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Abstract: This study aims to develop biodegradable films by combining hemicellulose B (HB) with
methylcellulose (MC) and carboxymethyl cellulose (CMC) at two mass ratios, HB/MC 90/10 and
HB/CMC 60/40. The effect of plasticizers, glycerol (GLY) and polyethylene glycol (PEG), on these
films’ mechanical and physicochemical properties was also investigated. Results showed that the film
thickness increased with the addition of GLY and PEG. Moisture content was lower in plasticized
films, possibly contributing to better storage. Plasticizers also induced more pronounced color
changes, intensifying the lightness and yellowness. Physical attributes such as peel ability, foldability,
and transparency were also noticeably improved, particularly in films with higher GLY and PEG
concentrations. Additionally, plasticizers enhanced the mechanical properties more significantly in
the HB/CMC films, as evidenced by improved tensile stress, elongation at break, elastic modulus,
and toughness. However, oxygen and water vapor permeabilities, two of the most critical factors
in food packaging, were reduced in the HB/MC films with plasticizers compared to the HB/CMC
counterparts. The findings of this study bear significant implications for developing sustainable
packaging solutions using hemicellulose B isolated from agricultural material processing waste.
These biopolymer-based films, in conjunction with biobased plasticizers, such as glycerol biopolymer,
can help curtail our reliance on conventional plastics and alleviate the environmental impact of
plastic waste.

Keywords: biobased films; hemicellulose; methyl cellulose; plasticizers; physiochemical properties;
sustainable packaging

1. Introduction

Polymers play a crucial role in modern life due to their ease of production and wide
range of functional properties. In 2017, global plastic production, including thermoplastics,
thermosets, elastomers, adhesives, coatings, sealants, and PP-fibers, was around 348 million
tons, increasing to 359 million tons in 2018. Asia, particularly China, is a principal contribu-
tor to this production, with Europe, the Middle East, and Africa also playing significant
roles [1]. India is a leading producer and consumer of plastics, especially polyethylene (PE),
commonly used to manufacture packaging materials, including films and sheets. In just
two years, 2018 and 2019, India produced over 15 million tons of plastic and is projected to
reach 24 million tons by 2020 [2].

Most plastics (95–99%) are derived from non-renewable petrochemical sources [3].
These synthetic plastics are extensively used in the medical, packaging, and construction
sectors. In India, 43% of synthetic polymers produced annually are used in packaging.
However, synthetic plastics do not degrade physically, chemically, or biologically, leading
to significant environmental [3–10] and health issues [11]. They eventually turn into
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microplastics that have been detected nearly everywhere, including underground water
resources, fishes, animals, and humans. Accumulated waste clogs drainage systems and
harms aquatic life, and incineration releases harmful gases, contributing to air pollution
and global warming [12]. The persistence of synthetic polymers has raised growing global
concerns and is driving the search for eco-friendly alternatives [13].

Biodegradable polymers have emerged as a promising solution for a variety of indus-
trial applications and hold the prospect of mitigating the environmental risks associated
with non-biodegradable plastics [14–20]. They have also demonstrated significant potential
in food packaging applications, providing desirable barrier properties and mechanical
strength [21–26]. Among biodegradable polymers, hemicellulose, a polysaccharide derived
from plant cell walls, has gained attention due to its abundance and favorable properties.
Xylan, a major component of hemicellulose, is particularly noteworthy, as it constitutes a sig-
nificant portion (40–45% of dry weight) of plant biomass and possesses flexible properties
that mimic petroleum-based plastics. This makes them a viable candidate for developing
eco-friendly packaging materials [27,28].

Despite the immense potential, the application of hemicellulose-based films in pack-
aging is limited by certain drawbacks, such as hygroscopicity, brittleness, and inferior
mechanical properties [29,30]. To overcome these challenges, the scientific research com-
munity has focused on enhancing the properties of hemicellulose films by incorporating
additional hardeners like methyl cellulose (MC) and carboxymethyl cellulose (CMC). MC
and CMC are cellulose derivatives known for their excellent film-forming capabilities and
compatibility with other materials [30–35]. Combining hemicellulose with these derivatives
can produce films possessing enhanced barrier properties and mechanical strength, making
them ideal for food packaging. Plasticizers can further reinforce hemicellulose-based films,
leading to better outcomes in developing biodegradable food packaging alternatives.

The agricultural processing by-products (lignocellulosic materials) mainly comprise
cellulose, hemicellulose, and lignin [36,37]. Hemicellulose, which comes second to cellulose
in its abundance, has shown a broad application prospect due to its extensive sources,
renewability, and biodegradability. Unlike cellulose, a homogeneous glycan structure
composed entirely of β-(1→4)-glucan connecting to the dextran chain, hemicellulose from
agricultural material is composed of β-(1→4) linked xylan backbone with arabinose and
a small amount of galactose, glucose, glucuronic acid, and galacturonic acid in the side,
making its highly branched structure. The most abundant hemicelluloses are arabinoxylan,
xylan (annual plants and hardwoods), and mannans (softwoods). Hemicelluloses are
concentrated in the agricultural by-products, which offer an opportunity to develop value-
added products. Although hemicelluloses constitute about 40–45% of the dry weight of
annual plants (crops), they have thus far not been exploited industrially. Corn brans are
by-products of the corn-milling industry for ethanol [38]. It has little economic value and
frequently becomes a waste disposal problem [39]. Large quantities of this agricultural
processing by-product are a low-cost feedstock that can be processed into a value-added
product like arabinoxylan (HB).

Our group has successfully developed a patented method for separating high-value
arabinoxylan and cellulose-rich fractions from many grains and agricultural processing by-
products, energy crops, and agricultural residues [40–42]. We have studied the applications
of corn arabinoxylans as emulsifiers, healthy dietary fiber with antioxidant activity, binder
for briquette [40,43], and viscosity modifier [44]. Now, we are exploring the potential of this
material to fabricate high-quality biodegradable packaging films. Arabinoxylans separated
from other feedstocks, such as sorghum bran, bagasse, and biomass, have been studied in
making films and shown to have sensitivity to moisture adsorption and favorable strength
when using glycerol as a plasticizer [45].

In this preliminary study, we combined our lab-produced HB from corn bran, also
termed “corn bio-fiber gum” (corn BFG), with the commercial carboxymethyl cellulose
(CMC) and methyl cellulose (MC) to form the biopolymer bases and evaluated their film-
forming ability. In future studies, we plan to prepare the cellulose-rich fractions (CRFs)
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from agricultural biomass and derivatize CRFs to produce carboxymethyl and methyl
derivatives in the lab. We expect that in such a polymer blend, the CRF derivatives will
be evenly distributed into the hemicellulose matrix, changing the microstructure and
composition of hemicellulose film through the action of non-chemical bonds and thus
improving its mechanical properties. Including cellulose derivatives in HB films will
improve the mechanical and barrier properties and transparency and help pave the way
to utilize the CRF by-product generated in the process to maximize carbon utilization
efficiency.

Biodiesel production has been growing steadily worldwide [46], and the demand for
renewable fuel is increasing to lower the GHG potential of this manufacturing. This has
resulted in a large surplus of glycerol, a by-product of the biodiesel industry. Valorizing
this by-product is attractive and presents the biodiesel industry as a viable and competitive
option. In addition to glycerol, we studied another biobased plasticizer, sorbitol, and two
polyethylene glycols (PEGs) of different molecular weights (300 and 1000). Of these, we
selected the best-performing ones, glycerol (GLY) and two types of polyethylene glycol
(PEG 300 and PEG 1000), for further study. Therefore, this study aimed to develop biobased
packaging films by combining hemicellulose and cellulose derivatives with acceptable
physiochemical and mechanical properties and investigate how these two plasticizers could
enhance the properties of the films.

2. Materials and Methods
2.1. Materials

Carboxymethyl cellulose (CMC), methylcellulose (MC), polyethylene glycol (PEG
300 and PEG 1000), and glycerol were purchased from Millipore Sigma (St. Louis, MO,
USA). Hemicellulose B (HB) was prepared in our lab (see detail below). Deionized water
was obtained from the Milli-Q Advantage A10 ultrapure water purification system. All
chemicals were reagent grade.

2.2. Preparation of Hemicellulose B (HB)

Hemicellulose B (HB) was extracted from corn bran using a modified version of the
previously published methods [43,47,48]. Initially, ground and de-oiled corn bran was
suspended in water and boiled at 85 ◦C with a pH of 6.80 in the presence of α-amylase for
one hour. The pH was then adjusted to 11.5 by adding 50% NaOH, and the hot reaction
mixture was stirred for another half an hour. The hot slurry of the deconstructed corn
bran was sheared at 10,000 rpm for 30 min and then cooled to room temperature. The
mixture was centrifuged at 14,000× g for 10 min, and the supernatant was collected. The
pH of the supernatant was adjusted to about 4 to precipitate HA, which was collected
by centrifugation. The supernatant obtained from the HA collection was used for HB
preparation. To precipitate the hemicellulose B fraction, two volumes of ethanol were
gradually added to the supernatant obtained after HA separation, with continuous stirring.
The precipitated HB was filtered, washed with 100% ethanol three times to obtain pure
HB, and dried in a vacuum oven at 50 ◦C. The purity of HB was confirmed by a high-
performance size exclusion chromatography (HPSEC) system, which was connected to a
multi-angle laser light scattering photometer (MALLS) (Wyatt Technology, Santa Barbara,
CA, USA) and RI detectors [40].

2.3. Preparation of HB/MC 90/10 and HB/CMC 60/40 Films

To fabricate the films, the HB, MC, and CMC solutions were prepared separately in
deionized water by adding their calculated amount (3.33%) and mixing overnight until
a fully homogeneous solution was obtained. The solutions were combined in the 90:10,
80:20, 70:30, and 60:40 (HB: MC/CMC) ratios, stirred, and degassed overnight under a
house vacuum (0.1 atm, 25 ◦C). The resulting mixtures were poured into 100 mm Teflon
Petri dishes (30.0 g each) (Welch Fluorocarbon, Inc., Dover, NH, USA) and allowed to dry
in an environmental chamber (Model 7900-33, Caron Scientific, Marietta, OH, USA); they
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were dried (at (20 ◦C and 50% RH)) for about a week until a consistent weight of 1.11 g was
achieved. The dried films were peeled off and evaluated for strength and flexibility. An
initial screening (based on these physical attributes) revealed that 90:10 (HB/MC) and 60:40
(HB/CMC) mass ratios performed the best. For plasticized films, the respective HB/MC or
HB/CMC solutions were divided into ten parts in ten different flasks, with eight containing
plasticizers (GLY or PEG) at 15% and 20% (w/w) levels and two without plasticizer serving
as a control. Each solution was homogenized by stirring, degassed, poured into Teflon
Petri dishes, dried, and assessed similarly. The dried films were stored in Ziplock bags in
desiccators for further testing.

2.4. Film Characterization
2.4.1. Physical Attributes

A scoring system from −2 to 2 was used to quantify the results of peel ability, fold-
ability, transparency, and the appearance of air bubbles. Each film was scored based on
the ease of peeling from a Petri dish. A score of −2 was given if the film could not peel
from the Petri dish or it broke as the test was completed. Each film was folded softly at
a bilateral angle to determine the foldability of the film. Complete breakage resulted in a
−2, and no visible breakage resulted in a 2. Each film was placed up against a sign with
black letters. The unclear appearance of the sign resulted in a score of −2. Complete visual
transparency was assigned a score of 2. Each film was examined for the presence of air
bubbles. A score of −2 was given if the film had many air bubbles present. A score of 2
was given if the film had no presence of air bubbles. The total score of all attributes was 8.

2.4.2. Colorimetry

The digital colorimeter (PCE-CSM 1, PCE Americas Inc., Jupiter, FL, USA) was used
to measure the hunter LAB properties of the film: L* representing the whiteness, a* rep-
resenting the redness/greenness, and b* representing the yellowness/blueness of each
film. Films were placed on a sheet of standard white paper with L reference = 94.48, a
reference = 0.41, and b reference = 0.03, and data were collected at three random spots. The
collected data were used to calculate the whiteness index (WI), yellow index (YI), and total
color difference (TCD), as described previously [49].

2.4.3. Film Thickness and Moisture

Film thickness (µm) was calculated using a 0–1′′/0–25 mm Xtra-Value II Electronic
micrometer (Fowler High Precision, Canton, MA, USA). Each sample was taken in triplicate
for all films, where average values were calculated and reported. For the moisture content
measurement, each film was placed in a Moisture Analyzer (Torbal ATS 133, Scientific
Industries, Inc., Bohemia, NY, USA) at 120 ◦C until the end of the process, notified by
the machine. The initial and end weights were recorded. The moisture percentage was
calculated using the instrument’s software.

2.5. Physiochemical Properties of Films
2.5.1. Oxygen Transmission

The oxygen transmission rate (OTR) of the films was measured using the OX-TRAN
Model 1/50 (MOCON, Minneapolis, MN, USA), following the standard method ASTM
D3985. The film samples were conditioned and mounted as a sealed barrier between two
chambers. One chamber was purged with nitrogen (carrier gas), while the other contained
oxygen (test gas). Oxygen permeated through the film into the nitrogen stream then was
transported to a coulometric detector. The detector measured the amount of oxygen passing
through the film per unit time. The OTR results were expressed in cubic centimeters per
square meter per day (cc/m2/day) at 23 ◦C and 0% relative humidity (RH).
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2.5.2. Water Vapor Permeability

The water vapor transmission rate (WVTR) of the films was measured using the
PERMATRAN-W Model (MOCON, Minneapolis, MN, USA), following the standard
method ASTM E96/E96M. The film samples were mounted in a test cell. One side of
the film was exposed to a humidity-controlled environment, while the other side was
exposed to a dry condition. The amount of water vapor passing through the film was
measured over time. The WVTR results were expressed in grams per square meter per day
(g/m2/day) at 23 ◦C and 50% RH.

2.6. Mechanical Properties

The mechanical properties of the films were determined according to the standard
method ASTM D882. Films were cut into strips (20 mm × 40 mm) and placed in a desiccator
for 48 h at 22 ◦C and 50% relative humidity (RH) by using saturated potassium chloride
(KCl) solution. Tests were performed in Texture analyzer TA. XT+ (Stable Micro Systems,
Godalming, Surrey, UK). The film strip’s initial length was set to 21 mm then stretched at a
constant velocity of 2 mm/min until reaching a breaking point. The stress–strain curves
were computer-recorded by the software Exponent (version 2.64), and other mechanical
properties were calculated based on these curves [22,47].

2.7. Statistical Analysis

All experiments were replicated three times, and data were reported as mean ± standard
deviation. One-way ANOVA with post hoc Turkey’s test was conducted using the Graph-
Pad software (GraphPad Prism 7.0 USA).

3. Results and Discussion

Our initial testing found that the glycerol level affects the mechanical properties of the
films. Therefore, we chose two plasticizer concentrations, 15% and 20%. Furthermore, we
analyzed and assessed 36 biofilms incorporated with three different plasticizers, glycerol,
sorbitol, and polyethylene glycols (PEG 300 and PEG 1000), based on their physicochemical
properties. Subsequently, we narrowed down to 10 best-performing films, i.e., HB/MC
90/10, HB/MC + 15% glycerol, HB/MC + 20% glycerol, HB/MC + 15% PEG 1000, HB/MC
+ 20% PEG 1000, HB/CMC 60/40, HB/CMC + 15% glycerol, HB/CMC + 20% glycerol,
HB/CMC + 15% PEG 300, and HB/CMC + 20% PEG 300, for further investigation, as
documented in this paper.

3.1. Physical Attributes

Figure 1 shows the physical attributes of the films scored as described above. For the
HB/MC 90/10 films, adding plasticizers improved peel ability, foldability, and transparency.
Notably, the film containing 20% glycerol achieved the highest total score of 7 (Figure 1).
In the case of HB/CMC 60/40 films, incorporating glycerol and PEG 300 at varying
percentages positively impacted all physical attributes, particularly enhancing foldability
compared to the control. Films with PEG 300 showed a maximum total score of 8 (Figure 1).
These findings highlighted the importance of plasticizers in optimizing film properties for
potential applications.

The physical attributes of the films, including peel ability, foldability, and transparency,
were significantly improved with the addition of plasticizers. Notably, the HB/MC 90/
10 films containing 20% glycerol achieved the highest total score for these attributes. The
HB/CMC 60/40 films with varying percentages of glycerol and PEG 300 also showed
enhanced foldability and overall usability.
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Figure 1. Physical attributes of HB/MC 90/10 and HB/CMC 60/40 films. Data are mean ± standard
deviation (n = 3). Data sharing the same letter are not statistically significantly different (p > 0.05).

3.2. Film Color

Table 1 shows the color analysis of the films studied. For the HB/MC 90/10 films, the
control film (HB/MC) exhibited moderate lightness (L = 86.29) and a slightly yellowish hue
(a = 2.34, b = 15.60). When 15% glycerol was added, the film became more yellow (yellow
index: 28.96) and showed an overall color difference of 112.35 (TCD). The 20% glycerol film
maintained similar lightness but showed a more pronounced yellow tint (b = 17.99). Films
with 15% PEG 1000 had lower lightness (L = 84.73) and higher yellowness (yellow index:
30.98). Notably, the 20% PEG 1000 film presented the highest color difference (TCD was
132.91), indicating significant color alteration compared to the control film (Table 1).

Table 1. Color analysis for HB/MC 90/10 and HB/CMC 60/40 films at various levels of plasticizers.

Film Composition L* a* b* Whiteness
Index

Yellowness
Index

Total Color
Difference (TCD)

HB/MC 90/10 86.29 ± 0.16 2.34 ± 0.01 15.60 ± 0.02 79.10 ± 0.91 25.82 ± 1.01 92.70 ± 1.02
HB/MC + 15% GLY 85.36 ± 0.39 a 2.59 ± 0.02 a 17.30 ± 0.04 a 77.19 ± 0.02 a 28.96 ± 0.92 a 112.35 ± 1.07 a

HB/MC + 20% GLY 85.67 ± 0.21 a 2.65 ± 0.01 a 17.99 ± 0.16 a 76.85 ± 0.44 ba 30.00 ± 0.23 a 107.55 ± 1.04 a

HB/MC + 15% PEG 1000 84.73 ± 0.32 b 2.96 ± 0.01 18.37 ± 0.05 75.92 ± 0.43 a 30.98 ± 0.34 a 127.67 ± 1.11
HB/MC + 20% PEG 1000 84.38 ± 0.42 b 2.65 ± 0.02 a 17.99 ± 0.11 a 76.03 ± 0.33 a 30.46 ± 0.11 a 132.91 ± 1.21
HB/CMC 60/40 86.09 ± 0.09 1.181 ± 0.05 11.65 ± 0.19 A 81.77 ± 1.08 A 19.33 ± 1.15 A 14.99 ± 0.07
HB/CMC + 15% GLY 87.68 ± 0.17 A 1.49 ± 0.021 11.65 ± 0.15 A 82.98 ± 1.12 A 18.98 ± 1.2 A 64.10 ± 1.32 A

HB/CMC + 20% GLY 88.00 ± 0.18 1.56 ± 0.031 A 11.72 ± 0.18 A 83.15 ± 1.22 A 19.03 ± 1.18 A 59.91 ± 0.92
HB/CMC + 15% PEG 300 87.66 ± 0.20 A 1.51 ± 0.032 A 11.75 ± 0.11 A 82.89 ± 1.31 A 19.15 ± 1.22 A 64.59 ± 0.33 A

HB/CMC + 20% PEG 300 87.41 ± 0.26 A 1.53 ± 0.032 A 11.95 ± 0.12 82.57 ± 1.11 A 19.54 ± 1.31 A 68.58 ± 0.81

* Data are represented as means (n = 3) ± standard deviations. Values sharing the same letter within the same
film series (and in the same column) indicate that the differences are statistically insignificant (p > 0.05).

For the HB/CMC 60/40 series (Table 1), the control film (HB/CMC) exhibited mod-
erate lightness (L = 86.09) and a slightly yellowish hue (a = 1.181, b = 11.65). When 15%
glycerol was used, the film became more yellow (yellow index: 18.98) and showed a
reduced overall color difference (TCD) of 64.10. The 20% glycerol film retained similar light-
ness but displayed a more pronounced yellow tint (b = 11.72). Films containing 15% PEG
300 had lower lightness (L = 87.66) and slightly higher yellowness (yellow index: 19.15). In-
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terestingly, the 20% PEG 300 film displayed a higher color difference of 68.58 (TCD). These
results highlighted the impact of plasticizers on the films’ color and whiteness, providing
valuable insights for further analysis.

Results from the color analysis revealed that plasticizers significantly changed the
films’ lightness and yellowness. For instance, the HB/MC 90/10 films with 15% and 20%
glycerol exhibited more pronounced yellow tints and higher total color differences than the
control. Similarly, the HB/CMC 60/40 films showed variations in lightness and yellowness,
with plasticizers leading to noticeable color alterations. These color changes are notable
considerations for the films’ aesthetic appeal in consumer applications [49].

3.3. Film Thickness and Moisture Content

Figure 2 shows the films’ thickness and moisture content measurements. The plasti-
cizer increased the film thickness in the HB/MC 90/10 films, ranging from 211 to 268 µm,
approximately 13% to 44%, compared to the control film thickness of 186 µm, shown in
Figure 2. Similarly, including plasticizers impacted the thickness of the HB/CMC 60/
40 films. The thickness of these films ranged from 165 µm to 199 µm, with a percentage
increase from the control film thickness (165 µm) ranging from 0.01% to 20%.
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The results showed a marked increase in film thickness with higher plasticizer concen-
trations, regardless of the type of plasticizer used. This effect is likely due to plasticizers
disrupting and reorganizing the intermolecular polymer chain networks, resulting in more
free volume and, thus, thicker films. Previous investigations reported similar observations
on the impact of plasticizer concentration on film thickness [50–56].

Regarding the moisture content, the HB/MC 90/10 films containing 15% glycerol
and 15% PEG 1000 exhibited lower moisture levels than the control. For the HB/CMC 60/
40 films, those containing PEG 300 (at 15% and 20%) also showed reduced moisture content
than the control film (Figure 2). PEG-plasticized films showed lower moisture content than
glycerol-plasticized films, which is due to the lowered molecular weight of glycerol and
is more hygroscopic than PEGs. Incorporating GLY and PEG into the biopolymer films
produced a more flexible and less dense polymer matrix. This structural modification
diminishes the film’s ability to absorb and retain moisture, as the free hydroxyl groups
that typically attract water molecules are either occupied by hydrogen bonds with the
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plasticizers or are less accessible due to the increased free volume. Consequently, the
reduced moisture content in the films lowers the risk of microbial growth and spoilage,
thereby enhancing the protective qualities of the films [57].

3.4. Physiochemical Properties of Films
3.4.1. Oxygen Transmission

Oxygen permeability is a crucial parameter in evaluating the effectiveness of food
packaging materials. When environmental oxygen penetrates the packaging material, it
can cause fatty acid oxidation in the packaged food, leading to quality deterioration and a
shorter shelf life. Figure 3 provides detailed oxygen transmission profiles for the film sam-
ples. Notably, films containing HB/MC with varying plasticizer types and concentrations
exhibit higher oxygen permeability than the control. Likewise, plasticizer types and levels
also elevated the oxygen permeability of HB/CMC 60/40 films compared to the control
samples (Figure 3).
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Although water-soluble plasticizers improve the mechanical properties, they affect
the barrier properties, as seen in our films. An earlier study [28] showed that the plasticizer
concentration below 10% improves the water vapor permeability but negatively affects it at
a higher than 10% concentration. Higher plasticizer concentrations mean excess plasticizers,
generating more affinity to water. More affinitive water molecules break chain-to-chain
interactions, introducing more free volume and causing higher water vapor permeability.
Figure 3 also suggests that plasticizers negatively influenced the oxygen permeability of
both HB/MC and HB/CMC films compared to the control films studied in this work.
This change is attributed to the addition of plasticizers, which reduces hydrogen bonding
between polymer chains, making the structure less dense and more flexible. This increases
free volume by disrupting the tight packing of polymer chains, allowing oxygen molecules
to move more freely.

Additionally, plasticizers enhance the mobility of polymer chains, facilitating the
diffusion of oxygen molecules. These changes collectively increased oxygen permeability
when plasticizers were added to polymers [58]. Nevertheless, glycerol-containing films
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showed exceptional oxygen permeability values, consistent with previous studies on MC
and MC/beeswax composite films [59,60].

Even though the oxygen permeability of our HB/MC and HB/CMC films was higher
due to the inclusion of plasticizers, it still fell within an acceptable range for some food
packaging applications. Compared to commercial biodegradable films [18,61,62], our films
exhibit comparable or slightly higher permeability values, which can be mitigated us-
ing additional barriers or coatings, such as nitrocellulose lacquer, to improve cellophane
films’ permeability. Despite this, the films offer significant environmental benefits by
utilizing agricultural by-products, contributing to waste reduction, and promoting sustain-
ability. A trade-off between slightly higher permeability and environmental advantages
makes these films a viable option for eco-friendly packaging solutions. Furthermore, the
cost-effectiveness and availability of the raw materials used in our films enhance their
practicality for real-world applications, aligning with circular economy principles and
supporting the transition to more sustainable packaging practices.

3.4.2. Water Vapor Permeability (WVP)

The films’ water vapor permeability (WVP) varied between 73 and 210 gm/mˆ2/day
(Figure 3), depending on the film composition, plasticizer type, and concentration. Methyl-
cellulose (MC)-based films are more hydrophilic than carboxymethyl cellulose (CMC),
causing the lowered WVP in the CMC-based films. This difference might be attributed
to the three-dimensional dense structures of the CMC-based films. The incorporation of
plasticizer increased the WVP of all films. Our results are consistent with previous studies
speculating that incorporating plasticizers can create hydrogen bonds with hydrophilic
parts of the polymers, reducing the associated free volume. As a result, plasticizer helps
increase the mobility of polymer chains and allows for greater diffusion of water molecules
through the film matrix [63–65].

3.4.3. Mechanical Properties

The films exhibited improved mechanical properties when plasticizers (GLY and
PEG) were used, including tensile stress, elongation, elastic modulus, and toughness.
These plasticizer molecules likely inserted themselves between the HB and MC/CMC
chains, disrupting the existing hydrogen bonds and creating new interactions with the
hydroxyl groups of the plasticizers. This disruption increased the free volume within the
polymer matrix, making the films more flexible and less brittle. However, the interaction
between HB and MC was relatively weak due to MC’s limited hydrogen bonding capacity,
which may explain the moderate improvements seen in the HB/MC films’ mechanical
properties [66,67].

In comparison, the incorporation of plasticizers into HB/CMC films led to significant
structural changes in the film matrix. The plasticizers disrupted the hydrogen bonds be-
tween HB and CMC, but the carboxymethyl groups in CMC facilitated the formation of new
hydrogen bonds with the plasticizers. This resulted in a more flexible and cohesive polymer
network, enhancing mechanical properties such as tensile strength, elongation, and tough-
ness. The higher compatibility between HB and CMC due to these strong intermolecular
hydrogen bonds was evident in the superior mechanical performance of the HB/CMC films.
The HB/CMC films exhibited more pronounced improvements in mechanical properties
than the HB/MC films (Figure 4). In our study, the highest elongation at break was 137.17%
for film HB/CMC (with 20% PEG), which exceeded previous investigations such as 64% for
sugarcane bagasse [68–73]. However, the maximum tensile strength in our aforesaid blend
films was 10.45 MP, which was much higher than curaura fiber-based films (2.22 MP) [71]
and comparable to wheat straw-based films (12.00 MP) [72]. Overall, our blend films
showed a 10–65% increase in tensile strength when compared to the control films. This
trend can be attributed to the stronger intermolecular hydrogen bonding between HB
and CMC and cross-linking potential, further stabilized by the plasticizers [66,67] and
underscoring the importance of the chemical compatibility between the biopolymers and
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the plasticizers [74,75]. Increasing the plasticizer concentration also showed a consistent
increase in elongation for all cases.
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Moreover, a previous study [74] indicated that in biomacromolecules, mechanical
strength depends primarily on the formation and stability of hydrogen bonds within their
structures. In sum, our results were consistent with previous investigations, which have
shown that plasticizers can decrease tensile stress and Young’s modulus while increasing
percent elongation, toughness, and resistance to cracking, thereby improving the overall
mechanical performance of the polymer [76,77].

Despite these promising results, this study has some limitations. The films’ water
vapor permeability (WVP) suggests that additional hydrophobic functionality is needed
to enhance this property. While high plasticizer concentrations reduce film brittleness,
targeting a lower plasticizer concentration (≈10%) could help decrease processing costs,
provided that acceptable mechanical strength is maintained. Moreover, the long-term
stability and biodegradability of the plasticized films were not assessed. Future studies
should investigate these films’ environmental impact and degradation behavior over
time [17,77–89]. The plasticized films’ inferior WVP and ambient enhanced physical and
mechanical properties indicate much improvement needs to be considered and researched.

4. Conclusions

This study demonstrated that combining hemicellulose (HB), an agricultural by-
product from the corn-milling process, and cellulose derivatives (MC and CMC) with
appropriate plasticizers created food packaging films with excellent physical attributes
and mechanical properties, paving the way for their potential application in sustainable
packaging solutions. Despite their less-than-optimal water and oxygen permeability per-
formance, these films hold immense economic and environmental promise. This research
will continue to explore the use of other natural additives from agricultural processes to
improve and refine these critical qualities. Additionally, further comprehensive testing of
these films’ long-term stability, cost-effectiveness, and production scalability is necessary to
validate these findings fully for broader applications.
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