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Abstract: Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic
inorganic and organic components. These materials have been investigated as ideal carriers for
therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility,
physiological inertia, tunable size and morphology, and their extensive design flexibility of functional
organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated
by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the
controlled release of various targeted therapeutics. This review aims to provide a comprehensive
overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and
biodegradability, while critically assessing their capabilities for controlled release in response to
specific stimuli. Furthermore, practical suggestions and future perspectives for the design and
development of BPSs are presented. This review highlights the significant role of stimuli-responsive
BPSs in advancing biomedical research.

Keywords: stimuli-responsive; bridged polysilsesquioxanes; organosilicon; controlled release;
targeted therapeutics

1. Introduction

Stimuli-responsive delivery systems have been proposed as a means to regulate the
release rate of targeted therapeutics, maintain stable blood concentrations, and optimize
therapeutic efficacy [1,2]. These systems offer a more precise, safer, and more effective
approach to controlled release [3,4]. Despite significant progress in the development of
controlled release systems [5–8], achieving precise therapeutic targeting remains a challenge
in clinical research. The efficacy of therapeutics delivered via controllable release systems is
influenced not only by the properties of targeted therapeutics and carriers but also by the
precision and control of the delivery mechanisms [9,10]. The design of advanced stimuli-
responsive carriers aims to enhance the precision, control, and targeting of therapeutic
delivery, which has become a primary focus in controlled release system research.

Organosilicon materials are among the leading candidates for constructing stimuli-
responsive biomaterials, owing to the biocompatibility of the Si-O-Si bond and the tunabil-
ity of organic components, which collectively determine their suitability for biomedical
applications [11]. Among these, bridged polysilsesquioxanes (BPSs) have attracted consid-
erable attention, owing to their biocompatibility, physiological inertness, and structural
tunability [12,13]. As a result, BPS materials are considered promising candidates for the
development of stimuli-responsive biomaterials.

While numerous reviews have been published on stimuli-responsive mesoporous
silica nanoparticles for drug delivery and cancer therapy [14–17], there is a notable lack
of comprehensive reviews addressing the use of stimuli-responsive BPSs in controlled
release systems. This paper seeks to provide a systematic overview of stimuli-responsive
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BPS biomaterials and their applications in controlled release systems, with a particular
focus on their biomedical potential. The review begins with an exploration of design
strategies for stimuli-responsive bridged organosiloxanes and the synthesis methods for
BPS biomaterials. This is followed by a summary of stimuli-responsive BPS applications in
controlled release systems, specifically within biomedical contexts. The biocompatibility
and biodegradability of BPS materials are also discussed in detail. Finally, factors that
may hinder the clinical development of stimuli-responsive BPSs are considered, along with
future perspectives for their application in controlled release systems. This review aims to
provide new insights and promising directions for the design and use of stimuli-responsive
BPSs in biomedical applications.

2. Strategic Design of Stimuli-Responsive BPSs

BPSs are hybrid organic–inorganic materials characterized by their ability to integrate
both organic and inorganic components [18]. Their structure consists of [O1.5Si-R-SiO1.5]
units, where R represents the organic bridged group, and the inorganic network is made
up of silsesquioxane [SiO1.5] [19,20]. The organic bridged groups are covalently bonded
to the inorganic silicon atoms via Si-C bonds, resulting in an even distribution of organic
components within the silsesquioxane skeleton at the molecular level, as opposed to simple
physical mixing [21,22]. The organic bridged groups are highly tunable, allowing for
extensive design possibilities to regulate the stimuli-responsive properties of BPSs [23].
This adaptability makes BPS materials highly promising for the development of innovative
biomaterials that can enable precision diagnosis and treatment.

2.1. Construction of Stimuli-Responsive Bridged Organosiloxanes

The performance and functionality of BPSs are determined by the properties of their
bridged organosiloxanes, making the design of these monomers crucial for achieving
specific material characteristics [24]. The positioning of stimuli-responsive groups within
the organic bridged chains is closely linked to the mode of control and release behavior of
the stimuli-responsive BPSs. One design strategy involves attaching the stimuli-responsive
groups to the side positions of the organic bridged chains (Figure 1a). Upon stimulation,
these side groups detach from the main chains, altering the surface properties of the BPS
and thus controlling the release of therapeutics adsorbed on the surface. A second approach
incorporates the stimuli-responsive groups directly into the main chains of the monomers
(Figure 1b). In response to stimuli, the organic bridged chains break apart, causing the
disintegration of the BPS and releasing the encapsulated therapeutics.
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Figure 1. Schematic illustration for different stimuli-responsive bridged organosiloxanes with stimuli-
responsive moiety located at side chain (a) and main chain (b) of organic bridged groups and their
degradation processes after trigger treatment.

The flexible designability and broad tunability of the organic bridged groups have
made BPS materials a focus of significant research. The synthetic route chosen depends on the
characteristics of the bridged organosiloxane monomers and may include organoalkoxysilane
functionalization, hydrosilylation, or metallization [19]. Organoalkoxysilane functionaliza-
tion is a widely used method for monomer synthesis, offering the advantage of starting
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from readily available raw materials to prepare a wide variety of bridged groups. However,
the starting materials must be selected carefully to ensure that each step in the material
preparation process adheres to pharmacopoeial standards. In practical applications, the
final products must satisfy basic safety and non-toxicity requirements after stimulation.
Therefore, strict screening of stimuli-responsive groups and mechanisms is essential. Con-
siderations such as high yield, good biocompatibility, and low cost are critical in the design
and development of these materials.

2.2. Synthesis of Stimuli-Responsive BPSs

BPS nanoparticles (BPNPs) have garnered significant attention in research, owing to
their nanostructure and design flexibility [25]. The surfactant-templated sol–gel method
is the most widely employed technique for synthesizing monodisperse BPNPs [26]. This
approach utilizes surfactants, such as cetyltrimethylammonium chloride (CTAC) and
cetyltrimethylammonium bromide (CTAB), as structural templates, with organic bridged
organosiloxanes serving as the sole silicon source to produce periodic mesoporous BP-
NPs. Studies have shown that the morphology, size, pore size, and structure of BPNPs
can be significantly influenced by adjusting reaction parameters such as the type of tem-
plate agent, the ratio of starting materials, silicon source, pH, reaction temperature, and
duration [27]. In addition to periodic mesoporous BPNPs, researchers have focused on
mesoporous BPNPs synthesized through the co-condensation of organic bridged siloxanes
with tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS) as mixed silicon sources.
These particles exhibit larger specific surface areas, allowing for a higher therapeutic load-
ing capacity [28]. However, the reduced organic content in mesoporous BPNPs compared
to their periodic counterparts may limit their stimuli responsiveness and degradability in
biological environments. The modified Stöber method is frequently employed to synthesize
non-porous BPNPs with higher organic content [24,29]. This technique utilizes alcohol
as a co-solvent, with ammonia or sodium hydroxide serving as a base catalyst, and relies
solely on bridged organosiloxane monomers as the silicon source. The sol–gel process
in water produces spherical BPNPs [30]. However, the modified Stöber method cannot
achieve precise control over the monodispersity of the BPNPs because of the absence of
structure-directing agents.

Shea et al. [31] fabricated a variety of alkylalkene, phenylalkylalkene, and alkylamino
BPS nano- or microparticles, systematically controlling the average particle size between
20 nm and ~1.5 µm by adjusting parameters such as 1-propanol content. A research
prepared two types of ditelluride-based BPNPs (DTeMSN1 and DTeMSN2) using bis[3-
(triethoxysilyl)propyl]ditelluride (BTETePD) as a precursor [32]. BTETePD was added to
TEOS to obtain the co-precursors, which were reacted with the structure-directing agents
CTAT and triethanolamine to synthesize DTeMSNs via the sol–gel method. Two DTeMSNs
with different Te contents were designed by adjusting the mass ratios of TEOS to BTETePD,
DTeMSN1 = 4:1, and DTeMSN2 = 3:2, respectively. The BET-specific surface area, total
pore volume, and average pore size of DTeMSN2 were 623.4 m2 g−1, 1.13 cm3 g−1, and
8.8 nm, respectively, and that of DTeMSN1 were 596.7 m2 g−1, 1.13 cm3 g−1, and 7.6 nm,
respectively. The results indicate that an increase in ditelluride precursor doping leads to
an increase in average pore size.

Figure 2 illustrates the structure and synthesis pathways of various BPNPs, including
mesoporous BPNPs (low organic content), periodic mesoporous BPNPs (high organic
content), and non-porous BPNPs (high organic content). Notably, hollow BPNPs have
garnered significant attention and are increasingly employed in controlled release systems
due to their high specific surface area, tunable porosity, and exceptional loading capacity.
Typically, these hollow BPNPs are synthesized using hard template methods, which is an
effective approach enabling the stable and controlled hollow structures of BPNPs. For
instance, Ha et al. [33] utilized polystyrene beads as a hard template and coated their
surface with an organosiloxane layer. Subsequently, monodisperse hollow BPNPs were
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successfully prepared by selectively etching the polystyrene core through the introduction
of ammonia.
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The versatility of BPS materials, both chemically and biologically, is expected to play a
central role in future biomedical research. The following sections present a comprehensive
discussion of stimuli-responsive BPS biomaterials and their potential applications as carriers
for the controlled release of targeted therapeutics in biomedical contexts.

3. Stimuli-Responsive BPSs in Biomedical Applications

Recent advances in stimuli-responsive BPS biomaterials have attracted significant
attention globally, owing to their ability to facilitate the controlled release of targeted thera-
peutics based on the specific temporal and spatial conditions of various diseases [14,34].
For example, the tumor microenvironment exhibits distinct characteristics compared to
normal tissue, such as acidity, hypoxia, elevated enzyme production, and high levels of
reactive oxygen species. These conditions can act as physiological signals for environment-
specific therapies [35–37]. BPS biomaterials offer a versatile platform for developing
stimuli-responsive carriers by adapting to different signals from various sources.

Targeted therapeutics can be incorporated into BPS materials either through covalent
bonds, such as amide or ester linkages, or through non-covalent interactions, including
hydrogen bonding, hydrophilic interactions, and electrostatic forces [38]. These thera-
peutics can either be adsorbed on the BPS’s surface or encapsulated within its structure.
Upon stimulation (redox potential, pH, enzymes, light, ultrasound, and magnetic), BPS
carriers undergo structural transformation or degradation, resulting in the release of the
therapeutics (Figure 3). By adjusting key parameters such as the concentration, duration,
and location of the stimuli, the release behavior—encompassing release site, dosage, and
timing—can be precisely controlled [39].

This section provides a summary of the strategies used in the development of con-
trolled release systems based on stimuli-responsive BPS biomaterials. These carriers can
respond to single or multiple stimuli, and the fundamental mechanisms that govern the
release of targeted therapeutics are explored.
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3.1. Endogenous Stimuli-Responsive BPS Materials

Endogenous stimuli-responsive systems, also known as closed-loop controlled re-
lease systems, are triggered by physiological signals. These systems leverage homeostatic
regulation in vivo to achieve targeted therapeutic release [40]. In contrast to exogenous
stimuli-responsive systems, endogenous systems can more effectively regulate the dosage
and rate of therapeutic release based on biological signals related to disease progression,
making them particularly suitable for controlled release applications [9,41]. A controlled
release system driven by physiological signals comprises a sensor and an actuator, which
together facilitate the delivery and release of therapeutics [15,42]. To enhance the release
efficiency, biocompatible stimuli-responsive organic bridged groups are selected to induce
physical or chemical changes, leading to contraction, rupture, degradation, or alteration
of the BPS carrier’s surface properties [13,14,43]. Based on known in vivo physiological
stimuli, BPS carriers can be classified into redox-responsive, pH-responsive, and enzyme-
responsive materials.

3.1.1. Redox-Responsive

Redox-responsive carriers are primarily activated by intracellular glutathione (GSH)
and reactive oxygen species (ROS)-dependent systems [44]. The responses triggered by
GSH and ROS not only promote therapeutics’ penetration but also coexist with other stimuli
in multi-responsive carriers [45]. Reduction-sensitive carriers rupture in the presence of
elevated GSH concentrations, leading to rapid drug release. Similarly, oxidation-responsive
carriers are activated by the elevated ROS levels found in pathological conditions such
as tumors, atherosclerosis, cardiac and neurological damage, and inflammation. Redox-
responsive bridged polysilsesquioxanes (BPSs) incorporate cleavable disulfide, tetrasulfide,
diselenide, ditelluride, thioacetal, and thioketal bonds, which break down in response
to heightened GSH or ROS levels, enhancing biodegradation and promoting the release
of therapeutics [46–48]. At this stage, redox-responsive controlled release systems offer
optimal efficacy by exploiting intracellular and extracellular redox gradients for the precise
delivery and release of therapeutics upon cellular entry. This selectivity contrasts with
conventional acid-unstable linkers, which can degrade in low pH environments near
tumors, or enzyme-sensitive linkers, which are susceptible to cleavage in the circulatory
system. A summary of reported redox-responsive BPS platforms is provided in Table 1.

Figure 4 illustrates the schematic structure of several redox-responsive bridged organosilox-
anes. Disulfide/tetrasulfide bonds are covalently linked to the silicon atom via an inactive
group such as an alkyl group or a reactive group such as a ureido group to achieve a reduc-
tive response under GSH or reducing agents (Figure 4a,b). The diselenide and ditelluride
groups are generally covalently incorporated via propyl groups to two trialkoxysilane
to form redox-responsive organic bridging groups, which cleave under either GSH or
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ROS (Figure 4c,d). Bis[3-(trialkoxysilane) propyl] disulfide, bis[3-(trialkoxysilane) propyl]
tetrasulfide, bis[3-(trialkoxysilane)propyl] diselenide, and bis[3-(trialkoxysilane)propyl]
ditelluride have been commercially produced for direct purchase and use. The thioacetal-
and thioketal-bridged organosiloxanes are produced by chemical synthesis. The thioacetal-
bridged organosiloxanes in Figure 4e, for example, are obtained by a nucleophilic reaction
of the sulfhydryl group (-SH) in two equivs. of 3-mercaptopropyltriethoxysilane (MPTAS)
with the aldehyde group (-CHO) in p-anisaldehyde, thereby siloxylating ROS-responsive
thioether bonds. On the other hand, the reaction of 3-aminopropyltrialkoxysilane (APTAS)
with structurally symmetric thioketal derivatives causes thioketal-bridged organosiloxanes
(Figure 4f), so that both sides of the thioether bond are connected to the two (trialkoxysi-
lane)propyl groups by amide bonds. MPTAS and APTAS are commonly used silane
coupling agents in the synthesis of bridged organosiloxane monomers.
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Table 1. Summary of reported redox-responsive BPS platforms for controlled release systems.

Matrix Particle Size Pore Size Sensitive
Bonds Trigger Targeted

Therapeutics Application Ref.

DIS2 and DISP
BS NPs 40, and 50 nm — Disulfide GSH —

Two-photon-excited
imaging and therapy of

breast cancer cells
[49]

PROMON-CaC 65 nm — Disulfide GSH Prochloraz
Sustainable plant disease

management and
precision farming

[50]

DSMSNs@Res@CS 233.3 nm ~50 nm Tetrasulfide GSH Resveratrol Oral delivery platform [51]

PRO@DMON–
GA–Fe(III) NPs 80 nm — Disulfide

Reducing
environments

generated by the
fungus

Prochloraz Plant disease
management [52]

NaCl@ssss-
VHMS ~150 nm ~3.6 nm Tetrasulfide GSH Na+/Cl− Cancer therapeutic agent [53]

DSMSNs@Res@HA 237.73 nm ~50 nm Tetrasulfide GSH Resveratrol
Attenuate

acrylamide-induced
toxicity

[54]
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Table 1. Cont.

Matrix Particle Size Pore Size Sensitive
Bonds Trigger Targeted

Therapeutics Application Ref.

UPOMs 103 nm — Disulfide GSH Chlorin e6 and
DOX

Combination therapy of
chemotherapy and
NIR-mediated PDT

[55]

UMONs–LA–Au sub-50 nm 2.4 nm Disulfide GSH L-Arginine Tumor-specific precision
cascaded therapy [56]

avermectin@MSNs-
ss-starch 80.3 ± 8.7 nm — Disulfide GSH Avermectin Targeted pesticide

delivery [57]

Paclitaxel/IR820@
HMONs-PEG 125.3 ± 9.15 nm 5.2 nm Disulfide GSH

Paclitaxel and
photothermal

agent

Photothermal-enhanced
chemotherapy of tumor [58]

Mn3O4@PDOMs-
GOD ~177 nm — Disulfide GSH

Mn3O4 and
glucose
oxidase

Starvation and
chemodynamic therapy [59]

MON-TPGS-
DOX 70 nm — Tetrasulfide GSH DOX H2S-enhanced tumor

chemotherapy [60]

Ag-MONs@GEN 200 nm 1.68 nm Disulfide GSH Gentamicin
and nanosilver

Synergistic treatment of
antibiotic-resistant

bacteria
[61]

CHX@MONs 812 ± 27 nm 3.5 nm Disulfide GSH Chlorhexidine Treatment of bacterial
infections [62]

(CisPt+EA)@SHMONs 70 nm 3.58 nm Disulfide GSH Cisplatin and
ethacrynic acid

Chemotherapy against
drug-resistant cancers [63]

Apt-RBC-
HMOS@DOX 295 ± 1.3 nm 1.2 nm Tetrasulfide GSH DOX Cancer therapy [64]

DTX@IPOMs 20 nm — Disulfide GSH Docetaxel Ultrahigh dosage
chemotherapy [65]

DTeMSN@PEG-
CCM ~40 nm 7.6 nm Ditelluride ROS and GSH DOX Fluorescence-guided

drug delivery [32]

MON-Pt@CM 60 ± 5 nm 6.2 nm Diselenide GSH Pt Pt-based chemotherapy [66]

SeMSNs@CS@Ap 185.1 nm — Diselenide ROS Cromoglycate
sodium

Clinical generalization of
allergic diseases [67]

DOX@HMONs@PDA-
mPEG 130.7 ± 4.3 nm 11.1 nm Thioacetal ROS DOX Drug delivery [68]

T-BS-NPs@M 58.5 nm — Thioketal ROS Metformin
Combinatorial therapy of

metformin and fasting
therapy

[69]

Disulfide (S-S) and tetrasulfide (S-S-S-S) compounds exhibit stability under physiolog-
ical and oxidative conditions, yet they can be reduced to thiols in the presence of a specific
quantity of GSH or reducing agents such as dithiothreitol (DTT) [70]. These highly reactive
bonds are widely employed in the construction of stimuli-responsive systems that react to
reduction. They can serve as linkers or cross-linkers in controlled release systems, facilitat-
ing the precise release of targeted therapeutics upon exposure to a reducing environment.

Croissant et al. [49] reported the development of biodegradable BP nanodevices for
fluorescence imaging and the treatment of MCF-7 cancer cells. Two tetra-alkoxysilylated
precursors, a two-photon photosensitizer diaminodiphenylbutadiene-bridged siloxane
(2PS), and a porphyrin-bridged siloxane photosensitizer (POR) were developed via click
chemistry. GSH-responsive nanodevices were synthesized via the co-condensation of
disulfide-bridged siloxane (DIS) with 2PS or DIS, resulting in DIS2 (DIS/2PS) and DISP
(DIS/POR) BS NPs, respectively (Figure 5a). In near-physiological conditions, these nan-
odevices demonstrated biodegradability in the presence of GSH. Cellular uptake was
confirmed through fluorescence imaging, and spatially targeted cancer cell destruction
was achieved via two-photon irradiation. Cao’s research group [50] developed a redox-
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responsive nanosystem tailored to plant disease microenvironments, employing disulfide-
bridged mesoporous organosilicon nanoparticles (MONs) as porous nanocarriers and cal-
cium carbonate (CaC) as a capping agent for prochloraz (PRO) delivery to treat Sclerotinia
disease, as shown in Figure 5b. This system, PRO-MON-CaC, exhibited specific respon-
siveness to disease-associated stimuli, enabling the controlled release of PRO. Biosafety
evaluations indicated that the nanocarrier was safe for rapeseed plants at defined doses. In
another study, Jiang et al. [51] synthesized tetrasulfide-bridged organosilicon nanoparticles
(DSMSNs). After encapsulating resveratrol (Res), the nanoparticles were coated with chon-
droitin sulfate (CS) for targeted delivery, forming DSMSNs@Res@CS (Figure 6). The CS
coating facilitated selective accumulation in colon epithelial cells and macrophages. Upon
stimulation by GSH, the redox-responsive switch was activated, triggering the release of Res
and subsequent nanoparticle degradation. This strategy enhanced the intracellular delivery
of Res in a colitis model. Some of the literature summaries of disulfide/tetrasulfide-based
GSH-responsive BPS materials for controlled release applications [49–62] are presented
in Table 1.
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of Chemistry. (* represents H2O/EtOH, 80 ◦C/2 h) (b) Scheme summarizing preparation of biore-
sponsive and biodegradable PRO-MON-CaC. Reprinted with permission from [50]. Copyright 2020,
American Chemical Society.

The use of tellurium and selenium bonds is gaining recognition as a promising ap-
proach for constructing redox-responsive controlled release systems [71]. Xia et al. [32]
successfully integrated ditelluride (Te-Te) bonds into mesoporous BPNPs (DTeMSNs), with
their surfaces coated in a nanocomplex of poly(ethylene glycol)–curcumin (PEG-CCM).
The resulting nanocarrier, DTeMSN@DOX@PEG-CCM, demonstrated sustained DOX re-
lease and controlled degradation in response to redox stimuli. This sustained release was
attributed to the efficient reaction of redox agents (GSH or H2O2) with Te-Te bonds in the
cancer cell environment, leading to the decomposition of the DTeMSN framework. The
addition of PEG-CCM further enhanced cellular uptake and tumor inhibition, while also
enabling real-time tracking of cellular uptake, drug release, and biodistribution through a
self-fluorescent response. Chen et al. [66] developed MON-Pt@CM nanocarriers incorporat-
ing diselenide (Se-Se)-bridged groups for a redox-responsive controlled release of cisplatin
in chemotherapy, achieving both efficiency and safety. The diselenide-bridged mesoporous
organosilicon nanoparticles (MONs) loaded cisplatin (Pt) by coordination binding between
active cisplatin and a selenium atom, resulting in MON-Pt. Then, MON-Pt@CM was
constructed via coating MON-Pt with the cancer cell membrane (CM) to achieve a long
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blood circulation time and high tumor accumulation. A biodegradable hybrid mesoporous
organosilicon nanostabilizer, SeMSNs@CS@Ap, was also developed as a potential treatment
for allergic diseases [67]. The drug cromoglycate sodium (CS) was loaded into the small
pores of diselenide-bridged MSNs (SeMSNs) to obtain SeMSNs@CS with a positive charge.
Followed by capping with negatively charged IgE aptamer to avoid cargo leakage, we
finally provided the corresponding nanocarrier, SeMSNs@CS@Ap. The diselenide-bridged
groups within SeMSNs@CS@Ap cleave in response to excessive intracellular ROS, enabling
biodegradation and the precise release of the drug CS (Figure 7). A continuous release
of CS over 24 h was observed when H2O2 levels were elevated, addressing the issue of
sudden drug release. Additionally, targeted H2O2 stimulation at specific intervals was
shown to accelerate drug release when required.
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Figure 6. In vitro release and degradation behavior of DSMSNs@Res@CS. (a) Schematic illustration of
release and degradation mechanism of DSMSNs@Res@CS. (b) Cumulative release profiles of Res from
DSMSNs@Res@CS in absence and presence of GSH (10 mM). Three experiments were performed
with mean ± SD. (c) TEM images showing structural evolution of DSMSNs@Res@CS incubated with
RAW264.7 cells stimulated by lipopolysaccharide (LPS) for various periods (4, 24, and 48 h). Scale
bar = 200 nm. Reprinted with permission from [51]. Copyright 2023, Elsevier B.V.

Thioacetal and thioketal bonds undergo oxidative cleavage in the presence of ROS,
resulting in the formation of thiols and aldehydes or ketones [72]. These bonds are fre-
quently utilized in the construction of ROS-responsive controlled release systems, as
the ROS-induced degradation of thioacetal/thioketal groups allows for the on-demand
release of therapeutics, improving their delivery efficiency. Lin et al. [68] employed
(3-mercaptopropyl) trimethoxysilane and p-anisaldehyde in a nucleophilic substitution
reaction to synthesize thioacetal-bridged organosiloxanes (BTMPTA), which were then
converted into ROS-responsive hollow organosilicon nanoparticles (HMONs) through a
hydrolysis–condensation reaction followed by etching. The surface of HMONs was coated
with a polydopamine biofilm and aminomethoxy poly(ethylene glycol) to prevent prema-
ture DOX leakage, resulting in the controlled release system DOX@HMONs@PDA-mPEG.
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This system exhibited structural collapse upon ROS exposure, triggered by the cleavage
of thioacetal bonds. Yu et al. [69] demonstrated the ROS-responsive degradable bridged
silsesquioxane nanoparticles (BS-NPs) using thioketal (TK)-bridged organoalkoxysilanes as
precursors. The TK-bridged BS-NPs with a uniform size of 50 nm could encapsulate drug
metformin to form BS-NPs@M. A targeting peptide RGD-PEG2000-silane was conjugated
to the surface of BS-NPs@M to gain tumor-targeted BS-NPs (T-BS-NPs@M), facilitating
efficient delivery to cancer cells (Figure 8). Because of the ROS-sensitive matrix containing
thioketal bonds, metformin was specifically released from the nanocarriers in a controlled
manner within tumor cells.
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Figure 7. In vitro ROS-responsive biodegradation and drug release behavior of the nanostabilizer.
(a) A schematic illustration of the ROS-triggered biodegradation of SeMSNs@CS@Ap and the fol-
lowing CS release. (b) TEM image of SeMSNs@CS@Ap biodegradation under excessive H2O2

conditions for 48 h incubation. (c) Drug release profiles of SeMSNs@CS and SeMSNs@CS@Ap
with/without H2O2. (d) Drug release profiles of SeMSNs@CS@Ap (different selenium wt %) incu-
bated with/without H2O2. (e) Drug release profiles of SeMSNs@CS@Ap incubated at 37 ◦C for 12 h
and then sudden addition of 100 µM H2O2 for 24 h extension. Con: PBS buffer; Exp: PBS buffer
with H2O2 addition 12 h later. All data are mean ± SD (n = 3). Reprinted with permission from [67].
Copyright 2024, American Chemical Society.

Redox-responsive BPS carriers display excellent biocompatibility and effectively pen-
etrate cancer cells to deliver therapeutics in a controlled manner, attracting considerable
research interest. However, the specific release mechanisms of these carriers within patho-
logical microenvironments may influence cellular redox levels, and the underlying pro-
cesses require further clarification. Additionally, the metabolic pathways of post-response
degradation products from redox-responsive BPS carriers remain unclear and warrant
detailed investigation. While redox-responsive BPS systems exhibit significant potential
for on-demand therapeutics release, their clinical application is considerably chal-
lenging. Addressing these issues necessitates collaborative efforts focused on carrier
development, toxicological evaluation, and pharmacokinetic studies within an indus-
trial context.
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Figure 8. Schematic of ROS-sensitive organosilica nanoparticles for the targeted delivery of metformin
against cancer in combination with fasting-induced hypoglycemia. Reprinted with permission
from [69]. Copyright 2021, The Royal Society of Chemistry. (B56δ, subunit of protein phosphatase 2A;
CIP2A, cancerous inhibitor of protein phosphatase 2A; GSK3β, glycogen synthase kinase 3β; MCL-1,
myeloid cell leukemia-1).

3.1.2. pH-Responsive

pH-responsive controlled release systems function in response to changes in acidic and
alkaline environments [73]. Low pH values are characteristic of human skin, wound sites,
cancerous tissues, and other physiological environments [74–76]. Leveraging these pH
differences, carriers are designed to release therapeutics in specific pH conditions, enabling
extended circulation times, reduced premature leakage, and targeted molecular release.
This strategy enhances the therapeutic efficacy of targeted treatments while minimizing
side effects [77,78].

pH-responsive release is primarily achieved through structural changes in the organic
bridged groups of BPS carriers, which respond to different pH levels [79,80]. These materi-
als are widely applied in the delivery and controlled release of cancer therapies, vaccines,
insulin, and pesticides. The release mechanisms can be categorized as follows: (1) Specific
chemical bonds in the carrier break because of pH-induced changes in bond stability. For
example, acid-sensitive substances, such as protic acid esters, hydrazones, and amides,
contain acid-cleavable bonds that enable pH-responsive release [81]. (2) The variation in
pH disrupts hydrogen bonds formed between specific groups in the BPS carriers and the
therapeutics, causing the controlled release of therapeutics from the carriers [82]. (3) The
protonation and deprotonation balance of BPS carriers shifts with pH changes, altering
the surface charge properties of the system. This affects the electrostatic interactions be-
tween the carriers and the therapeutics, facilitating pH-responsive release [83]. Common
pH-sensitive groups include carboxyl, amino, and pyridine groups. For instance, carriers
containing basic groups (-NH2, -NHR, -NR2) or acidic groups (-COOH) undergo depro-
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tonation and protonation, respectively. At high pH levels, -COOH groups deprotonate,
immobilizing or encapsulating the therapeutics via electrostatic attraction, while at low pH
levels, these groups protonate to form -NH3+, causing electrostatic repulsion and the subse-
quent release of the therapeutic. Additionally, the release profile can be further modulated
by adjusting the number of pH-responsive groups. A summary of reported pH-responsive
BPS platforms is provided in Table 2.

Table 2. Summary of reported pH-responsive BPS platforms for controlled release systems.

Matrix Particle Size Pore Size Sensitive Bonds Trigger Targeted
Therapeutics Application Ref.

M1 100 nm — Triazine derivative pH Cyanuric acid Delivery system [84]

BS — — Triazine derivative pH 5-fluorouracil Controlled drug release [85]

Nano-BS ~300 nm — Triazine derivative pH Cyanuric acid
Combination of

chemotherapy and
fluorescence imaging

[86]

HMCs 100 nm–3.5 µm — Diurea-functionalized
pyridine pH 5-fluorouracil

and ibuprofen Delivery system [87]

His-PMO — 7.8 nm Histidine pH Paclitaxel Rapid accumulation of
drugs [88]

S–MON 57.8 nm 2.77 nm Benzoic–imine bonds pH DOX Cancer therapeutics [89]

PS@SiO2* 118 ± 8 nm — Diimine pH — Drug delivery [90]

PBHMONs ~100 nm 2.2 nm Acetal moieties pH DOX Efficient anticancer drug
delivery [91]

ICPTES–sorbitol
SNPs 340 ± 29 nm — Carbamate linkages pH — Oral-based drug delivery [92]

The pH-responsive bridged organosiloxane monomers are mostly organically bridged
with amino, urea, amide, acetal, and carbamate groups in their structures, as shown in
Figure 9. In the structures of triazine-, pyridine-, and histidine-bridged organosiloxanes
(Figure 9a–c), all of them contain urea groups (-NH-CO-NH-). Through this group, the
pH-responsive derivative is covalently linked to trialkoxysilane. This reaction is gener-
ally made by a nucleophilic reaction of -NCO in 3-isocyanatopropyltrialkoxysilane with
-NH2 in the pH-responsive derivative. Similarly, the carbamete group (-NH-COO-) in
carbamete-bridged organosiloxanes (Figure 9f) is produced by reaction of -NCO with the
hydroxyl group in sorbitol. The introduction of a Schiff base has been prepared by react-
ing 3-aminopropyltrialkoxysilane with dialdehydes (Figure 9d). Alkylhalide-substituted
acetal derivatives have been used with -NH2 of 3-aminopropyltrialkoxysilane to give
acetal-bridged groups with amino bonds being covalently linked to four trialkylsiloxanes
(Figure 9e). These pH-responsive groups or derivatives have symmetrical structures con-
taining reactive groups on both sides, facilitating the reaction with silane coupling agents
to build bridging groups.

The hydrogen atom in the amino group and the oxygen atom in the carbonyl group
form stable hydrogen bonds under neutral conditions, but these bonds break in acidic envi-
ronments. Leveraging this principle, pH-responsive controlled release systems have been
developed. Carcel et al. [84] synthesized tetrasilylated precursors with triazine derivatives
as organic bridged groups, creating imprinted pH-responsive BPS materials (M1) with fiber-
like structures via a sol–gel process (Figure 10). These materials exhibit dual functionality,
with molecular recognition and targeted release. The study employed molecular imprinting
methods via hydrogen bonding interactions to construct bridged siloxane capable of releas-
ing imprinted molecules under mildly acidic conditions. Bis(silylated) triazine derivatives
were bonded to cyanuric acid via hydrogen bonds. The potential for cyanuric acid release
from this pH-responsive BPS carrier was examined at 37 ◦C under strongly acidic and
moderate pH conditions. The results confirmed that cyanuric acid could be effectively
released in mildly acidic media (pH = 5.5) without compromising the integrity of the BPS
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material. Similarly, non-porous BPS nanomaterials with triazine bridges were developed
by interacting 5-fluorouracil (5-FU) through weak hydrogen bonds, creating a pH-sensitive
BPS drug delivery system (BS) [85]. Carcel and collaborators [86] introduced fluorescein
isothiocyanate onto a triazine-derivative BPS carrier, resulting in a novel non-porous BPS
system (nano-BS) that cleaves hydrogen bonds under acidic conditions, releasing cyanuric
acid. This system is applicable for both targeted release and fluorescent cell imaging.
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Figure 9. Schematic structure of pH-responsive bridged organosiloxanes. (a) Triazine-bridged
organosiloxanes, (b) pyridine-bridged organosiloxanes, (c) histidine-bridged organosiloxanes,
(d) phenylidene Schiff base-bridged organosiloxanes, (e) acetal-bridged organosiloxanes, and
(f) carbamate-bridged organosiloxanes (R = Me or Et).
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Moorthy et al. [87] synthesized mesoporous organosilica hybrid microcarriers (HMCs)
containing diurea and pyridine functionalities for pH-triggered drug release. The hy-
drophilic anticancer agent 5-FU and the hydrophobic nonsteroidal anti-inflammatory drug
ibuprofen (IBU) were encapsulated in the HMCs through multiple hydrogen bonds and
electrostatic interactions and released at pH 5.5 and 7.4, respectively (Figure 11). These
HMCs offer a novel approach for dual-drug loading, enabling the precisely controlled re-
lease of targeted therapeutics via distinct interaction mechanisms triggered by pH changes.
Wang et al. [88] prepared a pH-responsive periodic mesoporous organosilicon material
(His-PMO) by condensing histidine-bridged organosiloxane precursors (His-BOP) with
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tetraethoxysilane (TEOS). Paclitaxel (PTX) was encapsulated in His-PMO through electro-
static interactions, and the pH-triggered controlled release process was observed in vitro.
The release behavior of PTX from His-PMO exhibited a distinct pH-responsive mechanism,
wherein the imidazole group within the channels was protonated, causing an electrostatic
repulsion of PTX under acidic conditions. This shift in electrostatic equilibrium at different
pH values altered both the dosage and release rate of the drug.
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Figure 11. Time-dependent release kinetics of (a) 5-FU and (b) IBU from the HMCs-20 in a PBS
buffer at pH 7.4 and 5.5 at 37 ◦C. (c) The percentage release of the drugs from the dual-drug delivery
system according to the pH of the release medium. The arrow indicates the point at which pH 7.4
was changed to pH 5.5. Reprinted with permission from [87]. Copyright 2013, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany.

Yuan et al. [89] employed Schiff base interactions to chemically incorporate phenyli-
dene Schiff bases into bridged MON carriers, yielding S-MON. This novel nanoplatform
demonstrated effective pH-triggered degradability, enhancing the release kinetics of tar-
geted therapeutics in acidic environments. Curcho’s group [90] described the develop-
ment of hybrid nanoparticles (PS@SiO2*), utilizing a polystyrene (PS) core coated with an
organosilicon framework (SiO2). The core–shell pH-responsive coating was constructed
using tetraethoxysilane (TEOS) and pH-sensitive diamine-bridged organosiloxanes via a
sol–gel process. The study explored the degradation behavior in response to pH changes.
Under acidic conditions (pH 5.0), the acid-sensitive organosilicon framework underwent
hydrolysis of diimine bonds, leading to rapid degradation of the coating and exposure of
the PS nanoparticles. This design of pH-responsive organosilicon coatings offers a simple
yet powerful approach for a variety of biological applications, including on-demand ther-
apeutic release, sensing technologies, and smart protective coatings with rapid response
times. Yang [91] reported the development of novel hollow mesoporous BPS nanoparticles
(PBHMONs) with pH-responsive biodegradability for the controlled release of anticancer
drugs (Figure 12). The acetal-bridged moiety within the PBHMONs cleaved in response to
weak acids. Doxorubicin (DOX), an anticancer drug, was efficiently loaded into the PBH-
MONs through π-π interactions with the pH-responsive bridged groups. These PBHMONs
demonstrated selective biodegradation in the weakly acidic tumor microenvironment, lead-
ing to partial drug release while facilitating rapid clearance, thereby minimizing long-term
toxicity. Zharov and colleagues [92] developed water-degradable bridged organosilica
nanoparticles (ICPTES-sorbitol SNPs) via the co-condensation of sorbitol-bridged siloxanes
containing carbamate linkages with TEOS. Exposure of ICPTES–sorbitol SNPs to aqueous
environments at neutral or acidic pH resulted in a gradual degradation from non-porous to
porous, culminating in complete breakdown due to the hydrolysis of carbamate bonds.

Research on pH-responsive controlled release systems has gained significant atten-
tion. BPS biomaterials with pH sensitivity are increasingly being recognized as promising
carriers for the efficient loading and controlled release of therapeutic molecules, including
drugs, nucleic acids, and proteins. The construction of these carriers relies on the selec-
tion of pH-sensitive organic bridged groups and the mode of binding with therapeutic
agents. Variations in pH induce structural modifications in the BPS carriers, including
disintegration, changes in surface charge, alterations in hydrogen bonding, and shifts
in hydrophilic/hydrophobic properties. These pH-responsive systems can protect ther-
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apeutic agents from bioenvironment-induced degradation or loss of efficacy, enhancing
bioavailability and enabling sustained release.
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their pH-responsive biodegradation. (b–e) TEM analysis of a suspension of PBHMONs (0.1 mg/mL,
PBS, pH = 6, 37 ◦C) after 0, 0.5, 1, and 3 d. (f) DOX release profiles of DOX-loaded PBHMONs at pH
= 6.0 and 7.4 and DOX-loaded HMS at pH = 6. Error bars indicate mean ± SD, n = 3. Reprinted with
permission from [91]. Copyright 2019, Elsevier B.V. (HMS, hollow mesoporous silica).

3.1.3. Enzyme-Responsive

Enzymes, as key metabolic catalysts, participate in nearly all biological processes [93].
Leveraging enzyme specificity and efficiency for the targeted release of therapeutics offers
an effective approach for constructing enzyme-responsive BPS controlled release sys-
tems [94]. By utilizing enzyme-responsive bridged groups as substrates, changes in enzyme
expression levels trigger modifications in the chemical structure of the substrates, leading
to the disintegration of the carrier and controlled release of the encapsulated therapeutics.
A summary of reported enzyme-responsive BPS platforms is provided in Table 3.

Followed by the substitution of dichloride-functionalized azobenzene with 3-
aminopropyltrialkoxysilane, successful silylation of the azobenzene moiety is achieved
through two amide bonds (Figure 13a). Similarly, the nucleophilic substitution of oxalyl
chloride with two equivalents of 3-aminopropyltrialkoxysilane yields organosiloxanes fea-
turing dual amide bonds as organic bridges (Figure 13b). The reaction between isocyanates
and amines to form urea bonds has been previously mentioned. Consequently, four
equivalents of 3-isocyanatopropyltrialkoxysilane were employed to react with tri-L-lysine
containing four primary amino groups, resulting in the tri-L-lysine-bridged organosiloxanes
(Figure 13c).

Azo bonds serve as particularly useful enzyme-degradable segments in controlled re-
lease systems, undergoing reductive cleavage catalyzed by azoreductase enzymes [100]. Li
and Tang [95] developed a BPS system containing azo-bridged groups as enzymatically re-
sponsive gates for MSNs, where ibuprofen was encapsulated and released upon cleavage of
the azo bonds by azoreductase. In another study, Omar et al. [96] co-condensed azobenzene-
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bridged siloxanes (AZOs) with aromatic benzene (B)- and aliphatic ethane (E)-bridged
siloxanes, resulting in the formation of AZO-B and AZO-E, respectively (Figure 14a). AZO-
B and AZO-E enzymatically degraded in an azoreductase enzyme in the presence of
nicotinamide adenine dinucleotide phosphate (NADPH), as displayed in Figure 14b,c.
The results showed that they provided a compact pore–wall framework and enhanced
enzyme-responsive biodegradation catalyzed by azoreductase, enabling the controlled
release of therapeutics.
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Figure 13. Schematic structure of enzyme-responsive bridged organosiloxanes. (a) Azobenzene-
bridged organosiloxanes, (b) oxamide-bridged organosiloxanes, and (c) tri-L-lysine-bridged
organosiloxanes (R = Me or Et).

Khashab and colleagues [97] designed biodegradable bridged silsesquioxane nanoflu-
orescent probes (BS NPs) with high organic content, introducing fluorescein isothio-
cyanate into enzyme-responsive Si-O-Si frameworks to enhance cancer cell imaging. These
nanoprobes degraded in response to trypsin, breaking the oxamide-bridged groups. Ad-
ditionally, the group synthesized biodegradable oxamide phenylene-based mesoporous
organosilicon nanoparticles (MONs) by co-condensing oxamide-bridged siloxanes with
phenylene-bridged siloxanes [98]. These nanoparticles exhibited high organic content and
drug-loading capacity, facilitating controlled release in cancer cells triggered by a trypsin
model protein through enzyme-responsive degradation (Figure 15). Maggini et al. [99]
synthesized tri-L-lysine (Lys3)-bridged BPS nanodonuts (NDs), which possessed approx-
imately 70% organic content, enhancing cellular uptake. The enzymatic degradation of
these nanodonuts led to controlled therapeutic release.

Table 3. Summary of reported enzyme-responsive BPS platforms for controlled release systems.

Matrix Particle
Size Pore Size Sensitive Bonds Trigger Targeted

Therapeutics Application Ref.

S2 100–150
nm — Azobenzene

linkers Azoreductase Ibuprofen Colon-specific drug
delivery [95]

AZO-B and AZO-E — 1.6 nm (AZO-B),
2.7 nm (AZO-E)

Azobenzene
linkers Azoreductase DOX On-demand drug

delivery [96]

BS NPs 295 nm — Oxamide Trypsin — Imaging nanoprobes [97]

MON 181 ± 23
nm 2.1 nm Oxamide Trypsin DOX Disease-targeted

treatments [98]

NDs 220 ± 36
nm — Tri-L-lysine Peptidase DOX Drug delivery [99]
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Figure 14. (a) Transmission electron microscopy (TEM) and schematic illustration of AZO-B and AZO-
E pore walls. TEM images of (b) AZO-B and (c) AZO-E before and after degradation in azoreductase
enzyme in presence of NADPH for 3 and 24 h. Reprinted with permission from [96]. Copyright 2018,
American Chemical Society.

Thus, enzyme-responsive systems offer a direct and stimuli-responsive controlled
release strategy by inducing a partial cleavage of bridged bonds within the BPS carrier,
resulting in its disassembly upon enzymatic stimulation.



Polymers 2024, 16, 3163 18 of 40

Polymers 2024, 16, x FOR PEER REVIEW 17 of 39 
 

 

organosilicon nanoparticles (MONs) by co-condensing oxamide-bridged siloxanes with 
phenylene-bridged siloxanes [98]. These nanoparticles exhibited high organic content and 
drug-loading capacity, facilitating controlled release in cancer cells triggered by a trypsin 
model protein through enzyme-responsive degradation (Figure 15). Maggini et al. [99] 
synthesized tri-L-lysine (Lys3)-bridged BPS nanodonuts (NDs), which possessed approxi-
mately 70% organic content, enhancing cellular uptake. The enzymatic degradation of 
these nanodonuts led to controlled therapeutic release. 

 
Figure 15. Representation of the sol–gel synthesis of MONs, their pore structure before and after 
protein-mediated degradation (top) or after high drug loadings, affording nonleaky NPs with un-
capped pores (bottom). Reprinted with permission from [98]. Copyright 2016, Wiley-VCH Verlag 
GmbH & Co. KGaA, Weinheim, Germany. 

Thus, enzyme-responsive systems offer a direct and stimuli-responsive controlled re-
lease strategy by inducing a partial cleavage of bridged bonds within the BPS carrier, re-
sulting in its disassembly upon enzymatic stimulation. 

3.2. Exogenous Stimuli-Responsive BPSs 
Unlike endogenous stimuli, exogenous stimuli provide precise spatial and temporal 

control, allowing for the targeted delivery of therapeutics in a specific and dose-depend-
ent manner [101]. The responsiveness of BPS carrier systems to exogenous stimuli is de-
termined by the physicochemical properties of the materials, enabling controlled release 
applications. Upon exposure to exogenous factors, the organic bridged components in 
BPS carriers undergo cleavage reactions, altering intermolecular interactions and result-
ing in structural degradation of the carriers. This process facilitates targeted delivery and 
improves therapeutic efficacy. Common exogenous stimuli include light, magnetic fields, 
and ultrasound. BPS biomaterials responsive to these stimuli are categorized into light-
responsive, magnetic-responsive, and ultrasound-responsive controlled release systems. 
A summary of reported exogenous stimuli-responsive BPS platforms is provided in Table 
4. 

  

Figure 15. Representation of the sol–gel synthesis of MONs, their pore structure before and after
protein-mediated degradation (top) or after high drug loadings, affording nonleaky NPs with un-
capped pores (bottom). Reprinted with permission from [98]. Copyright 2016, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany.

3.2. Exogenous Stimuli-Responsive BPSs

Unlike endogenous stimuli, exogenous stimuli provide precise spatial and temporal
control, allowing for the targeted delivery of therapeutics in a specific and dose-dependent
manner [101]. The responsiveness of BPS carrier systems to exogenous stimuli is deter-
mined by the physicochemical properties of the materials, enabling controlled release
applications. Upon exposure to exogenous factors, the organic bridged components in
BPS carriers undergo cleavage reactions, altering intermolecular interactions and resulting
in structural degradation of the carriers. This process facilitates targeted delivery and
improves therapeutic efficacy. Common exogenous stimuli include light, magnetic fields,
and ultrasound. BPS biomaterials responsive to these stimuli are categorized into light-
responsive, magnetic-responsive, and ultrasound-responsive controlled release systems. A
summary of reported exogenous stimuli-responsive BPS platforms is provided in Table 4.

Table 4. Summary of reported exogenous stimuli-responsive BPS platforms for controlled release systems.

Matrix Particle Size Pore Size Sensitive Bonds Trigger Targeted
Therapeutics Application Ref.

BS NPs 100–200 nm — o-Nitrophenylene-
ammonium UV light Plasmid DNA On-demand delivery [102]

CBPS — — Diethylaminocoumarin-
4-yl UV light Protein Protein

micropatterning [103]

NBPS 124 ± 12 nm — o-Nitrobenzyl UV light DOX Precisely controlled
drug release [104,105]

HMONs@GOQDs — ~3.94 nm 9, 10-
Dialkoxyanthracene UV light DOX Photocontrolled drug

release [106]

LB-MSPs 409 ± 80 nm 2.4 nm o-Nitrobenzyl ether UV light 7-
Dehydrocholesterol

Quantitatively drug
release [107]
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Table 4. Cont.

Matrix Particle Size Pore Size Sensitive Bonds Trigger Targeted
Therapeutics Application Ref.

Se-MSN-PEG@M&D 72.5 ± 4.8 nm 6.35 nm Diselenide NIR and ROS DOX

Cascade-amplifying
chemo-

photodynamic
therapy

[108]

ID@M-N 115 nm 2.69 nm Diselenide NIR and ROS DOX Chemo-
immunotherapy [109]

HMONs@CuS/DOX@PCM less than 200 nm 2.7 nm Disulfide NIR and GSH DOX
Drug delivery and

synergistic chemo and
thermal therapy

[110]

Dox@CuS-BMSN-HA 37.11 ± 6.59 nm — Tetrasulfide NIR and GSH DOX Chemo-photothermal
synergistic therapy [111]

CM@M-MON@Ce6 — 3.8 nm Disulfide Magnetic and
GSH —

PDT and magnetic
hyperthermia

synergistic anticancer
[112]

HMONs-MnPpIX-PEG — 3.4 nm Disulfide US and ROS — Ultrasound therapy [113]

3.2.1. UV Light

Light, as a clean, efficient, and environmentally friendly energy source, exhibits unique
properties such as remote regulation and rapid responsiveness [114]. Additionally, it can
be used in a non-contact manner to regulate materials with precision in terms of timing,
localization, and quantity [115]. Chemical reactions in light-responsive materials typically
occur without the need for additional substances like initiators and are generally unaf-
fected by the surrounding environment, providing favorable conditions for modulating
material responses. The rational selection of photoresponsive groups and the design of
molecular structures allow for polymeric materials to exhibit one or more light-responsive
behaviors, such as photomodulated charge transformation, phototropic deformation, and
phototriggered degradation [116]. These properties give photoresponsive controlled release
systems high controllability and spatiotemporal resolution, improving drug efficacy and
reducing off-target release. Photocleavage groups, which undergo irreversible photoly-
sis upon light irradiation, serve as the primary photoresponsive components [117]. The
structure and function of photoresponsive polymer materials can be controlled by selecting
appropriate photoresponsive groups and designing molecular structures, for example,
optoelectric charge transformation, light-induced deformation, and light-triggered degra-
dation [118]. These groups can be covalently linked to molecules of interest. For instance,
when photofracture groups are introduced into the main chain of BPS organic bridges, the
entire BPS material undergoes photodegradation upon light stimulation. Alternatively,
photofracture groups may act as side-chain groups of the organic bridges, where active
groups such as carboxyl, hydroxyl, or amine groups are deprotected under light, altering
the surface charge of the BPS material. Reversible photoreaction groups can also be incor-
porated into the organic bridges to modify the hydrophilicity of the polymer in response
to light.

The incorporation of photoresponsive o-nitrobenzyl groups into organosiloxane struc-
tures as organic bridges is commonly achieved by chlorinating the o-nitrobenzyl group
followed by its reaction with an amino-containing siloxane. For example, the reaction with
3-aminopropyltrialkoxysilane gives compound 1 (Figure 16a), wherein the incorporation
of the o-nitrobenzyl group into the organic bridged main chain occurs. The o-nitrobenzyl
group in compound 1, obtained by a reaction with bis(trialkoxysilylpropyl)amine, exists as
an organic bridged side group (Figure 16b). Compound 3 is afforded by the hydrosilylation
of bisallylated o-nitrobenzyl derivatives with trialkoxysilane (Figure 16c). A simple quat-
ernization reaction is employed to introduce the coumarin derivative into the side group
of bis(trialkoxysilylpropyl)amine (Figure 16d). The photocleavable dialkoxyanthracene is
covalently linked to two propyltrialkoxysilyl via amide bonds (Figure 16e).
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Fatieiev et al. [102] successfully synthesized photoresponsive bridged silsesquioxane
nanoparticles (BS NPs) containing a high organic functional component (50%), uniformly
distributed throughout the nanomaterial. Upon irradiation with 365 nm light, the organic
bridging groups in these nanoparticles underwent photoreaction, resulting in surface
charge reversal, which facilitated the photocontrolled transport of plasmid DNA in human
cervical cancer cells.

Using a similar approach, Zhu’s group designed and synthesized a series of bridged
siloxanes with photoresponsive properties, developing BPS materials that allowed for
precise control over the release of targeted therapeutics and the surface micropatterning of
bioactive molecules [103–105]. By introducing diethylaminocoumarin as the photofunc-
tional unit into the side chain of organic bridges (Figure 17), they created a photoreponsive
bridged polysilsesquioxane surface (CBPS) that underwent surface charge alterations under
410 nm light irradiation, enabling the light-controlled fixation and release of proteins to
form precise protein micropatterns [103]. By adjusting the irradiation parameters tempo-
rally and spatially, the concentration, position, shape, and size of the protein micropatterns
can be precisely controlled. Additionally, by incorporating a universal photocleavage
group, the o-nitrobenzyl moiety, into the organic bridge side chain, Zhu’s team [104,105]
synthesized bridged polysilsesquioxane nanoparticles (NBPS) with light-triggered charge
reversal properties. By modulating irradiation intensity, duration, and on/off modes, the
position, timing, and quantity of therapeutic release can be precisely regulated across
multiple dimensions. This class of materials and techniques holds potential for applications
in the controlled delivery of food additives, dyes, cosmetics, insecticides, UVA absorbers,
and pharmaceuticals.

Yang et al. [106] synthesized a photoresponsive degradable organosilica nanoplatform
(HMONs@GOQD) based on hollow mesoporous organosilicon nanoparticles (HMONs)
with a light-responsive degradation mechanism using a 9, 10-dialkoxyanthracene (DN)-
bridged alkoxysilane precursor sensitive to singlet oxygen (1O2). These nanoparticles
encapsulated graphene oxide quantum dots (GOQDs) and the drug in the presence of a
surfactant and triethylamine. Upon exposure to light, the quantum dots generated 1O2,
leading to nanoparticle degradation and enhanced drug release (Figure 18). A novel pho-
todegradable bis-alkoxysilane containing o-nitrobenzyl ether was also synthesized for the
preparation of light-breakable organo-bridged mesoporous silica particles (LB-MSPs) [107].
These LB-MSPs, which function as multi-compartment containers for photostimulated
cargo release, demonstrated the release of 7-dehydrocholesterol upon ultraviolet irradiation.
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Given the simplicity and controllability of exogenous stimuli, extensive research
has focused on utilizing photoresponsive BPSs in biomedical applications. Exogenous
stimuli allow for precise temporal and spatial control, enabling the development of novel
therapeutic methods such as photothermal therapy (PTT), photodynamic therapy (PDT),
and synergistic immunotherapy [119]. However, further investigation is needed to ensure
the safe dosage of exogenous stimuli. Additionally, exploring whether the degradation
products of BPSs under exogenous stimuli could exhibit diagnostic or therapeutic properties
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would further enhance their potential efficacy. Thus far, preliminary studies have integrated
drug research with degradable silicon dioxide nanoparticles.

3.2.2. NIR Light

UV light, despite its strong tissue penetration capability, causes significant tissue dam-
age because of its short wavelength, limiting its suitability for clinical applications. Near-
infrared (NIR) light, on the other hand, offers several advantages in biological applications,
including deep tissue penetration, inherent fluorescence, minimal tissue scattering, and
high biocompatibility [120]. Integrating NIR responsiveness with organosilicon materials
has led to the creation of intelligent “nanodevices” for the controlled delivery of targeted
therapeutics, contributing to significant advancements [121]. Yang et al. [108] utilized
polyethylene glycol (PEG)-modified diselenide-based bridged mesoporous organosilicon
nanoparticles (Se-MSN-PEG) as carriers for red light-triggered self-destruction. These
carriers co-encapsulated the anticancer drug DOX and the photosensitizer methylene blue
(MB) to form Se-MSN-PEG@M&D, enabling chemo-photodynamic therapy. During photo-
dynamic therapy, ROS generated by low-dose red light irradiation mediated the cleavage
of diselenide-bridged bonds, leading to the degradation of the organosilicon carrier and
subsequent drug release (Figure 19). This synergistic property of chemo-photodynamic
therapy functions as a cascade amplifier to improve the immunogenic cell death (ICD)
effect both in vivo and in vitro. Similarly, Peng et al. [109] developed a light-driven nan-
otransformer, ID@M-N, using diselenide-bridged bonds along with a thermosensitive outer
shell composed of an N-isopropylacrylamide (NIPAM) layer hybridized with indocyanine
green (ICG). Under NIR light irradiation, ROS generated by ICG broke down the dise-
lenide bonds, resulting in the rapid degradation of the BPS matrix and the production of
smaller fragments containing DOX. This NIR-induced drug release facilitated deep tumor
penetration and improved chemotherapy efficacy.
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Figure 19. A schematic of the synthetic procedure of Se-MSN-PEG with cascading drug re-
lease and amplifying ICD manners and their application for efficient and safe cancer chemo-
photoimmunotherapy. Reprinted with permission from [108]. Copyright 2022, Elsevier B.V.

Chen et al. [110] constructed redox/NIR-responsive controlled release nanosystems
(HMONs@CuS/DOX@PCM) based on biodegradable hollow mesoporous organosilicon
nanoparticles, whose surfaces were functionalized with a phase-change material (PCM)
and copper sulfide (CuS) nanocrystals acting as photothermal-responsive “gatekeepers”
(Figure 20). The surface of amino-functionalized disulfide-hybridized HMONs were decorated
by CuS nanocrystals to synthesize HMONs@CuS nanoparticles. HMONs@CuS/DOX@PCM
was constructed, following a capping step for DOX-loaded HMONs@CuS with PCM. The
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NIR-to-thermal conversion of CuS nanocrystals triggered temperature-responsive behavior
in the PCM on the surface of HMONs, enabling the NIR-responsive release of targeted
therapeutics. Additionally, the biodegradable HMONs, which contain bisulfide bonds,
facilitated GSH-responsive DOX release within tumor microenvironments, achieving a
synergistic effect between chemotherapy and photothermal therapy. A similar dual-stimuli-
responsive drug delivery system (Dox@CuS-BMSN-HA) was developed using CuS and
tetrasulfide for chemo-photothermal synergistic therapy [111]. A mesoporous-structured
CuS nanocomposite with a tetrasulfide bond (CuS-BMSN) was employed to load the
anticancer drug, resulting in Dox@CuS-BMSN. Hyaluronic acid (HA) was complexed
by electrostatic interactions with Dox@CuS-BMSN to gain Dox@CuS-BMSN-HA, achiev-
ing multiple functions for drug leakage prevention, enzyme-triggered drug release, and
targeting moiety toward CD44-overexpressing cancer cells.
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responsive drug release for synergistic chemo- and photothermal tumor therapy. Reprinted with
permission from [110]. Copyright 2020, Elsevier B.V.

3.2.3. Magnetic

The magnetic-responsive drug delivery method offers a non-invasive approach for
precise temporal and spatial control in targeted therapies [122]. In magnetic hyperthermia
therapy for tumors, magnetic particles localized at the tumor site are heated to 43–47 ◦C
by an alternating magnetic field, effectively destroying tumor cells [123]. This technology
presents several advantages, including targeted delivery, remote control capability, simpli-
fied administration, reduced dosage, minimal side effects, and seamless integration with
other therapeutic modalities [124]. As a result, it is considered a superior approach for
thermal cancer therapy compared to other stimulus-responsive systems, owing to its short
response time. The development of a Janus magnetic mesoporous organosilica nanoparticle
(M-MON) platform for breast cancer treatment integrates photodynamic therapy (PDT),
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magnetic hyperthermia, and tumor-specific immunotherapy [112]. M-MONs demonstrate
a high loading capacity for the photosensitizer chlorin e6 (Ce6), M-MONs@Ce6, commonly
employed in PDT (Figure 21). The asymmetric growth of disulfide-bridged mesoporous
organosilica rods on Fe3O4 nanospheres enables dual reduction and pH-responsive drug
release while mitigating long-term in vivo toxicity associated with matrix degradation.
The resulting M-MONs@Ce6 nanoparticles are coated with breast cancer cell membranes
(CMs) to form CM@M-MONs@Ce6, which enhances accumulation at the tumor site and
prolongs blood circulation. This system combines PDT and magnetic hyperthermia to pro-
duce potent synergistic anticancer effects, inducing immunogenic cell death and eliciting a
tumor-specific immune response.
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Figure 21. A schematic of the synthetic procedure for the cancer cell membrane-cloaked Ce6-loaded
Janus magnetic mesoporous organosilica nanoparticles (CM@M-MONs@Ce6) and their applica-
tion for combined PDT and magnetic hyperthermia to further potentiate a CTLA-4 blockade to
enhance synergistic antitumor immunity in combating cancer metastasis. Reprinted with permission
from [112]. Copyright 2019, the authors.

3.2.4. Ultrasound

Ultrasound (US) is a safe, non-invasive, and radiation-free external stimulation method
widely applied in biomedical research [125]. Advances in US-triggered cancer therapy
have led to the development of novel nanomaterials, with increasing research on emerg-
ing modalities such as high-intensity focused ultrasound (HIFU), sonodynamic therapy
(SDT), and US-mediated drug delivery [126]. SDT, an emerging tumor treatment, uses
US to activate specific compounds (sonosensitizers) within tumor cells to generate ROS
for tumor eradication. Compared to light-based therapies, US offers greater tissue pen-
etration and shows significant potential in cancer treatment [127]. Disulfide bonds (S-
S) are covalently cross-linked into the framework of hollow mesoporous organosilica
nanoparticles (HMONs) to facilitate mild reductive degradation within the tumor microen-
vironment [113]. The hollow structure of HMONs is further functionalized by anchor-
ing Mn-protoporphyrin (MnPpIX), forming composite sonosensitizer HMONs-MnPpIX
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(Figure 22). Stability under physiological conditions is enhanced by PEGylating the sur-
face with methoxy-terminated PEG silanes, resulting in HMONs-MnPpIX-PEG. During
SDT, the sonosensitizers, when exposed to US waves, generate ROS that diffuse through
the mesopores, enhancing biodegradability and biocompatibility while effectively killing
tumor cells. This SDT strategy combines the advantages of ultrasound-based biomedical
treatments with nanomedicine, opening new pathways for efficient cancer therapies.
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PEG based on metalloporphyrin chemistry, (c) the scheme of MnPpIX covalently grafted into the
mesopores, and (d) the blood transport/tumor accumulation of HMONs-MnPpIX-PEG and its
SDT effect on cancer treatment. Reprinted with permission from [113]. Copyright 2017, American
Chemical Society.

Synergistic therapy leverages multiple treatment methods to exploit the comple-
mentary effects of different approaches, enhancing efficacy while reducing side effects
associated with individual treatments [128]. BPSs possess unique structural and func-
tional characteristics, making them ideal candidates for constructing synergistic therapeutic
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nanoplatforms. The functional modification of BPSs with specific components can confer
stimulus responsiveness to the carriers, and their high specific surface area and tunable
pore structure enable efficient loading of therapeutic agents such as chemotherapy drugs,
photosensitizers, sonosensitizers, and magnetic nanoparticles. These properties facilitate
the precise control of therapeutic agent release at lesion sites, offering more effective and
targeted treatment strategies with broad clinical potential.

3.3. Multiple-Stimuli-Responsive BPSs

Recent advancements in dual- and multiple-stimuli-responsive biomaterials have
enabled the precise control of release mechanisms [129,130]. Given the complex inter-
nal environment of living organisms and the unpredictable progression of diseases, a
single-stimuli-responsive biomaterial delivery system often fails to meet therapeutic re-
quirements [131,132]. As a result, dual- or multiple-stimuli-responsive systems are being
explored, not only to enhance material properties but also to better address the uncertain-
ties associated with the changing conditions within an organism. Selecting appropriate
stimuli-responsive carriers for controlled release allows for more precise treatment tailored
to distinct pathological environments. In contrast to single-stimuli-responsive carriers,
dual- or multiple-stimuli-responsive systems can react to two or more environmental trig-
gers, making them more suitable for the diverse demands of targeted molecule controlled
release [133]. Despite these advantages, clinical applications remain challenging. From
a biomaterial perspective, the design and development of multiple-stimuli-responsive
carriers is essential to expanding the use of these materials in biomedical applications. A
summary of reported multiple-stimuli-responsive BPS platforms is provided in Table 5.

Table 5. Summary of reported multiple-stimuli-responsive BPS platforms for controlled release
systems.

Matrix Particle Size Pore Size Sensitive
Bonds Trigger Targeted

Therapeutics Application Ref.

HMOPM 106.1 ± 11.1 nm ~3.7 nm Tetrasulfide pH and GSH Mn2(CO)10
Tumor-specific self-assembly

and synergistic cancer therapy [134]

CuS@BSA-HMONs-
DOX 117.6 nm 1.78 nm Disulfide GSH, pH, and NIR DOX Photoacoustic imaging guided

chemo-photothermal therapy [135]

DOX-PCMONSs 320 nm 4 nm Disulfide GSH, pH, and NIR DOX Theranostic nanoplatform [136]

IR&DOX@NC — — Disulfide Enzyme, GSH, and
NIR DOX and IR820 Multimodal cancer therapy [137]

YSPMOs(DOX)@CuS 222.6 nm 2.67 nm Disulfide GSH, pH, and NIR DOX Chemo-photothermal
synergistic therapy [138]

ZDOS NPs 158 nm 0.6 nm Disulfide pH and GSH DOX Controlled release and cancer
treatment [139]

OS-N=C-DAD/Cys 192 nm 11.76 nm Disulfide pH and GSH DOX Monitor drug release [140]

MSN@RNase A@CM 50 nm 8.5 nm Diselenide GSH and ROS RNase A Biomacromolecule delivery [141]

CM@MON@DOX 60 nm 4.2 nm Diselenide ROS and X-ray DOX Breast cancer
chemo-immunotherapy [142]

MONs@KP1339 65 nm 6.4 nm Diselenide GSH and
coordination

Ruthenium
compound

Breast cancer
chemo-immunotherapy [143]

Tang and colleagues [134] synthesized hollow mesoporous organosilica nanoparticles
(HMONs) through the co-hydrolysis and co-condensation of bis(triethoxysilyl)phenylene
(BTEB) and bis[3-(triethoxysilyl)propyl]tetrasulfide (BTES). The surface of HMONs was
further modified by PEG-silane and MPTES to glycolyze and sulfide the surface, anchoring
polyoxometalate (POM) through strong Mo-thiol ligand interactions, yielding HMOPM. In
acidic tumor environments, these HMOPMs spontaneously self-assemble, enhancing tumor
accumulation while also exhibiting excellent GSH-responsive photothermal conversion and
photoacoustic imaging capabilities via the reduction of Mo(VI) to Mo(V). This pH/GSH
dual-stimuli-responsive organosilicon nanoplatform is promising for tumor-specific self-
assembly and synergistic cancer therapy. Li et al. [135] developed a theranostic nanoplat-
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form, CuS@BSA-HMONs-DOX, which demonstrates pH-, GSH-, and NIR-responsive
controlled release of DOX (Figure 23a). Their approach used biocompatible nanocompos-
ites (CuS@BSA) as photothermal converters and disulfide-bridged polysilsesquioxanes
(HMONs) as biodegradable carriers, achieving synergistic chemo-photothermal therapy in
the tumor microenvironment. The mild hyperthermia was precisely controlled by modulat-
ing nanoparticles’ concentration (Figure 23b) and the power density and irradiation time
of the NIR laser (Figure 23c). The pH/GSH/NIR tri-stimuli-responsive performance of
CuS@BSA-HMONs-DOX nanoparticles determined the DOX release amount (Figure 17d,e).
Similar studies have been conducted by other research institutions [136–138].
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Figure 23. (a) A schematic illustration of the synthesis of CuS@BSA-HMONs-DOX nanoparticles.
(b) Concentration-dependent photothermal curves of CuS@BSA-HMONs aqueous solutions (808 nm
laser, 1.0 W cm−2). (c) Laser power-dependent photothermal curves of CuS@BSA-HMONs aqueous
solutions (808 nm laser, 100 µg mL−1). (d) In vitro DOX release profiles from CuS@BSA-HMONs-
DOX at different pH values with or without adding 10 mM GSH. (e) In vitro DOX release profiles
from CuS@BSA-HMONs-DOX at different pHs in the presence of 10 mM GSH with 808 nm NIR laser
irradiation (1 W cm−2). Reprinted with permission from [135]. Copyright 2020, Elsevier B.V.

Ren et al. [139] developed dual pH- and redox-responsive nanocarriers composed of
a metal–organic framework (ZIF-8) core and an organosilicon shell containing disulfide
bridges. These nanocarriers, termed ZDOS NPs, exhibited a high loading capacity for DOX
and achieved dual-stimuli-responsive drug release at low pH and high GSH concentrations.
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In another study by Li et al. [140], a controlled release system (OS-N=C-DAD/Cys) was
constructed using disulfide-bridged organosilicon (OS)-based nanocarriers. These were
further functionalized by modifying the surface with dialdehyde dextrin (DAD) through
Schiff base bonding (-N=C-) (Figure 24). Cystamine (Cys) was then linked to DAD to form
a DAD/Cys layer, which effectively blocked the loaded drug DOX. The resulting OS-N=C-
DAD/Cys carrier demonstrated low premature drug release, with a cumulative release
of only 6.5% over 48 h under normal physiological conditions. Additionally, the carrier
exhibited dual pH/GSH-responsive degradation properties. The Schiff base structure in
the DAD/Cys layer enabled acid-responsive drug release, as indicated by fluorescence
changes, while GSH-responsive cleavage of the disulfide bond facilitated the degradation
of the Si-O-Si frameworks.
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Diselenide-containing functional materials have been designed and synthesized for
controlled release applications, owing to their distinctive redox-responsive properties.
Shao et al. [141] introduced organosilicon segments with diselenide bonds into silica
frameworks, creating biodegradable bridged organosilicon nanoparticles. These diselenide-
bridged nanoparticles were capable of encapsulating cytotoxic ribonuclease A (RNase A)
within their internal pores via electrostatic interactions. Furthermore, the cancer cell mem-
brane (CM) was coated with the RNase-A-loaded diselenide-bridged MSNs to construct
a bioinspired nanoplatform MSN@RNase A@CM, displaying homologous targeting and
immune-evading properties. The controlled release of RNase-A occurred upon exposure to
oxidative or redox conditions, triggering the complete biodegradation of the nanoparticles.
In vitro and in vivo studies demonstrated their anticancer properties, including extended
circulation time, enhanced tumor accumulation, and low toxicity. These findings suggest
that dual-responsive and degradable organosilicon nanoparticles present a promising
platform for the controlled release of biomolecules, such as proteins and nucleic acid ther-
apeutics. The same group also developed X-ray and ROS-responsive diselenide-bridged
mesoporous organosilica nanoparticles coated with 4T1 breast cancer cell membranes
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(CM@MON@DOX) for the controlled release of doxorubicin (DOX) at tumor sites [142]. This
system demonstrated greater accumulation at tumor sites and prolonged circulation time
in the bloodstream. Upon low-dose X-ray irradiation, CM@MON@DOX exhibited a degra-
dation controlled release through the cleavage of diselenide bonds, inducing immunogenic
cell death (Figure 25). The results highlighted the potential of dual-responsive diselenide-
bridged organosilicon nanoparticles as a powerful tool for chemo-immunotherapy. Ad-
ditionally, selenium has shown promise for coordinating metal ions or molecules. Zhang
and coworkers [143] utilized diselenide-bridged mesoporous organosilicon nanoparticles
(MONs) loaded with the chemotherapeutic ruthenium compound KP1339 through coordi-
nation (MON@KP1339), creating a nanoamplifier with potential for effective and safe cancer
chemo-immunotherapy. The nanoplatform exhibited a controlled release pattern driven by
competitive GSH-responsive coordination and carrier degradation while simultaneously
inducing GSH depletion and ROS production in breast cancer cells.
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Figure 25. Preparation and characterization of mesoporous organosilica nanoparticles (MONs).
(a) Schematic of synthesis of diselenide-bond-bridged MONs for low-dose X-ray radiation-
controllable drug release. (b) TEM images of MONs showing degradation at 1 d and 3 d after
1 Gy of X-ray radiation under 100 × 10−6 m H2O2. (c) Drug release profiles in 100 × 10−6 m H2O2

with or without radiation. Data are presented as mean ± SD (n = 3). Reprinted with permission
from [142]. Copyright 2020, Wiley-VCH GmbH. (MON, diselenide-bridged mesoporous organosilica
nanoparticles; CM, cell membrane; ICD, immunogenic cell death; CTLs, cytotoxic T lymphocytes;
DCs, dendritic cells; PD-L1, programmed death ligand 1.)

Dual- or multiple-stimuli-responsive BPS carriers are generally constructed in two
main ways. In one approach, a single-stimuli-responsive bridged siloxane forms the basis
of the BPS material, with the surface subsequently modified by another stimuli-responsive
material to create a multiple-stimuli-responsive controlled release system. Alternatively,
the organic bridge groups in stimuli-responsive BPSs respond to two different stimuli,
resulting in a dual-responsive system.
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The development of stimuli-responsive BPS controlled release systems represents
significant progress in drug delivery methods [144]. Endogenous stimulation signals, as
efficient and stable triggers, can be integrated into intelligent sensing systems, enabling real-
time responses to the physiological environment and the release of therapeutics with high
biomedical translational value. Exogenous stimulation signals offer precise control, allow-
ing for the regulation of signal parameters and achieving accurate timing, positioning, and
dosage of drug release. Consequently, stimuli-responsive BPS systems show considerable
potential for applications in disease treatment, immunobiology, diagnostics, dermatology,
and cosmetology. However, challenges remain, including the poor reversibility of certain
responsive groups, irreversible transformations, the limited variety of responsive groups,
and low sensitivity. Therefore, future research should focus on the development of stimuli-
responsive BPS biomaterials with highly controllable responsiveness, enhanced sensitivity,
and improved reversibility.

4. Biocompatibility and Biodegradability of BPSs

The key characteristic of many degradable polymer nanoparticles lies in their excep-
tional biocompatibility, ensuring the absence of adverse reactions or immune rejection.
Furthermore, their degradation products do not exhibit significant cytotoxicity, thus guar-
anteeing safety and reliability throughout the entire degradation process. These proper-
ties render these platforms highly promising in drug delivery, tissue engineering, and
biomedical fields. Moghaddam and his team successfully synthesized two GSH-responsive
degradable MONs by the co-condensation of TEOS with disulfide- or tetrasulfide-bridged
organosiloxane monomers [145]. Experimental measurements demonstrated that the cell
survival rate remained at approximately 25% even at concentrations of up to 1000 µg mL−1.
Subsequently, they tested cell activity assays on the degradation products of these nanopar-
ticles, which exhibited excellent biocompatibility. The in vitro cytotoxicity of tri-L-lysine-
bridged BPS nanodonuts (NDs) synthesized by Maggini et al. against HeLa cells was
not observed (concentrations of NDs = 20, 40, 80, and 120 µg mL−1) [99]. The enhanced
cytotoxicity of drug-loaded nanomaterials DOX-NDs after enzymatic degradation may be
attributed to the high uptake of DOX-NDs by HeLa cells, which simultaneously release
their drug loads, facilitating the entry of anticancer drug into the cells. The o-nitrobenzyl
ether-bridged polysilsesquioxane nanoparticles (LB-MSPs) have demonstrated excellent
biocompatibility in HeLa cells after 12 and 24 h of incubation at concentrations of 20,
100, and 200 µg mL−1 [107]. Furthermore, their degradation products exposed to UV ir-
radiation for 12 h showed no significant cytotoxicity within this concentration range and
over the monitoring period. Indeed, although a wide range of biocompatible stimulus-
responsive BPS materials have been extensively studied, there is a noticeable dearth of
research concerning the cytotoxicity associated with the degradation products resulting
from their stimuli-triggered breakdown. Consequently, this has emerged as a critical area
necessitating urgent attention and comprehensive exploration by researchers.

Organosilicon materials display limited biodegradability and prolonged clearance
times, leading to their accumulation in organs and tissues. This accumulation poses risks
of long-term toxicity and limits passive targeted specificity [146,147], creating a significant
obstacle to biomedical applications and clinical translation. The degradability, toxicity, and
clearance rates of organosilicon materials do not align with the timeliness standards set
by the US FDA [148]. The degradation of amorphous silica in aqueous media typically
occurs in three stages [149–151], as illustrated in Figure 26. These are (1) hydration, (2)
hydrolysis, and (3) ion exchange. At the molecular level, water initially adsorbs onto the
siloxane framework, promoting the hydrolysis of siloxanes into silanol. This is followed by
ion exchange via nucleophilic attack by OH- ions, leading to the leaching of biocompatible
silicic acid and polysilicic acid, which are eventually cleared through the lymphatic system
or excreted in urine. Consequently, direct interaction between silica and water molecules,
as well as the framework structure, are critical determinants of biodegradation behavior.
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Factors affecting the biodegradation of silica dioxide include pore structure, size, shape,
surface functionalization, charge, and framework composition [152,153].
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The conventional silica framework consists of a -Si-O-Si- network structure. By incor-
porating organic components into the silica matrix, the degradation of the less condensed
-Si-O-Si- network can be regulated and controlled, enhancing the biocompatibility and
biodegradability of bridged polysilsesquioxanes (BPSs) [154,155]. Introducing breakable
organic bridged groups into siloxane triggers degradation through stimuli-responsive
reactions [156]. Organic groups responsive to stimuli, such as disulfides, tetrathiolates,
sulfoxides, diselenides, Schiff bases, mannitol derivatives, amides, azo compounds, nitro-
phenyl groups, and coumarin groups, have been extensively reported to modulate the
biodegradability of BPSs [14,147,157]. Under specific stimuli, BPSs can rapidly decompose
into low-molecular-weight nanosheets, potentially alleviating metabolic issues associated
with residual substances in vivo.

In the design of biodegradable and removable BPSs, factors such as size, shape, poros-
ity, and surface characteristics must be carefully considered. Specifically, the degradation
rate of BPSs can be tailored through structural modifications that disrupt organic functional
groups using endogenous or exogenous stimuli [158]. Compared to traditional silica frame-
works, BPS materials with organic functional frameworks exhibit faster degradation and
metabolism, addressing key challenges in the clinical diagnosis and treatment of nanomate-
rials. Furthermore, the stimuli-triggered disassembly characteristics of organic functional
bridges enable BPSs to demonstrate superior controlled release properties. Current re-
search primarily focuses on developing stimuli-responsive organosiloxane materials and
incorporating them into -Si-O-Si- frameworks to improve biodegradability. The selection
of suitable organosiloxane is critical, as each stimulus source has its own advantages and
limitations. Therefore, when designing BPS biomaterials for specific diseases, the most
appropriate stimulus must be selected to induce degradation and facilitate the controlled
release of therapeutics.

5. Conclusions and Future Perspective

BPSs have attracted notable attention from researchers for their biomedical applica-
tions, particularly in controlled release systems, owing to several advantages, including
tunable morphological parameters (such as shape, size, and pore size), a wide range of
surface functionalizations, and favorable biocompatibility. Consequently, controlled re-
lease systems based on stimuli-responsive BPSs hold substantial promise for the safe and
effective treatment of diseases, leveraging stimulating factors to trigger transformations
in physicochemical properties and achieve precise control over the temporal and spatial
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release of targeted therapeutics. Recent years have witnessed a growing focus on the design
and development of novel controlled release systems utilizing stimuli-responsive BPSs,
demonstrating considerable potential in targeted therapeutic delivery, controlled release,
biosensing, cell imaging, biochips, and other biomedical applications.

In summary, this review discusses the design considerations, synthesis strategies,
and biomedical applications of stimuli-responsive BPSs. However, most of the studies
mentioned remain at the laboratory stage and require further exploration and optimization
in the following areas:

(1) Biosafety issues for stimuli-responsive BPS biomaterials: Although numerous in vitro
and in vivo experiments have confirmed that stimuli-responsive BPS biomaterials
are generally non-toxic and non-immunogenic, factors such as material shape, size,
surface charge, and functional groups may influence their toxic effects. These consid-
erations indicate that a comprehensive biosafety evaluation of stimuli-responsive BPS
biomaterials is essential. In particular, long-term toxic effects, including immunotoxic-
ity, cardiotoxicity, nephrotoxicity, hepatotoxicity, and pulmonary toxicity, as well as
biodegradation behavior and the elimination and clearance pathways of BPS systems
in vivo, require thorough and systematic investigation.

(2) Scalability and reproducibility issues in manufacturing stimuli-responsive BPS mate-
rials: The scalable production of stimuli-responsive BPS materials is a critical prereq-
uisite for their clinical application, necessitating a transition from low-yield laboratory
production to ultrahigh-yield industrial processes. Maintaining consistent morpho-
logical properties of nanocarrier materials during this transition poses significant
challenges. Moreover, the expected increase in manufacturing costs may hinder the
industrialization of stimuli-responsive BPS materials. To address these challenges,
researchers must implement effective measures across various domains, including the
simplification and standardization of production processes, as well as the develop-
ment of cost-effective silicon sources and coupling agents.

(3) Structural complexity of stimuli-responsive BPS materials: To address the therapeutic
needs within complex pathological microenvironments, recent designs of stimuli-
responsive BPS materials have increasingly focused on multifunctionality and integra-
tion for diagnosis and treatment, resulting in systems that incorporate multiple types
of functional modules. However, these carriers are often “over-engineered”, leading
to complex structural arrangements. An increase in the number of components within
carriers corresponds to a heightened risk of therapeutic uncertainty and a diminished
likelihood of clinical approval. Consequently, when designing stimuli-responsive
BPS materials, a careful balance must be struck between structural complexity and
functional versatility. Streamlining system design to eliminate redundant components
while preserving the integrity of the desired functions is essential for establishing a
simple and effective controlled release system.

The consistency of results of stimuli-responsive BPS materials in vitro and in vivo
experiments also requires further exploration. The extensive literature supports the perfor-
mance of stimuli-responsive BPS materials in in vitro experiments, particularly regarding
on-demand release capabilities and targeted delivery under specific stimuli. However, the
presence of multiple physiological barriers, such as blood, tissue, and cellular barriers,
alongside complex pathological environments in living organisms, can impede the specific
accumulation and controlled release of stimuli-responsive carriers at targeted tissues, often
leading to negative outcomes in in vivo experiments. Therefore, researchers must develop
organosilicon-based nano-release systems that possess “stealth” functions (i.e., the ability
to evade clearance by the immune system) and targeted tissue-enriched permeation capa-
bilities (i.e., specific accumulation and efficient diffusion within diseased tissues). Strategies
such as biocompatible polymer coatings (e.g., polyethylene glycol), biomimetic camouflage
(e.g., cell membrane embedding), and targeted ligand modification (e.g., RGD peptide)
should be employed to enhance these characteristics. Additionally, the lack of clinical
trials investigating whether the biological behavior of organosilicon materials in humans
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concerning distribution, accumulation, degradation, and metabolism mirrors that observed
in model animals remains a significant concern that warrants continued attention and
exploration by researchers.

Conventional stimulation conditions, singular stimulation modes, and simplistic func-
tional outputs are insufficient to satisfy the demands of the biomedical industry. The
development of innovative stimulation conditions and functional responses that exhibit
synergistic and logical control has emerged as a challenging yet crucial focus in construct-
ing stimuli-responsive controlled release systems. Enhancing the system’s synergistic
control capabilities can diversify the functionalities of stimuli-responsive systems, making
them more practical for the development of intelligent devices or nano-functional entities
based on BPS biomaterials. This advancement may pave the way for the rational use of
organosilicon materials and the creation of new materials. Overall, this review can serve
as a reference for applying stimuli-responsive BPS biomaterials in biomedical fields while
inspiring future development.
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