [125].

SLS printing with polymer composites produces parts with superior mechanical
strength, stiffness, and thermal stability compared with traditional polymers, due to the
reinforcing particles integrated within the polymer matrix. This method is well-suited for
functional prototypes, tooling, and end-use parts that require the combined benefits of both
high-performance polymers and reinforcement materials.

Song et al. [126] highlight SLS’s role in medical engineering for producing complex
biomedical products, particularly implants and prosthetics using biocompatible materials;
Azam et al. focus on SLS processing of polymer materials, emphasizing innovations in
piezoresistive strain-sensing and the process–structure–property relationships; Han et al.
develop a method for creating carbon nanotube-anchored α-ZrP nanohybrids to enhance
polyamide 12 composites, resulting in significant improvements in mechanical properties
and functional characteristics; and Zhang et al. investigate the effects of process parameters
on carbon fiber-reinforced PEEK composites, achieving notable strength and modulus
enhancements for industrial applications.

SLS has been particularly successful in creating electrically conductive polymer
composites (ECPCs) by forming a segregated filler network along powder boundaries.
Azam et al. [127] focus on SLS processing of polymer materials, highlighting the consoli-
dation mechanisms, process parameters, and innovations in piezoresistive strain-sensing
materials and self-sensing structures. They also explore the intricate process–structure–
property relationships in SLS-printed polymer composites.

Han et al. [128] introduce a simple method to synthesize a carbon nanotube (CNT)-
anchored α-ZrP nanohybrid (CNT@α-ZrP) for enhancing polyamide 12 (PA12) composites
using ball-milling followed by SLS. CNTs serve dual functions: providing black coloration
for efficient heat absorption and reinforcing the PA12 matrix. The α-ZrP nanosheets primar-
ily enhance the mechanical and functional properties of PA12 composites. The resulting
PA12/CNT@α-ZrP composites show improvements in Young’s modulus (98.9%), tensile
strength (33.1%), and impact strength (34.6%), along with better wear resistance, flame
retardancy, and reduced smoke production. This method offers an industrial approach to
producing robust and functional SLS-based structures.

Carbon fiber-reinforced PEEK (CF/PEEK) composites fabricated via SLS offer excellent
mechanical properties and are highly promising for advanced applications. Zhang et al. [120]
investigate the impact of process parameters—such as laser power, layer thickness, paving
speed, and carbon fiber content—on the microstructure and performance of CF/PEEK com-
posites. Key findings include achieving a failure strength of 117 MPa with a layer thickness of
0.08 mm and an optimal fiber weight fraction of 15%. The highest elastic modulus reached
8400 MPa, surpassing previous works. The study also reveals nonlinear relationships be-
tween paving speed and strength, with longer carbon fibers improving strength. The research
provides insights into optimizing SLS-CF/PEEK composites for industrial applications.

2.4. Digital Light Processing

In DLP printing for polymer composites [121,129–137], the process utilizes a high-
resolution digital projector to cure photopolymer resins that are often blended with com-
posite materials, such as ceramic, carbon fiber, or glass particles. This combination allows



Polymers 2024, 16, 3125 13 of 52

for the creation of highly detailed parts with enhanced mechanical properties, making
DLP a suitable choice for various advanced manufacturing applications. A schematic
representation of the DLP process is shown in Figure 7.

Projector

Mirror

Platform

Lens

Object

Photopolymer

Figure 7. Schematic representation of DLP process.

The process begins with model preparation in CAD software, where a 3D model is
designed and optimized for printing. The model is then sliced into thin layers by slicing
software, which generates the necessary instructions for the DLP printer.

In the resin preparation phase, a vat is filled with liquid photopolymer resin mixed
with composite materials. The resin is specially formulated to ensure uniform dispersion of
the composite particles, allowing for consistent curing and material properties throughout
the printed part.

During the layer curing phase, the DLP printer uses a digital light projector to expose
the surface of the resin to UV light. The projector displays a complete layer of the model at
once, curing the resin in a pattern that corresponds to the sliced model [138]. This process
allows for rapid curing of an entire layer simultaneously, significantly speeding up the
printing process compared with traditional layer-by-layer methods.

Once a layer is cured, the build platform moves upward (or the resin vat moves
downward) to allow fresh resin to flow over the cured layer, preparing for the next layer.
The layer-by-layer construction continues until the entire object is complete, with each layer
bonding to the one beneath it.

For complex geometries, support structures are often generated by the slicing soft-
ware to prevent deformation during printing. These supports are printed using the same
composite resin and can be easily removed after the printing process is finished.

After the printing is complete, the part undergoes post-processing. It is removed from
the resin vat and cleaned of any excess uncured resin, typically using isopropyl alcohol.
The part may then be subjected to further UV curing to ensure complete hardening. Any
support structures are removed, and final finishing processes, such as sanding or coating,
can be applied to achieve the desired surface quality.
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DLP printing with polymer composites offers several advantages, including high reso-
lution and smooth surface finishes, while also enhancing the mechanical properties of the
printed parts. This technology is particularly well-suited for applications in industries such
as dental and medical devices, jewelry, and high-performance engineering components,
where precision and material strength are paramount.

Melentiev et al. [139] present lithography metal additive manufacturing (LMAM) for
high-resolution metal parts with excellent density and tensile strength; Guo et al. enhance
photosensitive resin with multi-walled carbon nanotubes, improving mechanical properties;
Senthooran et al. incorporate mica into DLP-printed samples, significantly increasing tensile
and flexural strength; and Wang et al. create a flexible multistage honeycomb absorber from
carbonyl iron and MWCNTs, demonstrating exceptional electromagnetic wave absorption.

DLP is employed in high-resolution AM, enabling the 3DP of complex metallic parts
with micrometer precision. Melentiev et al. [139] present lithography metal additive
manufacturing (LMAM), a method that utilizes DLP with a photosensitive resin filled with
metal powder. The process yields intricate structures with a spatial resolution of 35 µm
and surface roughness of 1–2 µm without support structures. Sintered stainless steel parts
exhibit 99.3% density and 93% tensile strength relative to annealed 316 L steel. LMAM
is ideal for fabricating small, precise devices in fields such as biomedicine, microheat
exchangers, and pharmaceutical engineering.

Guo et al. [137] explores the potential of multi-walled carbon nanotubes (MWC-
NTs) to enhance the structural, mechanical, and electrical properties of materials through
AM, specifically focusing on DLP techniques. Despite the growing interest in MWCNT-
reinforced composites, there is limited research on their integration into photosensitive
resin (PR) systems using DLP, particularly concerning the distribution patterns of MWC-
NTs. This investigation fabricated MWCNTs-reinforced PR (MWCNTs-PR) and examined
how varying MWCNT content affects the microstructure and mechanical properties of the
composite. Findings indicate that adding 0.05 wt% MWCNTs enhances the elastic modulus
by 25% and the bending strength by 2% compared with pure PR. To achieve a more uniform
MWCNT distribution, a combination of ultrasonic treatment and mechanical stirring was
employed. The study further developed a multi-material layered 3DP structure, demon-
strating that the 10001 structure achieved the highest bending modulus, outperforming
the control group by 14.9%. Finally, finite element analysis was utilized to validate the
enhanced bending resistance mechanism attributed to the MWCNTs in the PR.

Senthooran et al. [133] explore the enhancement of mechanical and thermal properties
in 3D-printed samples using DLP by incorporating mica as an inorganic filler at 5%, 10%,
and 15% concentrations, along with a KH570 silane coupling agent for better dispersion.
The results show improvements: tensile strength increased by 85% and flexural strength
by 132% with mica addition. Thermogravimetric analysis (TGA) and scanning electron
microscopy (SEM) were used for thermal and morphological evaluations. The findings
highlight advancements in AM technology through DLP techniques.

Research on wideband electromagnetic (EM) absorbers in the 75–110 GHz range is
limited, hindering millimeter-wave technology advancements. Wang et al. [140] introduce
a novel flexible multistage honeycomb structure absorber (FMHSA) made from carbonyl
iron (CIP), multi-walled carbon nanotubes (MWCNTs), and flexible photopolymer resin
(FPR), fabricated via DLP 3DP. The FMHSA achieves exceptional EM wave absorption
with a bandwidth of 35 GHz at a 150° bending angle and a minimum reflection loss of
−37.04 dB. Its notable properties include flexibility, recoverability, and lightweight design,
paving the way for improved wearable absorbers.

2.5. Jetting 3D Technologies

Jetting 3D technologies include MJF and PJP, both of which can utilize polymer
composites to create high-performance parts with enhanced mechanical properties.

In Multi Jet Fusion [141–150], a layer of polymer composite powder, often a blend
of nylon and reinforcing materials like carbon fiber or glass beads, is spread across the
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build platform. Inkjet print heads selectively apply a fusing agent to specific areas of
the powder bed, allowing for controlled heating and fusion when exposed to infrared
light. This layer-by-layer process continues until the part is fully formed, with each layer
bonding to the previous one. After cooling, excess un-fused powder is removed and can
be recycled. MJF produces parts that exhibit superior strength and durability, making it
ideal for functional prototypes and end-use applications in industries such as aerospace
and automotive. A schematic representation of the MJM process is shown in Figure 8.

Inkjet Print Head

Build Material Support Material

UV Curing Lamp

Object

Object Support Structure

Platform

Figure 8. Schematic representation of MJM process.

PolyJet printing [151–160] utilizes a different approach by jetting ultra-thin layers of
liquid photopolymer resin, often enhanced with composite materials. The print heads
spray the resin, which can include reinforcing particles, and immediately cure it with UV
light. This method allows for the incorporation of various materials in a single print job,
enabling the creation of parts with tailored mechanical properties and surface finishes. After
printing, support structures are easily removed, resulting in high-resolution parts. PolyJet
is particularly well-suited for applications requiring intricate details and multi-material
capabilities, such as dental devices and intricate consumer products.

2.5.1. Multi Jet Fusion

Alomarah et al. find that MJF outperforms FFF in producing stronger auxetic struc-
tures; Tan et al. develop a framework showing how fiber weight affects porosity in fiber-
reinforced composites; Kafi et al. explore the impact of build height and orientation on
the mechanical properties of MJF-printed polypropylene; and Conway et al. assess the
geometric accuracy of MJF surgical guides, achieving precise distortion predictions using
machine learning.

MJF and FFF are explored for fabricating a hybrid auxetic structure in AM. Alomarah
et al. [143] find that MJF produces robust specimens with high dimensional accuracy,
while FFF suffers from large pores in connecting areas, indicating lower print quality.
MJF specimens exhibit plateau stress with high peaks when compressed along the Y-axis,
whereas FFF specimens display a smooth plateau stress. MJF specimens achieve the highest
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specific energy absorption (SEA) at 2.1 and 2.5 J g−1, exceeding the 0.495 and 0.480 J g−1

of FFF specimens. Additionally, the auxetic features (negative Poisson’s ratio) remain
unaffected by the manufacturing methods. This research underscores the influence of
fabrication techniques on the mechanical properties and energy absorption capabilities of
cellular materials.

AM of fiber-reinforced polymer composites is gaining attention for its ability to create
lightweight, functional products. However, pore defects remain a concern, necessitating
a better understanding of pore formation. Tan et al. [117] present a powder-scale multi-
physics framework to simulate the printing process of fiber-reinforced polymer composites
in powder bed fusion in MJF. The framework incorporates various phenomena, including
particle flow dynamics, laser–particle interaction, heat transfer, and multiphase fluid flow.
The melt depths of glass fiber-reinforced polyamide 12 parts fabricated via selective laser
sintering were measured to validate the model. Results indicate that increasing the fiber
weight fraction leads to a lower densification rate, larger porosity, and reduced pore
sphericity in the composites.

Kafi et al. [142] validate the absorption phenomena in MJF-printed polypropylene (PP)
using Laser Flash and Corrected Porosity methods. It investigates how build height and
orientation affect tensile properties, crystallinity, porosity, and thermophysical attributes
in MJF-printed PP coupons. Results indicate that crystallinity and tensile performance
are consistent across orientations, but Z-oriented samples exhibit 35% lower strain and
increased porosity compared with XY samples. Micro-CT scans revealed that horizontal
positioning improved contrast for porosity analysis. A correlation was established between
Laser Flash half-time and porosity when corrections were applied, indicating that lower
absorption occurs in less dense Z samples. The findings highlight the importance of
accurately determining porosity to understand absorption in MJF-printed PP, offering
insights into predicting mechanical properties and enhancing the overall quality of MJF-
produced parts.

Conway et al. [161] examine the repeatability and geometric accuracy of AM surgical
guides for personalized knee surgery. A total of 258 unique guide designs were created,
and 2100 parts were produced using MJF AM. An automated measurement technique
gathered 8400 individual feature dimensions, revealing standard deviations in feature
size ranging from 0.076 to 0.173 mm and consistent deviations from target dimensions of
−0.308 to 0.017 mm. ML models were developed to predict these geometric distortions,
achieving accuracy within 0.033 to 0.075 mm, allowing for effective predictions across
various part sizes.

2.5.2. PolyJet Printing

This section highlights advancements in PolyJet printing. Azpiazu et al. assess how
thermocycling and surface finishing impact the strength and hardness of dental prostheses,
finding certain finishes yield better performance. Krause et al. examine material choice and
print orientation effects on microfluidic channel accuracy, noting optimal results for wider
channels. Aberdeen et al. explore the interface design and mechanical failure of bi-material
coupons, emphasizing the need for further research on geometric designs to strengthen
material interfaces.

PolyJet 3DP is an advanced AM technology that deposits photopolymeric materials in
micron-sized droplets, curing them with ultraviolet (UV) light. It excels in creating complex,
multi-material structures with exceptional precision, achieving layer thicknesses as fine
as 16 microns [162]. Its versatility allows for a wide range of materials, including rigid,
flexible, and transparent options, enabling the production of components with tailored
mechanical and optical properties. While widely used in industries like aerospace and
healthcare, challenges remain in material performance and print optimization, necessitating
ongoing research to enhance interfacial bonding and mechanical properties.

Azpiazu et al. [163] evaluate the effects of thermocycling and different surface fin-
ishing protocols on the flexural strength and surface hardness of a novel photopoly-
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mer designed for monolithic polychromatic dental prostheses made via PolyJet 3DP.
A total of 90 specimens were divided into three groups based on finishing protocols:
Pumice + Moldent, Pumice + Optiglaze, and Polycril + Moldent. Results showed that
thermocycling reduced the flexural strength across all groups, with the Optiglaze group
demonstrating the highest strength after thermocycling. The analysis also revealed an
interaction between thermocycling and finishing protocols concerning surface hardness,
with the Optiglaze group exhibiting the highest hardness values.

Krause et al. [164] investigate the impact of materials and print orientations on the 3DP
of microfluidic channels as negative features using PolyJet technology and the Stratasys
Objet500 printer. Two sets of chips, each containing channel pairs made from a high-
contrast reference material and a sacrificial material embedded in clear photopolymer
resin, were printed. The planned channel widths ranged from 64 to 992 µm, and the
channels were printed either parallel or perpendicular to the jetting head’s movement. The
findings indicate that reproducibility and accuracy were optimal for channels with a width
of 600 µm or greater, with the best channel morphology achieved when the printer head
moved parallel to the channel’s longitudinal axis.

Aberdeen et al. [165] explore the interface design and mechanical failure dynamics of
PolyJet-printed bi-material coupons using material jetting technology, specifically PolyJet
3DP. By investigating various geometric designs and conducting uniaxial tensile tests on
samples printed with a Stratasys Objet500 Connex3 printer, the results reveal that increasing
the surface contact area between distinct materials does not necessarily enhance interface
strength. The findings highlight the need for further research into multi-material geometric
designs and their impact on interface integrity, particularly as interest in PolyJet printing
grows in applications like robotics and fluidic circuitry.

2.6. Direct Ink Writing

DIW is AM technique that focuses on extruding viscoelastic inks [166–175], which
can be formulated from polymer composites, to create complex geometries with enhanced
material properties. This method is particularly effective for producing parts with tailored
mechanical characteristics and functionality, suitable for a variety of applications.

The DIW process begins with ink formulation, where a composite ink is created by
blending a polymer matrix with reinforcing materials, such as carbon fibers, glass fibers, or
ceramic particles [176]. This ink must possess the right viscosity and flow properties to be
extruded through a nozzle while maintaining shape fidelity after deposition.

During the printing phase, a syringe or nozzle extrudes the composite ink layer by
layer onto a build platform. The printer’s movement is controlled by a computer program
that follows a pre-defined path, allowing for precise placement of material [177]. As each
layer is deposited, it retains its shape due to the viscoelastic properties of the ink, enabling
the creation of complex structures, including overhangs and intricate designs.

Post-processing is often required after printing, which may involve curing the printed
part through heat or UV light, depending on the type of polymer used. This curing
process solidifies the polymer matrix, enhancing the mechanical strength and durability
of the final part [88,178]. Additionally, support structures may be incorporated or added
during the printing process to ensure stability for more complex geometries. A schematic
representation of the DIW process is shown in Figure 9.

DIW enables precise layer-by-layer deposition of functional materials through a posi-
tive displacement dispensing system [179]. It excels in printing on flexible substrates, such
as polyethylene terephthalate (PET), due to its adaptability to various material viscosities
and the importance of controlling process parameters like air pressure and feed rate for
achieving high-resolution patterns. One of DIW’s advantages is its ability to print con-
ductive inks, crucial for developing sensors and electronic components, and its capability
for multi-material printing, allowing for the creation of complex, multifunctional struc-
tures. This makes DIW suitable for fabricating stretchable and bendable sensors that can
monitor mechanical deformations by varying electrical resistance, while the deposited
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patterns are typically cured to enhance structural integrity and performance in wearable
technologies [180].
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Figure 9. Schematic representation of DIW process.

The emergence of 3DP technology in the 1980s has facilitated the creation of patient-
specific products with precise shapes and complexities. Among various techniques, DIW
is favored for its affordability, ease of use, and scalability, although the limited variety
of printing inks hampers its commercial potential. Injectable hydrogels, known for their
quick gelling behavior and shape fidelity, have emerged as promising alternatives for
printing inks, made from natural or synthetic polymers to achieve desired properties.
Bhardwaj et al. [173] highlight recent advancements in hydrogel inks and their physic-
ochemical aspects for engineered biostructures, and discuss the future prospects and
challenges of 4DP in hydrogel-based 3DP applications in healthcare.

DIW advances hydrogel fabrication by enabling precise layer-by-layer deposition of
hydrogel inks to create complex three-dimensional structures with tailored properties. Bani-
asadi et al. [181] explore the diverse applications of DIW in areas such as tissue engineering,
soft robotics, and wearable devices, while also examining the various printing techniques
and the underlying principles of DIW, including rheological properties and printing param-
eters. Additionally, they highlight the range of natural and synthetic hydrogel materials
used in this process and discuss the latest biomedical applications, particularly in tissue
engineering, wound dressings, and drug delivery systems, while outlining future research
directions and potential innovations in hydrogel-based manufacturing.
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DIW offers a flexible and resource-efficient method for prototyping functional mate-
rials and devices with complex geometries. Van et al. [182] focus on the use of graphene
nanoplatelets (GNPs) as conductive fillers in printed electronics, addressing the challenges
posed by non-spherical colloids that risk nozzle clogging. A workflow was developed
to optimize ink rheology and printing parameters, enabling the successful production
of filaments ranging from <100 to 1200 µm in width and 30 to 300 µm in height, with
conductivities suitable for sensors and electrodes. The predictive models created from
this research facilitate high-resolution DIW of platelet-based inks, promoting integrated
material and process development for applications in wearable electronics, sensors, RF
passives, energy materials, and tissue engineering.

2.7. 4D Printing

This section covers advancements in 4DP, which adds the dimension of time to tradi-
tional AM by using materials that change shape in response to external stimuli. Khalid et al.
emphasize the potential of shape memory polymers (SMPs) that react to stimuli like heat
and humidity for use in various fields. However, challenges like mechanical limitations
remain. Qiu et al. explore the benefits of fiber-reinforced polymer composites (FRPCs)
in 4DP, enhancing mechanical performance. Yan et al. review SMP composites in 4DP,
summarizing advancements and discussing future prospects in biomedical application

Current FDM technology enables the use of multiple polymer filaments, paving
the way for complex, responsive structures [63]. Four-dimensional printing represents
an advancement beyond traditional 3DP by incorporating the dimension of time. This
innovation is made possible through the development of intelligent materials that change
shape in response to external stimul. The most promising applications of 4DP are in the
creation of smart textiles, which can act as actuators and sensors, allowing for bio-inspired
designs. Key areas of potential include smart clothing for extreme environments, auxiliary
prosthetics, and orthotic devices that aid muscle recovery.

In recent years, there has been growing interest in AM shape memory polymers
(SMPs) and their multifunctional composites, particularly in the realm of four-dimensional
(4D) printing, which utilizes time-responsive programmable materials. These stimuli-
responsive polymers can return to their original shapes from programmed temporary
forms upon exposure to external stimuli such as heat, light, or humidity. The integration
of 4DP with shape memory polymer composites (SMPCs) opens up a wide range of
engineering applications [183–185], including in automotive, soft robotics, biomedical
devices, and wearable electronics. Khalid et al. [186] highlight key 4DP technologies
and their functionalities, discuss future opportunities in preprogramming, multi-material
printing, and sustainability, and provide illustrative examples of applications, aiming to
foster advancements and innovations in the field of 4DP.

Four-dimensional printing technology has gained considerable attention for its capa-
bility to reshape 3D-printed structures in response to external stimuli over time. However,
challenges such as inadequate mechanical properties, low energy output, and limited de-
sign flexibility persist in the 4DP of pure polymers. The advent of fiber-reinforced polymer
composites 4DP (FRPCs-4DP) offers promising solutions to these challenges by enhancing
mechanical performance and improving actuation capabilities. Qiu et al. [187] explore
recent advances in FRPCs-4DP, emphasizing the role of fibers, material compositions, AM
techniques, and design strategies, while also outlining the key challenges and future trends
for practical applications in this emerging field.

Yan et al. [33] review SMP composites and 4DP technologies, highlighting unique 4D-
printed structures and summarizing recent research progress in various fields, particularly
biomedical applications. They also discuss the challenges and future prospects for 4D-
printed SMPs, serving as a reference for ongoing research and practical applications.

Table 3 provides an overview of the advantages and disadvantages of 3DP methods
discussed in the recent literature.
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Table 3. Summary of recent studies in AM methods.

Reference Method Focus Advantages Disadvantages

Franco et al. (2024) [63] FDM 4DP with responsive
structures for smart textiles

Enables complex structures;
potential for smart

applications

Still evolving; challenges in
material properties

Subramani et al. (2024) [64] FDM
Effect of FDM parameters

on mechanical properties of
ABS components

Identifies optimal settings
for improved mechanical

properties

Limited to specific
materials and printers

Melentiev et al. (2024) [68] FDM
Improving adhesion in

multi-material components
using MPAM

Enhanced structural
integrity of metalized

plastics

Complex multiprocess
setup

Bahrami et al. (2024) [72] FDM
Enhancing wear resistance

in ABS through Fe
composite filaments

Improved wear
performance with

optimized parameters

Limitations in wear
resistance of pure FDM

parts

Hajjaj (2024) [75] FDM
Comparison of mechanical

properties in zirconia
restorations

Insights into material
performance for dental

applications

FDM-printed parts show
inferior mechanical

properties

Khan et al. (2024) [76] FFF
Mechanical properties of

lightweight polymer
structures

Cost-effective and
adaptable for different

materials

Process parameters can
limit mechanical

performance

Kariuki et al. (2024) [77] FFF Flexural behavior of carbon
fiber-reinforced PA12 parts

Optimized parameters
enhance mechanical

properties

Requires careful selection
of printing parameters

Garcia et al. (2024) [79] FFF
Comparison of FFF with

MIM and PM on stainless
steel properties

Superior tribocorrosion
resistance in FFF parts

Variability in mechanical
properties across methods

Kalinke et al. (2024) [80] FFF Sustainable practices in
3DP

Focus on recycling and
environmental impact

Challenges in material
selection for sustainability

Sun et al. (2024) [97] SLA Hydrogel-based electronics
for wearable devices

High conductivity and
flexibility in applications

Low stretchability in
traditional hydrogels

Zhou et al. (2024) [99] SLA
Producing advanced
ceramic objects with
complex geometries

High resolution and quality
for intricate designs

Thermal debinding can
lead to defects

Kulkarni et al. (2024) [101] SLA

Printing polymer
nanocomposites with

stimuli-responsive
materials

Enhanced mechanical
properties with effective

particle dispersion

Limited by material
formulation options

Curti et al. (2024) [103] SLA Personalized medicine
through SLA

High resolution suitable for
drug formulation

Limited specialized
excipients for

pharmaceutical SLA

Song et al. (2024) [126] SLS
Medical engineering

applications for implants
and prosthetics

Precise production of
complex biomedical

products

High setup costs and
limited material options

Azam et al. (2024) [127] SLS Electrically conductive
polymer composites

High performance for
advanced applications

Process complexity can
affect production speed

Han et al. (2024) [128] SLS
Enhancing properties of
PA12 composites with

CNTs

Improved mechanical and
functional properties

Requires careful control of
material interactions

Zhang et al. (2024) [120] SLS
Impact of process

parameters on CF/PEEK
composites

Excellent mechanical
properties for advanced

applications

Complex relationships
between parameters can
complicate optimization
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Table 3. Cont.

Reference Method Focus Advantages Disadvantages

Melentiev et al. (2024) [139] DLP LMAM

Produces intricate
structures with high

resolution and no support
structures; ideal for small,

precise devices

Limited to specific
applications, high

dependence on materials

Guo et al. (2024) [137] DLP MWCNT-reinforced
photosensitive resin

Enhances mechanical and
electrical properties;

optimized distribution
through treatment

Limited research on
integration into PR systems

Senthooran et al.
(2024) [133] DLP

Enhancement of
mechanical and thermal

properties using mica

Improvements in tensile
and flexural strength

Material handling and
dispersion challenges

Wang et al. (2023) [140] DLP
Flexible multistage

honeycomb structure
absorbers

Exceptional EM wave
absorption properties;

lightweight and flexible

Limited application scope
and complexity of design

Alomarah et al. (2024) [143] MJF Hybrid auxetic structures
in AM

Robust specimens with
high dimensional accuracy

Lower print quality with
certain techniques like FFF

Tan et al. (2024) [117] MJF Simulating fiber-reinforced
polymer composites

Improved understanding
of pore formation; better

material performance
predictions

Complexity in modeling
and simulation accuracy

Kafi et al. (2024) [142] MJF Absorption phenomena in
printed polypropylene (PP)

Insights into porosity and
mechanical properties

Variability in build
orientation effects on

performance

Conway et al. (2024) [161] MJF Geometric accuracy in
surgical guides

High repeatability and
accuracy in personalized

surgical tools

Time-consuming
measurement processes for

validation

Patpatiya (2024) [162] PolyJet Advanced multi-material
structures

Exceptional precision in
complex geometries;

versatile material options

Challenges with material
performance and interfacial

bonding

Azpiazu et al. (2024) [163] PolyJet Flexural strength in dental
prostheses

Significant effects of surface
finishing on strength

Thermocycling negatively
impacts strength across

protocols

Krause et al. (2024) [164] PolyJet Microfluidic channels in
3DP

High reproducibility and
accuracy for fine features

Limited effective feature
sizes for optimal results

Aberdeen et al. (2024) [165] PolyJet
Bi-material coupons and

mechanical failure
dynamics

Insights into interface
design for multi-material

applications

Challenges with interface
strength despite geometric

improvements

Abas et al. (2024) [179] DIW Layer-by-layer deposition
of functional materials

Excellent adaptability to
flexible substrates and
multi-material printing

Limited ink variety restricts
commercial applications

Bhardwaj et al. (2024) [173] DIW Hydrogel inks in
biostructures

Advancements in 4DP for
healthcare applications

Challenges in ink
consistency and availability

Baniasadi et al. (2024) [181] DIW Applications in tissue
engineering and robotics

Flexible manufacturing for
complex geometries

Limited material choices
can restrict applications

Van et al. (2024) [182] DIW Conductive fillers in
printed electronics

Enables high-resolution
printing for sensors and

devices

Challenges with material
consistency and process

optimization

Khalid et al. (2022) [186] 4DP Shape memory polymers
(SMPs)

Responsive structures for
various engineering

applications

Mechanical property
limitations and design

flexibility issues
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Table 3. Cont.

Reference Method Focus Advantages Disadvantages

Qiu et al. (2024) [187] 4DP Fiber-reinforced polymer
composites (FRPCs)

Enhanced mechanical
performance and actuation

capabilities

Challenges in material
composition and

manufacturing processes

Yan et al. (2023) [33] 4DP SMP composites
Advances in biomedical

applications; unique
structural designs

Challenges in achieving
consistent properties across

applications

3. Properties of Polymer Composites in AM Technologies

Polymer composites exhibit unique property combinations. These materials integrate
a polymer matrix with reinforcing elements (fibers, particles, nanomaterials), achieving
improvements in mechanical, thermal, electrical, and other performance characteristics.
Such enhancements are important for applications in aerospace, automotive industries,
medicine, and electronics. However, utilizing polymer composites in AM requires careful
consideration of their structure, properties, and processing characteristics. Figure 10
illustrates the primary properties of polymer composites used in AM technologies.

Polymer Composite Properties

Mechanical Properties Thermal Properties

Electrical Properties Chemical Resistance

Biocompatibility

Adaptive Properties

Strength, Stiffness, Impact Resistance Thermal Conductivity, Thermal Stability, Thermal Expansion

Electrical Conductivity, Electromagnetic Shielding Resistance to Acids, Bases, Solvents

Suitability for Medical Applications

Stimuli-Responsive Behavior, Self-Healing Capabilities

Figure 10. Diagram illustrating key properties of polymer composites in AM.

3.1. Mechanical Properties

One of the key advantages of polymer composites is their ability to provide high
mechanical performance with relatively low weight. This is achieved by incorporating rein-
forcing materials into the polymer matrix, such as carbon or glass fibers. Fiber-reinforced
polymer composites enhance strength and stiffness compared with pure polymers. For
instance, adding carbon fibers increases tensile strength, making these materials promising
for structural components in aerospace and automotive applications, where high strength-
to-weight ratios are essential [188]. Additionally, polymer composites exhibit excellent
energy absorption characteristics, which makes them resilient to impact loads [189]. In
3DP, impact resistance is particularly important for creating prototypes and end-use parts
that are subjected to dynamic stresses. Incorporating high-modulus reinforcing materials
increases the stiffness of composites, which means that stiffer parts can be printed without
the need for complex metalworking techniques [190]. A key challenge in AM is achieving
uniform distribution of reinforcing materials to prevent defects such as delamination or
weak zones that can negatively affect the mechanical properties of the printed parts [191].
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3.2. Thermal Properties

Thermal resistance is another parameter for polymer composites in AM, especially
for high-temperature applications. Adding fillers such as carbon nanotubes, graphene, or
metallic particles can improve the thermal conductivity of polymer composites [192]. Aged
PLA filaments filled with graphene and carbon nanotubes exhibit improved crystallinity,
thermal stability [193], and electrical conductivity but reduced strength and toughness,
with annealing treatments enhancing their properties based on the filler type and an-
nealing temperature [194,195]. This is particularly relevant for creating heat-dissipating
components, such as heat sinks or electronic housings. By incorporating high-temperature
polymers or heat-resistant fillers, composites can withstand higher temperatures compared
with standard polymers [196,197]. This makes them suitable for use in high-temperature
environments, such as engine components or aerospace structures [87]. Furthermore,
composites with low thermal expansion coefficients are more stable against temperature-
induced dimensional changes [198], which is important for printing large or precise parts
where temperature fluctuations can affect the final dimensions and geometry [199].

3.3. Electrical Properties

Modern polymer composites used in AM can exhibit notable electrical character-
istics [200,201]. Electrically conductive polymer composites, combining polymers with
metal-like electronic properties, show great potential in additive manufacturing for creating
complex designs and rapid production [202], with advancements in various 3DP methods
enabling breakthroughs in flexible electronics, energy storage, and other applications [203].
This enables the creation of 3D-printed parts with high electrical conductivity, suitable
for sensors [204,205], antennas [206,207], and other functional devices [153,208]. Con-
ductive polymer composites (CPCs) can also provide effective electromagnetic shielding,
making them useful for printing enclosures for sensitive electronics [209]. For instance,
Maleki et al. [210] created CPCs using material extrusion additive manufacturing by mix-
ing multi-wall carbon nanotubes (MWCNTs) with ABS, resulting in 3D-printed specimens
with 26 times higher electrical conductivity, improved electromagnetic interference shield-
ing, and enhanced tensile strength and modulus, though nozzle wear occurred due to the
abrasive nature of CNTs [211]. Achieving high electrical properties in AM requires ensuring
uniform dispersion of conductive fillers in the matrix and preventing agglomeration, which
can adversely affect both electrical properties and mechanical strength [212–214].

3.4. Adaptive Properties and 4DP

Polymer composites can also possess adaptive properties, which are particularly rele-
vant for 4DP, where materials can change their properties or shape in response to external
stimuli [215,216]. Polymer composites with shape memory properties can alter their struc-
ture or geometry in response to stimuli such as heat, moisture, or other environmental
factors. This capability is utilized in 4DP to create products that can change shape over time
or in response to operational conditions [217]. Additionally, some polymer composites can
include elements that allow the material to self-heal after damage. In AM, such composites
can be used to create parts capable of repairing themselves, thus extending their service
life [218,219]. Four-dimensional printing with these composites opens new possibilities for
creating adaptive and intelligent materials that can be applied in fields such as medicine,
robotics, construction, and other advanced areas.

4. Application of ML in 3DP of Polymer Composites

ML has emerged as a transformative technology in the field of AM. By leveraging data-
driven approaches, ML techniques offer improvements in various aspects of the printing
process, from material optimization to process control and defect detection. This section
explores the key applications of ML in 3DP of polymer composites and highlights how
these innovations are reshaping the industry. Figure 11 visually organizes the various
applications of ML in AM.
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Figure 11. Applications of ML in 3DP of polymer composites.

4.1. Properties Prediction

One of the primary applications of ML in 3DP of polymer composites is material opti-
mization. Traditional methods of developing and refining polymer composite materials can
be time-consuming and costly, often requiring extensive experimental trials. ML algorithms,
particularly those involving supervised learning and optimization techniques, can expedite
this process by analyzing large datasets of material properties and performance metrics.

FDM has enabled personalized drug-loaded formulations tailored to patient needs [220].
However, optimizing fabrication parameters is traditionally time-consuming and requires
expert input. To address this, M3DISEEN, a web-based software, was developed [221],
utilizing AI and ML techniques (MLTs) to enhance FDM 3DP, including filament production
via hot melt extrusion (HME). AI models predict key parameters with high accuracy [222,223],
streamlining 3DP for drug development. M3DISEEN is publicly available.

Three-dimensional printing in healthcare enables personalized medicines and devices
but is hindered by the lengthy trial-and-error formulation process [224]. Ong et al. [225]
combine in-house and literature-mined data on hot melt extrusion (HME) and fuse de-
position modeling (FDM) formulations to create a balanced dataset of 1594 formulations,
enhancing ML predictive performance. Optimized ML models achieved 84% accuracy in
predicting printability and mechanical characteristics, with mean absolute errors of 5.5 °C
and 8.4 °C for processing temperatures in HME and FDM, respectively. These models are
integrated into the M3DISEEN web application, streamlining the formulation development
workflow in pharmaceutical 3DP and improving research throughput [63].

Porous designs, like truss- and sheet-based lattices, offer versatility, but evaluating
numerous material-lattice combinations is impractical. Peloquin et al. [226] present a
framework for rapidly predicting the mechanical properties of 3D-printed gyroid lattices
using base material and porosity data. A kernel ridge regression ML [227] model was
trained on experimental data, achieving similar accuracy to numerical simulations but with
reduced computation time, advancing ML-driven mechanical property prediction.

AM faces adoption challenges due to inconsistent product properties. Khusheef et al. [228]
introduce a novel predictive method using in-process sensing to improve part property pre-
diction in fused deposition modeling (FDM). By integrating Inertial Measurement Unit (IMU)
sensors, a thermal camera, and machine settings, the study focuses on predicting key mechanical
properties like tensile strength and surface roughness. Utilizing hybrid deep learning models
(CNN-LSTM), the best model achieved 99% accuracy in predicting tensile strength. These
results highlight the potential of sensor data and advanced modeling to enhance AM reliability
and broader industry adoption.

AM of carbon fiber (CF)/epoxy composites is still in early development compared
with conventional resin infusion methods. Monticeli et al. [229] predict the flexural strength,
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modulus, and strain of high-performance 3D-printable CF/epoxy composites using an
artificial neural network, analysis of variance, and response surface methodology. The
predictions show high reliability with low error, closely matching experimental results. By
including different input data, the system can predict various output parameters. Factors
such as vacuum pressure, printing speed, curing temperature, and thickness were analyzed,
demonstrating efficient fabrication of composite materials with tailored properties.

Malley et al. [230] integrate data analytics with AM to predict the mechanical behavior
of samples produced via vat polymerization with varying magnetic particle compositions.
A neural network model was developed using mechanical test data from six composi-
tions [231]. The model accurately predicted the mechanical behavior of tested samples and
performed well for untested compositions, surpassing traditional data-driven methods.
This approach reduces the need for extensive post-manufacturing testing, accelerating
product development and improving quality assurance in AM for industrial applications

Griffiths et al. [232] explore the evolution of direct digital and AM from rapid prototyp-
ing to rapid production, highlighting its potential for creating personalized, high-quality
products with minimal batch sizes. The accessibility of affordable AM machines and
open-source software has empowered users, prompting shifts in energy and material con-
sumption patterns. Using a Design of Experiments (DOE) approach, the study optimizes
part performance by examining factors such as scrap weight, part weight, energy con-
sumption, and production time. Key findings indicate that optimizing machine parameters
can yield desired outcomes, while identical settings across different designs may produce
varying results, underscoring the need for design-specific models. The research aims to
identify optimal FDM settings for part weight and production time while balancing these
with economic factors like energy consumption and scrap weight. Using polylactic acid
(PLA) filament for testing, the study analyzes data on weight, build time, and power con-
sumption, employing MiniTab software to visualize parameter interactions through main
effects, Pareto, and contour plots. Ultimately, the research contributes valuable datasets
for modeling AM processes, facilitating a more accurate assessment of their economic and
environmental impacts during the design stage [233].

Table 4 summarizes various studies that utilize ML to predict properties in 3DP.

Table 4. Summary of research on ML applications for predicting properties in 3DP.

Reference Focus Data Info Applied Method

Elbadawi et al. [221] AI/ML for enhancing FDM
3DP and filament production N/A Developed M3DISEEN

web-based software

Ong et al. [225] Balancing dataset for HME
and FDM formulations

1594 formulations from
in-house and literature data

ML models for predicting
printability, mechanical

characteristics

Peloquin et al. [226] Mechanical properties of
3D-printed gyroid lattices

Experimental data for gyroid
lattices

Kernel ridge regression ML
model

Khusheef et al. [228] Predicting mechanical
properties in FDM

In-process sensing data
including IMU and thermal

camera

Hybrid deep learning models
(CNN-LSTM)

Monticeli et al. [229] Predicting properties of
CF/epoxy composites

Various input parameters:
vacuum pressure, printing

speed, etc.

Artificial neural network,
ANOVA, response surface

methodology

Malley et al. [230]
Predicting mechanical

behavior in vat
polymerization

Mechanical test data from six
compositions Neural network model

Griffiths et al. [232]
Optimizing part production in

AM considering
environmental impact

Analyzed scrap weight,
energy use, production time

Design of Experiments
approach
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4.2. Process Control and Monitoring

ML enhances process control and monitoring during the 3DP of polymer composites
by providing real-time analysis and feedback. This capability helps in maintaining the
quality and consistency of printed parts. AI-augmented additive manufacturing (AI2AM)
technology was highlighted by Sani et al. [234] and integrates AI-based monitoring and
optimization of 3DP parameters to detect and prevent defects, enhance quality and effi-
ciency, and enable more sustainable manufacturing, with a focus on FDM printers and
future developments in closed-loop systems.

Real-time defect detection and closed-loop adjustment are essential for ensuring the
quality of carbon fiber-reinforced polymer (CFRP) composites in AM. Lu et al. [235] intro-
duce a deep learning-based system for real-time identification and correction of defects in
robot-based CFRP AM. The model accurately detects and classifies defects like misalign-
ment and abrasion, while also quantifying their severity through geometric analysis. By
integrating this with process parameter adjustments, the system effectively controls defects,
achieving what conventional composite fabrication methods cannot.

Narayanan et al. [236] developed a self-monitoring system using real-time camera
images, and deep learning detects delamination in FDM 3D-printed parts, while strain
measurements predict warping before it occurs. The developed system successfully classi-
fies delamination levels and pre-diagnoses warping, offering potential for automated error
detection in various manufacturing processes.

Jin et al. [237] present an automated method for identifying defective 3D-printed
polymer parts using images captured during the FFF process. ML (PCA and SVM) and
deep learning (CNN) classify parts as good or defective with 98.2% and 99.5% accuracy,
respectively, benefiting both manufacturers and hobbyists.

Error detection during extrusion-based AM remains a challenge, with most inspections
occurring post-production. Charalampous et al. [238] introduce a vision-based method
that compares real-time point cloud data from printed parts to digital 3D models, en-
abling real-time error detection [239] and performance evaluation to reduce waste and
production costs.

An online quality monitoring system using laser scanning detects defects in material
extrusion 3DP by comparing surface point clouds with CAD models, and this was investi-
gated by Lin et al. [240]. It reconstructs 3D models of defects, enabling feedback control,
and helps reduce material and time waste by determining if the 3D printer should be shut
down [241].

The challenge of quality assurance in AM is addressed in [242] by the authors devel-
oping an online reinforcement learning (RL) method to detect and mitigate new defects
during printing. The method, Continual G-learning, leverages offline knowledge from
the literature and online learning during the AM process to minimize required training
samples. Applied to a fused filament fabrication (FFF) platform, the method optimally
mitigates defects in real time [197,243], demonstrating its effectiveness in both numerical
and real-world case studies.

Carrico et al. [244] introduce a new paradigm for manufacturing and controlling soft
ionic polymer–metal composite (IPMC) actuators for soft robotics using 3DP. The process
creates 3D monolithic IPMC devices with integrated sensors and actuators, and Bayesian
optimization is employed to control the actuators, mitigating complex dynamics. The
approach improves actuator performance, demonstrated through a modular reconfigurable
soft crawling robot, highlighting its potential for more advanced IPMC devices.

Omairi et al. [245] review AI-based predictive models in AM, emphasizing their role in
making AM “smart” by improving printability, reducing design complexity, and enhancing
real-time control and defect detection. They discuss current trends, research gaps, and
opportunities for further collaboration and development in line with Industry 4.0.

Table 5 summarizes the key studies focused on monitoring and adaptive control in
AM, detailing their objectives, applied models, and data utilized.
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Table 5. Summary of studies on real-time monitoring and adaptive control in AM.

Reference Focus Applied Model Data Info

Lu et al. (2023) [235] Real-time defect identification
in CFRP AM

Deep learning system for
defect detection

Utilizes geometric analysis of
defect severity based on

camera feed images from the
printing process.

Narayanan et al. (2019) [236] Self-monitoring system for
FDM

Deep learning for
delamination detection

Employs real-time camera
images and strain

measurements from printed
parts to predict warping.

Jin et al. (2020) [237] Automated defect
identification in 3DP

ML (PCA, SVM) and deep
learning (CNN)

Utilizes image data captured
during the FFF process for

classification of parts as good
or defective.

Charalampous et al. (2021)
[238,239]

Vision-based error detection
during extrusion

Comparison of real-time point
clouds with digital models

Compares 3D-scanned point
cloud data from printed parts

against digital models to
identify discrepancies.

Lin et al. (2019) [240,241] Online defect detection via
laser scanning

Surface point cloud
comparison with CAD models

Involves laser scanning data
for 3D reconstruction of

defects compared with CAD
models for feedback control.

Chung et al. (2022)
[197,242,243]

Quality assurance via
reinforcement learning Continual G-learning method

Uses historical data and
online learning during AM

processes to minimize defects
based on previously learned

patterns.

Carrico et al. (2019) [244]
Control of soft ionic

polymer–metal composite
actuators

Bayesian optimization for
actuator control

Collects performance data
from integrated sensors and
actuators to optimize control

parameters in real time.

Omairi et al. (2021) [245] AI-based predictive models in
AM Review of predictive models

Analyzes data from various
studies to identify trends and

gaps in AI applications for
improving AM processes.

4.3. Defect Detection and Failure Prediction

Detecting and predicting defects in printed parts ensure the reliability and performance
of polymer composites. ML techniques offer advanced capabilities for identifying and
addressing potential issues before they lead to failures. Moreover, predictive models can
estimate the likelihood of failure based on historical data and current process conditions. By
analyzing factors such as material properties, processing parameters, and environmental
conditions, ML can forecast potential issues and recommend preventive measures.

Chen et al. [246] address the challenge of processing large tomography datasets for
defect detection in composite materials. Using a micro-CT scan of fiber-reinforced com-
posites, ML models were trained to detect defects. The binarized statistical image features
(BSIF) method was applied to compress images without losing defect information. The
convolutional neural network (CNN) model achieved high accuracy with a mean square
error of 0.001 in fiber orientation prediction, enabling effective defect detection.

Moreover, Chen [247] highlights the unique microstructural signatures in 3D-printed
glass fiber-reinforced polymer (GFRP) composites, which can be analyzed using ML to
reverse-engineer the tool path. By processing micro-CT images with the BSIF method
for data compression, ML models were trained to accurately identify the tool path. This
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approach poses a potential intellectual property risk for AM, as tool paths could be recon-
structed from product microstructures.

FFF faces challenges like inconsistent part quality and print repeatability due to
manufacturing defects. Goh et al. [248] developed an on-site monitoring system using
computer vision and object detection models to detect and correct such defects in real-time.
A camera on the print head captures video, which is processed to detect under-extrusion
and over-extrusion anomalies. Various YOLO architectures were tested, with the YOLOv3-
Tiny and YOLOv4-Tiny models achieving over 80% accuracy. Optimized models reached
89.8% classification accuracy and 70 frames per second inference speed. A correction
algorithm was also implemented, allowing real-time defect detection and correction during
printing, advancing FFF process reliability.

A hybrid method combining an artificial neural network (ANN) and micromechanics is
developed in [249–251] for predicting failure in IM7/8552 unidirectional composite lamina
under triaxial loading. The ANN, trained with data from a finite element method-based
representative volume element (RVE) model, achieves over 97.5% accuracy. This approach
reveals an elliptical paraboloid 3D failure surface and can refine existing failure criteria.

Wan et al. [252] suggest a data-driven approach incorporating probability, and mi-
cromechanical modeling predicts failure in IM7/8552 unidirectional CFRPs under biaxial
stress. Using high-fidelity 3D RVE models and ANN training, the method achieves a mean
square error of 0.027% and a mean absolute error of 0.78% for regression, and a 98.1%
prediction probability for classification. The ANN predictions align well with Tsai-Wu and
Hashin failure criteria.

AM of carbon fiber-reinforced polymer (CFRP) composites allows for complex struc-
tures but challenges remain in predicting mechanical properties. A data-driven model [253]
predicts flexural strength in continuous carbon fiber-reinforced polymers (CCFRPs) fab-
ricated by fused deposition modeling (FDM), considering design factors like fiber lay-
ers, fiber rings, and polymer infill patterns. ML validates these predictions against
experimental data.

High-fidelity simulations of composite materials are computationally intensive. Sepas-
dar et al. [254,255] introduce a deep learning framework using two fully convolutional net-
works to predict post-failure stress distribution and crack patterns in 2D composites based
on microstructures. Trained on 4500 synthetic representations, the framework achieves 90%
accuracy, aided by a physics-informed loss function.

Table 6 provides a summary of key studies focused on defect classification and failure
prediction, detailing the focus, data used, and applied methods for each research effort.

Table 6. Overview of studies focusing on defect classification and failure prediction in polymer
composites AM using ML techniques.

Reference Focus Data Info Applied Method

Chen et al. [246] Defect detection in composite
materials using tomography data

Micro-CT scans of fiber-reinforced
composites

ML models with binarized statistical
image features (BSIF) and CNN

Chen [247] Tool path analysis in 3D-printed GFRP
composites Micro-CT images for GFRP composites ML models trained on

BSIF-compressed data

Goh et al. [248] Real-time defect detection in FFF Video captured from print head
On-site monitoring system using

computer vision and YOLO
architectures

Chen et al. [249] Predicting failure in composite lamina
under triaxial loading

Data from finite element
method-based RVE model

Hybrid method combining ANN and
micromechanics

Wan et al. [252] Predicting failure in CFRPs under
biaxial stress High-fidelity 3D RVE models Data-driven approach with ANN and

micromechanical modeling

Fontes et al. [253] Predicting flexural strength in CCFRPs
fabricated by FDM

Design factors like fiber layers and
polymer infill patterns Data-driven ML model

Sepasdar et al. [254] Predicting stress distribution and crack
patterns in composites

4500 synthetic representations of
microstructures

Deep learning framework with fully
convolutional networks
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4.4. Customization and Personalization

ML enables the customization and personalization of polymer composite parts, making
it possible to tailor products to specific user requirements and applications.

Xue et al. [256] propose an optimization framework using a variational autoencoder
(VAE) and Bayesian optimization (BayesOpt) to design mechanical metamaterials with spe-
cific macroscopic elastic properties. By reducing the design space, this approach efficiently
optimizes multi-material 3D-printed samples, validated through experimental testing.

A deep learning approach with high-order Bézier curves and a hybrid neural network–
genetic optimization (NN-GO) method is used by Lee et al. [257] to optimize lattice struc-
tures for better weight-to-performance ratios. The design shifts material towards weak joint
regions, improving modulus and strength, validated through AM and compression testing.

An inverse design method using artificial neural networks and generative adversarial
networks (GANs) efficiently designs architectured composite materials. The method by
Qian et al. [258] reduces the need for massive labeled training data while maintaining high
performance, achieving a reduction in computational resources.

Multi-material inkjet 3DP enables the personalization of medical devices by combining
algorithmic design with selective material deposition. He et al. [259] reduce bacterial biofilm
formation and allow for user-defined mechanical properties, providing multifunctional
customization through generative design and finite element modeling.

A heterogeneous microstructural design methodology is applied in [260] to elasto-
electro-active piezoelectric ceramics for sensing and energy harvesting applications. Using
a vision transformer-augmented VAE, the study creates a generative neural network to
design 3D microstructures with multifunctional properties, optimizing them during the
inference phase.

ML is used to discover novel lattice metamaterials that optimize elastic stiffness and
wave speed during impact. Garland’s et al. [261] AI-driven approach works with mini-
mal simulation calls, overcoming challenges in designing materials for high-performance
applications involving complex multi-physics interactions.

Table 7 provides an overview of studies that highlight different approaches to opti-
mization and design using ML.

Table 7. Overview of studies focusing on optimization and design methodologies in AM using
ML techniques.

Reference Focus Data Info Applied Method

Xue et al. [256] Designing mechanical metamaterials
with specific elastic properties Multi-material 3D-printed samples

Optimization framework using
variational autoencoder (VAE) and
Bayesian optimization (BayesOpt)

Lee et al. [257] Optimizing lattice structures for
weight-to-performance ratios

Lattice structures designed through
AM

Deep learning with high-order Bézier
curves and hybrid neural

network-genetic optimization
(NN-GO)

Qian et al. [258] Inverse design of architectured
composite materials

Labeled training data for neural
networks

Artificial neural networks and
generative adversarial networks

(GANs)

He et al. [259] Personalizing medical devices with
multi-material printing

Algorithmic design combined with
selective material deposition

Generative design and finite element
modeling to reduce bacterial biofilm

formation

Hashemi et al. [260] Designing elasto-electro-active
piezoelectric ceramics

Microstructural design methodology
for multifunctional properties

Vision transformer-augmented VAE
for generative neural network design

Garland et al. [261] Discovering novel lattice
metamaterials

Optimization for elastic stiffness and
wave speed in impact scenarios

AI-driven approach with minimal
simulation calls
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4.5. VAT Photopolymerization and ML

Recent advancements in VAT photopolymerization (VP) enable the creation of com-
plex, customizable materials using techniques like SLA. Sachdeva et al. [262] discuss the
evolution, trends, challenges, and future directions of AI in 3DP [46], emphasizing its
significance in Industry 4.0.

VP excels at processing polymer composites with high filler content. However, in-
creasing the filler volume raises the suspension viscosity, which conflicts with VP’s need
for low-viscosity resins. Additionally, factors like filler shape, size, and optical proper-
ties affect light interaction. To address these challenges, Nasrin et al. [263] introduce an
artificial neural network (ANN)-based classification model to predict the printability of
highly filled polymer suspensions in VP. The model, trained on a small dataset, considers
both monomodal and bimodal particle distributions and helps map suitable material and
process parameters, optimizing printing efficiency and reducing resource usage.

Mechanoluminescent (MechL) materials emit light when subjected to mechanical
stimuli, making them promising for structural health monitoring. However, their practical
application has been hindered by challenges in producing high-intensity MechL composites
and fabricating complex 3D shapes. Jo et al. [264] introduce a novel method for creating
SrAl2O4

2+, Dy3+ particle-based MechL composites using VP 3DP, optimized through
ML. A multi-objective Bayesian optimization (MBO) approach with Gaussian process
regression (GPR) was employed to fine-tune critical process parameters, including MechL
particle content, layer thickness, and cure ratio. This optimization aimed to enhance
MechL properties while reducing printing time. The GPR model captured the complex
input–output relationships, allowing for the identification of Pareto-optimal solutions
that improved the performance of MechL specimens. Additionally, a micromechanical
analysis method was developed to examine the influence of MechL particle volume fraction
on MechL intensity. The optimized VP process was validated through practical tests on
MechL-based stress sensors and mechanical components.

Frumosu et al. [265] focus on enhancing automation in AM by developing an online
monitoring system for bottom-up photopolymerization AM (VPP) processes. The system
uses sensor data to detect detachment errors in real time, which can lead to wasted material
and time if unnoticed. The monitoring procedure involves an offline phase for training a
predictive model and an online phase using a control chart to track detachment predictions.
This approach improves process efficiency and can be adapted to other AM technologies,
contributing to the shift from prototyping to continuous production.

Shan et al. [266] introduce a low-cost smart resin vat for real-time monitoring of VP
3DP to improve quality control, reliability, and minimize waste. Thermistors placed along
the vat’s edges detect heat changes during polymerization, allowing temperature profiles
to reflect the curing patterns. ML algorithms are used to assess printing status, with a
Failure Index to detect active or terminated prints. Gaussian process regression predicts
the printing area based on temperature data. The system successfully detects printing
issues, such as failures and missing features, and can be applied across various VP methods.
Limitations and future improvements are discussed.

Cao et al. [267] present a method for predicting the optimal waiting time during
bottom-up VP 3DP. The waiting time ensures that the printer’s release membrane recovers
and the resin becomes stationary between layers, improving print quality. The proposed
method, called WTP-VP, uses multilayer perceptrons (MLPs) to predict waiting time based
on resin flow and pressure data. This approach reduces waiting time by 47% and overall
printing time by 25%, while maintaining surface quality. The method is efficient for real-
time predictions in complex topologies and requires fewer data than conventional models.

DLP VP is widely used in AM for creating diverse products layer by layer. A key
performance metric is the degree of curing (DoC), which affects material properties like
density and elasticity. Current in situ monitoring methods, such as FT-IR, are limited
to single-point measurements and can disrupt the process. Zhang et al. [268] introduce
a non-invasive, full-field interferometric curing monitoring (ICM) method for real-time
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tracking of curing dynamics in DLP-VPP. Using a physics-based sensor model and ML, the
ICM system estimates refractive index changes to predict DoC, enabling improved process
control and print quality.

Table 8 summarizes recent studies that explore the integration of ML models in
predicting printability, detecting defects, and optimizing operational parameters in VP-
based AM systems.

Table 8. Overview of studies focusing on defect classification, failure prediction, and process opti-
mization in VP-based AM.

Reference Focus Data Info Applied Method

Nasrin et al. [263] Predicting printability of highly
filled polymer suspensions in VP

Small dataset on polymer
suspensions with monomodal

and bimodal particle
distributions

ANN-based classification model
for mapping material and process

parameters

Jo et al. [264]
Optimizing MechL composites

using VP 3DP for structural
health monitoring

Data on MechL particle content,
layer thickness, and cure ratio

Multi-objective Bayesian
optimization with GPR;

micromechanical analysis

Frumosu et al. [265]

Online monitoring system for
bottom-up photopolymerization
AM (VPP) to detect detachment

errors

Sensor data from bottom-up VPP
processes

Predictive model using a control
chart for real-time error detection

Shan et al. [266]
Real-time monitoring system for

VP 3DP to improve quality
control

Temperature data from
thermistors placed along the vat

edges

ML algorithms with Gaussian
process regression and Failure

Index to detect print issues

Cao et al. [267]
Predicting optimal waiting time

in bottom-up VP 3DP to improve
print quality

Resin flow and pressure data

Multilayer perceptrons (MLPs)
for predicting waiting time, and
reducing printing and waiting

times

Zhang et al. [268]
Real-time tracking of curing

dynamics in DLP-VPP using a
non-invasive method

Full-field interferometric data on
refractive index changes

Physics-based sensor model with
ML to estimate degree of curing

(DoC)

5. Application of ML in 4DP of Polymer Composites

Four-dimensional printing is an advanced manufacturing technique where 3D-printed
objects transform over time in response to external stimuli such as temperature, moisture,
light, or magnetic fields. When applied to polymer composites, this technique enables the
creation of dynamic structures that can adapt their shape or properties post-fabrication.
ML has become instrumental in enhancing the capabilities of 4DP of polymer composites,
optimizing both the design and functionality of the materials. Since the number of publica-
tions on ML in 4DP is relatively small [269], and even fewer focus on polymer composites,
this section will review one article at the intersection of these topics, along with a few
related studies.

Wang et al. [270] apply ML to predict the hardness of quaternary polymer blends
during 3DP, aiming to reduce development costs and speed up multi-material co-blending
technology. Using four polymers (PLA, TPU, PETG, ABS), composite materials of varying
hardness were created from random three-material combinations. Hyperparameter opti-
mization of five ML algorithms, using particle swarm and genetic algorithms, produced
accurate predictive models. A four-in-one mixing extrusion head was built, validating pre-
dictions with real measurements. This approach improves the efficiency of multi-material
printing design, reducing time and resource costs, with potential applications in high-cost
industries like aerospace and biomedical fields.

Sun et al. [271] integrate active composites and 4DP to enable shape transformation
in response to environmental stimuli. The process involves using ML and evolutionary
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algorithms (EAs) to optimize the design of materials with different expansion properties.
A recurrent neural network (RNN) model, trained with finite element simulations, pre-
dicts forward shape changes, while the ML-EA approach efficiently solves inverse design
problems. Combined with computer vision, this method transforms hand-drawn profiles
into 4D-printed active beams that morph into desired shapes. The technique offers an
efficient design tool for creating complex 4D-printed structures using grayscale digital light
processing (g-DLP) [272].

Hamel et al. [273] explore the design of active composites, materials that respond to
environmental stimuli, using a ML approach. By combining the finite element method
with an evolutionary algorithm, the paper addresses the challenge of optimizing material
distribution within 3D-printed active composites to achieve specific shape changes, a
process known as 4DP. The composite structures are divided into voxel units made of either
passive or active materials, and the optimization is tested through examples to demonstrate
the effectiveness of achieving target shapes.

6. Transformation of Polymer Composites to Ceramics and Other Materials

The transformation of polymer composites into ceramics and other advanced materials
typically involves converting polymer precursors into ceramic forms through methods
such as pyrolysis, calcination, or thermal treatment. The inherent properties of poly-
mer composites, including their lightweight nature and flexibility, can be harnessed and
enhanced during this transformation, resulting in materials with superior mechanical
strength, thermal stability, and resistance to harsh environments. Such transformations
not only expand the functional capabilities of the original materials but also pave the way
for innovative applications across various fields, including aerospace, electronics, and
biomedical engineering. This section explore recent studies associated with the conversion
of polymer composites into ceramics and other high-performance materials, highlighting
their potential impacts on future technological advancements.

Su et al. [274] present a novel precursor-derived SiOC ceramic (PDC-SiOC) archi-
tecture for effective terahertz (THz) electromagnetic interference (EMI) shielding and
absorption. The bulk SiOC ceramic absorbs over 93% of THz waves between 1.2 and
1.6 THz. A lightweight honeycomb structure, inspired by moth wings, was fabricated using
vat photopolymerization 3DP followed by pyrolysis. This architecture demonstrated a
maximum shielding effectiveness of 64.1 dB and a transmissivity below 1.4% from 0.2
to 1.6 THz, absorbing 97–99.8% of THz waves in the same range. Additionally, it ex-
hibited good mechanical properties, with compressive and flexural strengths of 1.2 and
16.5 MPa, and thermal stability up to 1100 °C in inert conditions, highlighting its potential
for high-efficiency THz EMI shielding applications.

Lyu et al. [275] present the development of diatom frustule-derived porous silica
(DFPS) ceramics, which serve as templates for creating Ti3C2Tx/DFPS composites with
exceptional electromagnetic interference (EMI) shielding properties. The composites, hot-
pressed at 800 °C, achieved a maximum shielding effectiveness (SE) of 43.2 dB in the X-band
and a compressive strength of 67.5 MPa. The hierarchical porous structure enhances elec-
tromagnetic energy dissipation through scattering and reflection, making these composites
promising for delicate electronic components in the aerospace sector.

Wang et al. [276] focus on the fabrication of short carbon fiber-reinforced silicon car-
bide (Csf/SiC) ceramic matrix composites (CMCs) through material extrusion (ME) 3DP
followed by precursor infiltration and pyrolysis (PIP). The study investigates how solid
loading and fiber content affect the microstructure and mechanical properties. Optimal com-
positions yielded high-performance Csf/SiC CMCs with a bending strength of 212.74 MPa
and fracture toughness of 5.84 MPa m1/2. The findings contribute valuable insights into
the 3DP of fiber-reinforced CMCs.
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Sarvestani et al. [277] explore the use of polymer-derived ceramics (PDCs) with en-
hanced toughness and versatility, fabricated through stereolithography (SLA) using a
silicon oxycarbide precursor. Triply periodic minimal surface (TPMS) designs are 3D
printed and pyrolyzed to produce intricate ceramic structures. The resulting PDCs exhibit
a compressive strength of 2.2 MPa and stiffness of 330 MPa, while maintaining a low
density of 0.5 g/cm³. The research highlights the potential of low-cost SLA 3DP for creating
customized, bio-inspired ceramic architectures.

Jiang et al. [278] develop ultraviolet (UV)-curable polymer precursors and a two-
stage pyrolysis strategy to create polymer-derived ceramics (PDCs) with controllable
deformation and complex programmable shapes. Despite a low precursor ceramic yield
of 13.5 wt% leading to pyrolysis shrinkage, dense, crack-free SiOC ceramics are achieved.
The mechanism of deformation during pyrolysis is analyzed, and the study demonstrates a
viable approach for producing programmable PDCs through photopolymerization 4DP.

Zhu et al. [279] optimize the formulation of photosensitive resin for polymer-derived
ceramics by incorporating h-BN as a two-dimensional filler. The addition of 1 wt% h-BN
enhanced the mechanical properties, achieving a bending strength of 252.4 ± 12.2 MPa and
a fracture toughness of 2.7 ± 0.2 MPa·m1/2 after pyrolysis. Furthermore, the thermal con-
ductivity of the ceramics increased from 0.44 to 5.34 W·m·K−1. The findings indicate that
introducing h-BN effectively improves the thermal, electrical, and mechanical properties of
precursor ceramics.

Young et al. [280] address challenges in 3DP polymer-derived ceramics by evaluating
various post-processing methods to enhance pyrolysis outcomes. The approaches include
UV surface flood curing, solvent soaking, and intermediate heating, aimed at increasing
cross-linking and reducing defects. The results show that post-processing improved the
pyrolysis survival rate to 97% and the ceramic yield to 53%, enabling the production of
larger, complex turbine vanes.

Bobrin et al. [281] introduce a novel method for fabricating nanostructured carbon–
ceramic multi-materials through polymerization-induced microphase separation 3DP. By
combining inorganic precursors and acrylonitrile within a photocurable resin, nanostruc-
tured materials are created, which transform into a carbon–ceramic matrix upon pyrolysis.
The study reveals that the initial resin composition influences the microstructure and
properties of the resulting materials, allowing for a combination of ceramic and carbon
characteristics, including low thermal conductivity and high electrical conductivity.

The study [282] presents an efficient technique for preparing SiC ceramics using
selective laser printing combined with precursor impregnation and pyrolysis (PIP) and
liquid phase sintering (LPS). A particle gradation technique was utilized to enhance the
green body density, resulting in SiC ceramics with a flexural strength of 150 MPa and
a relative density of 98.2%. The findings demonstrate a viable strategy for fabricating
high-performance SiC ceramics via selective laser printing.

Wang et al. [283] review advancements in ceramic 3DP technology, highlighting its
potential to revolutionize the ceramic industry by enabling the direct manufacturing of
intricate designs without molds. The review discusses the benefits of advanced ceram-
ics, including high strength and corrosion resistance, and analyzes various ceramic 3DP
techniques. It also addresses the limitations and challenges of these technologies, aiming
to provide strategies for the development and market implementation of new ceramic
3DP methods.

Table 9 summarizes the key studies that explore approaches to enhancing the proper-
ties and functionalities of PDCs, including their fabrication methods, material compositions,
and resultant mechanical and thermal characteristics.
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Table 9. Summary of recent studies on polymer-derived ceramics.

Reference Focus Materials Methods Results

Su et al. [274] THz EMI shielding and
absorption

Precursor-derived SiOC
ceramic (PDC-SiOC)

Vat
photopolymerization

3DP followed by
pyrolysis

Absorbs >93% of THz
waves (1.2–1.6 THz), SE
of 64.1 dB, compressive

strength of 1.2 MPa,
thermal stability to

1100 °C.

Lyu et al. [275] EMI shielding
properties of composites

Diatom frustule-derived
porous silica (DFPS),

Ti3C2Tx
Hot-pressing at 800 °C

SE of 43.2 dB in X-band,
compressive strength of
67.5 MPa, promising for
aerospace applications.

Wang et al. [276]
Short carbon

fiber-reinforced SiC
CMCs

Short carbon fiber, SiC
Material extrusion 3DP,
precursor infiltration
and pyrolysis (PIP)

Bending strength of
212.74 MPa, fracture

toughness of
5.84 MPa m1/2.

Sarvestani et al. [277]
Enhanced toughness

and versatility in
ceramics

Polymer-derived
ceramics (PDCs)

Stereolithography (SLA)
using SiOC precursor

Compressive strength of
2.2 MPa, stiffness of
330 MPa, density of

0.5 g/cm³.

Jiang et al. [278]
Programmable shapes

in polymer-derived
ceramics

UV-curable polymer
precursors

Two-stage pyrolysis
strategy

Achieved crack-free
SiOC ceramics, despite

59.91% shrinkage;
demonstrated

programmable shape
capability.

Zhu et al. [279]
Optimization of resin

formulation for
ceramics

Photosensitive resin,
h-BN

Incorporation of h-BN
in resin formulation

Bending strength of
252.4 ± 12.2 MPa,

fracture toughness of
2.7 ± 0.2 MPa·m1/2,

thermal conductivity
improved to

5.34 W·m−1·K−1.

Young et al. [280]
Post-processing

methods for improved
pyrolysis

Polymer-derived
ceramics

Various post-processing
techniques

Pyrolysis survival rate
of 97%, ceramic yield of

53%, enabling larger
turbine vanes
production.

Bobrin et al. [281]

Fabrication of
nanostructured
carbon–ceramic
multi-materials

Inorganic precursors,
acrylonitrile

Polymerization-
induced microphase

separation 3DP

Revealed influence of
resin composition on

microstructure;
combined ceramic and

carbon properties
achieved.

Wang et al. [282] Efficient SiC ceramics
preparation SiC ceramics

Selective laser printing,
precursor impregnation

and pyrolysis (PIP),
liquid phase sintering

(LPS)

Flexural strength of
150 MPa, relative
density of 98.2%.

7. Challenges and Limitations

The integration of ML into 3D and 4DP of polymer composites holds promise for
advancing the field. However, there are several key challenges and limitations that need to
be addressed to realize its full potential. Figure 12 illustrates the challenges and limitations
associated with applying ML in 3D and 4DP of polymer composites.
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Figure 12. Challenges and limitations associated with applying ML in 3D and 4DP of polymer composites.

One of the foremost challenges is data scarcity and quality [284,285]. ML models
typically require large datasets to deliver accurate predictions, but in the field of 3D and
4DP, particularly for polymer composites, such datasets are limited. The data available for
material behavior, especially in complex systems involving active composites that respond
to environmental stimuli, are often sparse or incomplete. Moreover, experimental data are
prone to noise and inconsistencies, making it difficult for ML models to learn effectively
and robustly [286].

The complexity of material behavior further complicates the application of ML. Poly-
mer composites, especially when subjected to environmental stimuli in 4DP, exhibit highly
nonlinear and heterogeneous behavior [215]. These materials often interact in unpredictable
ways when combined, making it difficult for current ML models to accurately predict out-
comes [287,288]. For instance, controlling the spatial distribution and phase transitions in
multi-material systems, such as mechanical metamaterials or shape-shifting composites,
remains a significant challenge due to the complexity of these interactions [289–291].

Another limitation is the generalizability of ML models [292,293]. ML models trained
on specific material systems or design configurations often fail to generalize well to new
materials or different printing methods. This lack of transferability limits the applicability
of ML across diverse materials and printing processes [294]. As a result, models that
perform well in controlled experimental settings may not be as effective in real-world
industrial applications, where new variables are introduced.

High computational costs also present a barrier to the widespread use of ML in 3D and
4DP [295]. Many predictive models rely on computationally expensive simulations, such as
the finite element method (FEM), to generate training data and validate results [296]. This
is especially problematic for complex inverse design problems, where the optimization of
material distributions or structural configurations requires substantial computational re-
sources. The computational burden makes it difficult to apply ML in real-time applications,
limiting its scalability for industrial use.

Optimization challenges are another issue, particularly in the context of designing
active composites for 4DP. The design process often involves solving inverse problems
with large design spaces, such as voxel-based material distributions [297,298]. Even with
advanced optimization techniques, like evolutionary algorithms or Bayesian optimization,
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navigating these vast design spaces can be difficult, and the risk of converging on sub-
optimal solutions remains high. The complexity of nonlinear material behaviors further
exacerbates these challenges, making it harder to find the optimal design.

Furthermore, experimental validation and real-world implementation of ML-driven
models are often difficult to achieve. Discrepancies between simulation predictions and real-
world outcomes can arise due to variations in material properties, environmental factors,
or the limitations of current printing technologies. In practice, ML models that work
well in controlled environments may not perform as expected when scaled to industrial
applications, where real-time defect detection and quality control are critical [299].

Another practical limitation lies in integrating ML with printing hardware. The real-time
monitoring and control of printing processes using ML models require fast and accurate data
processing, which is challenging given the high-speed nature of 3DP systems [46,300]. Addi-
tionally, adapting existing hardware, such as multi-material extrusion heads, to accommodate
ML-driven optimizations can be technically demanding and expensive.

Lastly, the lack of standardization in material characterization, testing methods, and
printing protocols across the AM industry further complicates the application of ML [301].
Without standardized datasets and consistent experimental procedures, it becomes difficult
to train and compare ML models across different systems or materials, limiting the broader
adoption of ML in the field.

For instance, material extrusion (MEX) lacks standardized testing methods tailored
to its unique material and process characteristics. Phillips et al. [302] review current
practices for preparing tensile test specimens and propose guidelines for future standards.
They emphasize the need to account for slicing parameters, specimen geometry, toolpath
optimization [303,304], and material specifications to ensure accurate representation of
final part properties. Standardizing these factors could improve comparability between
studies and support the development of MEX for advanced applications.

Garcia et al. [305] review current design, material, and process standards for AM [306,307],
with a focus on mechanical characterization of polymer-based products. They highlight
the reliance on standards from other industries, inconsistencies between documents, and
the need for clearer guidance. The work highlights the importance of developing AM-
specific standards, particularly for mechanical testing, and addresses the disparity between
standards for metallic and polymer materials. This review aims to support both researchers
and practitioners in navigating the evolving standardization landscape in AM.

8. Future Directions

As ML continues to evolve, its application in 3D and 4DP of polymer composites
presents numerous opportunities for innovation and advancement. To harness the full
potential of ML in this field, several key future directions can be explored. Figure 13
illustrates the future directions of ML applications in 3D and 4DP of polymer composites.

One of the most essential areas for future research is the generation of high-quality,
diverse datasets [308,309]. This can be achieved through advanced simulation techniques,
such as generative adversarial networks (GANs) [310,311], which can synthesize realistic
material behavior data. Jabbar et al. [312] review recent advances in using GANs for inverse
materials design (IMD), where GANs help discover materials with targeted properties
by applying specific constraints. The authors discuss databases, ML criteria, available
software tools, and training descriptors for GAN models, highlighting both challenges and
future directions in this promising field. On the other hand, Jiang et al. [313] highlight
the expanding role of GANs in materials science, covering applications from composition
design to microstructure analysis and defect detection. The paper discusses GAN funda-
mentals, specific use cases, and addresses challenges, underscoring GANs’ potential to
drive innovative advancements in materials discovery and optimization.
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Figure 13. Future directions in ML applications for 3D and 4DP of polymer composites.

Additionally, efforts to standardize data collection [314] and sharing practices across
research institutions and industries can facilitate greater access to valuable datasets [315].
For instance, Shetty et al. [316] developed a pipeline using NLP and trained a specialized
language model, MaterialsBERT, to automatically extract material property data from
polymer science abstracts, collecting 300,000 records from 130,000 abstracts in 60 h. The
data, accessible at polymerscholar.org, offers insights across applications like fuel cells and
solar cells, showcasing the potential of automated literature analysis for materials science.

Future efforts should also focus on developing ML models that exhibit improved
generalization capabilities across various materials and printing conditions. This can be
achieved by utilizing transfer learning (TL) approaches [317,318], where models trained on
one material system can be adapted for others. Tang et al. [319] review TL in AM modeling,
emphasizing its potential to improve model quality despite limited data by reusing models
across products. They outline TL methods, current applications, and recommendations for
effectively applying TL to enhance AM processes.

Multi-fidelity (MF) modeling [320] techniques can also be explored, allowing for
the integration of data from different sources (e.g., experimental and simulation data)
to enhance model robustness. Nath et al. [321] introduce an MF modeling approach to
predict AM outcomes by combining high-fidelity (HF) and low-fidelity (LF) models with
experimental data. Using Bayesian calibration, the method improves LF model predictions,
demonstrated here for predicting porosity in laser powder bed fusion.

The incorporation of multimodal data is another promising avenue for future research.
Integrating process data (temperature, pressure, speed) with material properties and per-
formance outcomes can provide a more comprehensive understanding of the printing
process [322]. Petrich et al. [323] propose a supervised machine learning approach for
detecting inter-layer flaws in powder bed fusion additive manufacturing (PBFAM) using in
situ multimodal sensor data, with 98.5% accuracy in binary flaw classification. Integrating
data from multiple sensors (e.g., imagery, acoustic, and multi-spectral) and scan trajecto-
ries, the approach successfully correlates in-process sensor data with post-build CT scans,
demonstrating enhanced flaw detection performance by fusing sensor modalities.

Advancements in ML algorithms should be geared towards enabling real-time opti-
mization and control of the 3D and 4DP process. This includes developing closed-loop [324]
systems, where feedback from in situ sensors informs adaptive control strategies. By con-
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tinuously learning from ongoing processes, these systems can adjust printing parameters
in real time to mitigate defects and enhance material properties, leading to improved
efficiency and product quality. Mercado et al. [325] highlight recent efforts in control
system improvements and emphasize the potential advantages of closed-loop control for
advancing AM precision and reliability.

Exploration of new material systems is another important direction for future research.
The application of ML in discovering and optimizing new polymer composite materials
for specific applications is promising. By combining ML with high-throughput experimen-
tal methods, researchers can rapidly screen and identify novel composite formulations
that meet desired performance criteria [326,327]. Nazir et al. [55] provide a summary of
recent advancements in multi-material additive manufacturing (MMAM), exploring its
applications, design strategies, and challenges across various industries. They identify
limitations in existing processes and software, while also discussing future directions and
potential strategies to enhance the functionality and mechanical properties of MMAM-
fabricated parts.

Interdisciplinary collaboration can facilitate the transfer of knowledge and technology
between academia and industry, driving the adoption of ML in real-world manufacturing
settings [328]. Park et al. [329] present a methodology for identifying and prioritizing
data analytics (DA) opportunities in AM, highlighting the importance of interdisciplinary
collaboration. The framework includes a team of experts, a Data Opportunity Knowledge
Base (DOKB), and a prioritization tool utilizing Fuzzy-TOPSIS, resulting in the identification
and ranking of 264 DA opportunities for the laser powder bed fusion process, ultimately
facilitating ongoing collaboration and knowledge sharing within the AM community.

Furthermore, sustainability is an increasingly important consideration in manufac-
turing. Future research should explore how ML can contribute to sustainable practices
in 3D and 4DP [330–332], such as optimizing material usage to minimize waste [333],
improving energy efficiency [334], and developing biodegradable composites [335–337].
Hegab et al. [338] highlight the role of AM in promoting sustainability across various in-
dustries, showcasing its benefits in reducing resource depletion, waste, and emissions while
improving efficiency in production processes. They discuss the integration of AM within
circular economy strategies, identify challenges in its deployment throughout the product
life cycle, and emphasize the need for further research on the long-term environmental
impacts of AM to encourage its adoption among organizations and policymakers.

As the integration of ML in 3D and 4DP progresses, there will be a growing need for
education and training programs that equip researchers and practitioners with the necessary
skills and knowledge. Institutions should develop curricula that focus on the intersection
of ML, materials science, and AM, ensuring that the next generation of engineers and
scientists are prepared to leverage these technologies effectively. Stavropoulos et al. [339]
address the lack of expertise hindering the industrial adoption of AM by developing a
structured training framework tailored to industry needs. The framework classifies AM
into modular educational areas, targeting various professional profiles and emphasizing
hands-on practice, while also proposing strategies to enhance accessibility and facilitate the
implementation of AM training within the industrial sector.

9. Conclusions

The application of ML in 3D and 4DP of polymer composites represents a shift in the
landscape of AM. ML applications range from optimizing the printing process to predicting
the performance of materials and enhancing design capabilities. By analyzing vast amounts
of data generated during the printing process, ML allows for better control of parameters,
improved outcomes, and accelerated innovation. Furthermore, as the complexity of designs
and materials increases, the role of ML in facilitating rapid prototyping, quality assurance,
and customizability will likely grow, positioning it as a cornerstone of future innovations
in additive manufacturing. Based on the literature analysis presented in this manuscript,
the following is a summarized version in bullet points:
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• The integration of ML in real-time monitoring systems (e.g., AI2AM technology for
FDM) improves the quality and consistency of printed polymer composites. This
shift to smart manufacturing aligns with Industry 4.0 principles, focusing on defect
detection and parameter optimization to prevent errors and enhance efficiency.

• Techniques like the deep learning model developed by Lu et al. for detecting defects
in carbon fiber-reinforced polymers (CFRPs) showcase the ability of AI to provide real-
time geometric analysis and process adjustments. This automation reduces reliance
on traditional methods, enhancing overall manufacturing quality.

• Systems like the self-monitoring approach by Narayanan et al. utilize deep learning to
detect delamination and predict warping, demonstrating the capability for early error
detection. This proactive management improves automated quality control across
various manufacturing sectors.

• Jin et al. [340] achieved up to 99.5% accuracy in classifying 3D-printed parts using
ML models. This level of precision benefits both large-scale manufacturers and in-
dividual users, emphasizing the competitive advantage gained through intelligent
quality assurance.

• By employing laser scanning methods (as demonstrated by Lin et al. [240]) to monitor
printed surfaces against CAD models, companies can achieve real-time feedback
control that reduces waste and prevents unnecessary production runs, leading to more
sustainable manufacturing practices.

• The Continual G-learning method for defect detection exemplifies the potential of
reinforcement learning to address emerging defects in real time using historical and
real-time data, showcasing an advanced adaptive quality control system that requires
minimal training samples.

• Innovations like the multi-material inkjet 3DP method described by He et al. for
personalizing medical devices highlight the growing trend towards customization,
enabling user-defined mechanical properties and multifunctional device design.

• Xue et al.’s variational autoencoder (VAE) framework [256] for designing mechanical
metamaterials demonstrates the ability of ML to efficiently customize 3D-printed parts
for specific macroscopic elastic properties, fostering innovation in material science
and application design.

• The reduction in printing time (up to 25%) and waiting time (47%) achieved through
methods like WTP-VP, as described by Cao et al., signify a positive trend towards more
environmentally friendly manufacturing processes by minimizing resource usage.

• Chen et al.’s work [21] on tool path identification in GFRP composites highlights
the potential risks to intellectual property as reverse-engineering capabilities using
ML can reconstruct manufacturing processes from finished products, necessitating
enhanced data protection strategies.

• Recent studies highlight advancements in creating polymer-derived ceramics (PDCs)
with superior mechanical properties and functionality. For example, Su et al. [274]
developed a precursor-derived SiOC ceramic that has the potential for applications
in high-efficiency electromagnetic interference (EMI) shielding, particularly in the
aerospace and electronics sectors.
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211. Łapińska, A.; Grochowska, N.; Cieplak, K.; Płatek, P.; Wood, P.; Deuszkiewicz, P.; Dużyńska, A.; Sztorch, B.; Głowcka, J.; Przekop,
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