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Abstract: Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an
integral part of our life. These technologies place unprecedentedly high demands on materials in
terms of their mechanical and electrical properties. There are several strategies for forming conductive
layers in such composites, e.g., volume blending to achieve a percolation threshold, inkjet printing,
lithography, and laser processing. The latter is a low-cost, environmentally friendly, scalable way to
produce composites. In our work, we synthesized AgNW and characterized them using Ultraviolet-
visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), and Selective area electron
diffraction (SAED). We found that our AgNW absorbed in the UV-vis range of 345 to 410 nm. This is
due to the plasmon resonance phenomenon of AgNW. Then, we applied the dispersion of AgNW
on the surface of the polymer substrate, dried them and we got the films of AgNW.. We irradiated
these films with a 432 nm laser. As a result of the treatment, we observed two processes. The first
one was the sintering and partial melting of nanowires under the influence of laser radiation, as a
consequence of which, the sheet resistance dropped more than twice. The second was the melting
of the polymer at the interface and the subsequent integration of AgNW into the substrate. This
allowed us to improve the adhesion from 0–1 B to 5 B, and to obtain a composite capable of bending,
with radius of 0.5 mm. We also evaluated the shielding efficiency of the obtained composites. The
shielding efficiency for 500–600 nm thick porous film samples were 40 dB, and for 3.1–4.1 µm porous
films the shielding efficiency was about 85–90 dB in a frequency range of 0.01–40 GHz. The data
obtained by us are the basis for producing flexible electronic components based on AgNW/PET
composite for various applications using laser processing methods.

Keywords: flexible electronics; silver nanowires; sheet resistance; shielding efficiency

1. Introduction

Flexible electronics have become a common part of our life. Radio Frequency IDen-
tification (RFID) tags, neural interfaces, and wearable sensors have all been included in
our lives thanks to the impressive rate of development in this industry. In addition to
targeted applications as electronic components, flexible electronic materials can be used as
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electromagnetic compatibility components. With the development of the flexible electronics
industry, the demand for flexible shielding materials has also increased. Flexible electron-
ics, just like traditional ones, consists of three main types of components: 1—substrate;
2—conductive paths; 3—the basic components of which the electronic circuit consists [1].

Currently, polymer materials are used as substrates. There are several reasons for this:
polymers are inexpensive to produce and there is a possibility to recycle them, and creating
conductive paths is one of the most important tasks in the manufacture of flexible electronics.
We can formulate the requirements for this element: 1—it must have the lowest possible
resistance; 2—it must be durable and retain its properties under various mechanical influences;
3—it must retain its electrical properties under various bending conditions.

The most advanced technologies make conductive paths and patterns. There are
various types of lithography and printing with electrically conductive inks [2]. These inks
are dispersions of conductive agents in liquid. Types of inks can be categorized by the type
of conductive agents. These can be: 1—carbon materials, such as carbon nanotubes [3,4],
carbon black [5], and graphene [6]; 2—modern nanomaterials such as MXenes [7] and other
materials [8]; 3—metal materials, such as metal nanoparticles [9] and metal nanowires [10].
Nanoscale conductive agents are preferred, as they allow an increased resolution of print-
ing [11]. The point is that inkjet printing allows the creation of conductive paths with good
homogeneity but does not contribute in any way to the adhesion of conductive paths to
the substrate. As a result, such paths may not withstand mechanical stress without addi-
tional protection. Additionally, such methods are neither inexpensive nor environmentally
friendly and they are technically challenging because they require the use of preformed
masks [12]. In recent years, laser-based approaches to creating flexible electronics have
become increasingly popular as cost-effective, environmentally friendly, and low-cost al-
ternatives to traditional methods [13–15]. Some examples of the amazing results of this
approach can be found in the results of Liu and Lee in the formation of silver templates
on polyimide substrate [16], the sintering of silver nanoparticles on polyethylene tereph-
thalate (PET) substrate by Kim et al. [17], and the laser-formed composite of aluminum
nanoparticles and PET shown in the work of Rodriguez et al. [12]. These and other works
related to laser processing of nanomaterials/polymers inspired us to expand our approach
to creating electrically conductive nanocomposites using the silver nanowires (AgNW). We
expect silver nanowires to act as a photothermal converter due to the effect of localized
surface plasmon resonance in the UV-blue wavelength [18], which will make it possible
to create a conductive composite of AgNW and any thermoplastic polymer using laser
processing. Such composites must have phenomenal wear resistance, and their flexibility
will be determined by the mechanical properties of the substrate. To test this hypothesis, we
synthesized low aspect ratio nanowires, deposited films on thermoplastic polymers, laser
treated them, and assessed their optical, electrical, and mechanical properties. The results
obtained will be a significant addition to the rapidly developing topic of laser-induced
conductive composites.

2. Materials and Methods
2.1. Synthesis of AgNW

AgNW were synthesized by the following method. First, 1.3 g polyvinylpyrrolidone
(PVP) (100 kDa) (ITW Reagents Panreac Castellar del Vallès, Barcelona, Spain) was dis-
solved in 40 mL of ethylene glycol (EG) (EKOS, Moscow, Russia) into three-necked flask.
The flask was slowly heated to 160 ◦C with vigorous magnetic stirring. When the tempera-
ture had stabilized at 160 ◦C for 1 h, an ethylene glycol solution of FeCl3 was added. Then,
10 mL of 1.47 M ethylene glycol solution of AgNO3 was added to the flask. Then the flask
was sealed until the solution became glistening, indicating the formation of AgNW [19]. Af-
ter the synthesis, we replaced the dispersant with AgNW. For this, the resulting dispersion
in ethylene glycol was centrifuged at 10,000 rpm for 15 min using a laboratory centrifuge
OPN 16 (Labtex, Moscow, Russia). After centrifugation, the supernatant was drained, and
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the same amount of isopropyl alcohol was added. This operation was repeated 5 times
until the complete removal of ethylene glycol, NO3−, Cl−, Fe3+ ions, and PVP residues.

2.2. Samples Preparation

We used polyethylene terephthalate (PET) (Hi-Fi Industrial Film Ltd., Stevenage,
Hertfordshire, UK), polyethylene naphthalate (PEN) (Toray industries, Tokyo, Japan), and
polyvinylidene fluoride (PVDF) (3 M, Saint-Paul, MN, USA) as substrates for the application
of films by drip casting. We applied different volumes of base dispersion (~20 gm/mL
concentration): 12.5, 25, 37.5, 50, 62.5, and 75 µL/cm2.

2.3. Microscopy

Optical microscopy photographs were taken on an Altami 104 microscope (Altami,
Saint Petersburg, Russia). The morphology and geometric characteristics of individual
AgNW were studied by transmission electron microscopy (TEM) on a HT 7700 (Hitachi,
Tokyo, Japan) at an accelerating voltage of 40–300 kV. The morphology of AgNW films was
studied by scanning electron microscopy (SEM) on a SU3500 microscope (Hitachi, Japan)
at an accelerating voltage of 20 kV. EDX images and spectra were obtained on a SU3500
(Hitachi, Japan) microscope equipped with an energy-dispersive X-ray spectrometer XFlash
430 (Brucker, MA, USA).

2.4. XRD

X-ray diffractograms of the samples were taken using a X’Pert Pro MPD diffractometer
(PANalytical, Almelo, The Netherlands) with a high-speed PIXcel detector in the angular
range 30–90◦ 2Θ, with a step of 0.013◦. The Ag lattice parameters were determined and
refined using the full Rietveld approach by the difference derivative minimization (DDM)
method.

2.5. Optical Properties

The optical density of AgNW was measured in the range of 280–800 nm using a UV-
3600 spectrophotometer (Shimadzu, Kyoto, Japan). For this purpose, the base dispersion
of AgNW with a concentration of ~20 mg/mL was diluted 100 times. Then, 1 mL of the
obtained diluted dispersion was poured into a quartz cuvette. The spectrum was taken
with preliminary acquisition of the baseline of pure dispersant (ethanol).

2.6. Electrical Properties

The sheet resistance of AgNW films was measured by the four-probe method using a
JG ST2258 four-point probe station (Suzhou Jingge Electronics Co., Suzhou, China) and a
JG ST2558-F01 four-probe head (Suzhou Jingge Electronics Co., Suzhou, China).

2.7. Shielding Efficiency

The S21 and S11 coefficients of the materials were measured by the waveguide method.
The investigated sample was placed in the break of a waveguide transmission line.

This investigation used a wide range band (0.01–7 GHz) and a special air coaxial cell
with a diameter of 16.00/6.95 mm (type II, 50 Ω, GOST RV 51914-2002). The measurements
were carried out in the range of 10 MHz to 7 GHz; this frequency range includes the L
(1–2 GHz), S (2–4 GHz) and C (4–8 GHz) bands. The ability to measure at low frequencies
with a relatively simple and convenient measurement technique provides good quality
results. The measurements were carried out on a Keysight FieldFox N9916A vector network
analyzer (Keysight Technologies, Santa-Rosa, CA, USA).

K band (18–26.5 GHz) and a Ka band (26.5–40 GHz) were used. The waveguide-coaxial
transitions had a rectangular cross section with dimensions of 4.3 mm × 10.65 mm for K
band and 3.55 mm × 7.1 mm for Ka band. Measurements were performed on an R&S ZVA
40 vector circuit analyzer (GmbH & Co. KG, Großheringen, Germany).
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2.8. Mechanical Properties

The adhesion strength of AgNW/PET composites was evaluated using a tape test
according to ASTM D 3359, in geometry B (notch lattice period was 2 mm). The effect of the
reusable tape test on resistance AgNW/PET composites was also studied. In all studies, 3 M
tape was used, and the test sample was firmly fixed on the table. The mechanical properties
of AgNW/PET composites were studied in comparative experiments on a laboratory bench
in single load and cyclic modes [20]. For the single bend mode, we took several bending
radii: 10 mm, 5 mm, 2 mm, 1 mm, and 0.5 mm. The bending templates were fabricated using
3D printing. Cyclic bending allowed us to investigate fatigue accumulation in AgNW/PET
composites. In our experiments, the number of bending cycles with a radius of 0.5 mm
was 1000.

3. Results
3.1. AgNW Characterization

We used TEM, selective area electron diffraction (SAED) and UV-Vis spectrophotome-
try techniques to study the structure and morphology of AgNW. Figure 1a shows the TEM
image of the resulting AgNW.
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Figure 1. AgNW characterization. (a)—TEM Image, (b)—SAED, (c)—AgNW diameter, (d)—AgNW
length, (e)—UV-vis absorption spectra.

Knowing the average AgNW length (5.6 ± 2.8 µm) and average AgNW (96 ± 30.6 nm)
(Figure 1c,d) diameter, we can calculate the average aspect ratio–58.3. Using electron
diffraction on the selected region, we see the presence of reflections 111 and 002 which
show that the AgNW have more than one silver single crystal, i.e., on the twin structure.
The fivefold twinning indicates that we have nanowires with a non-symmetrical pentagon
in the cross section. (Figure 2b).

We see a peak and a satellite on the UV-vis absorption spectrum (Figure 1e). They are
related to the phenomenon of surface plasmon propagation in nanowires [20,21]. Twiniza-
tion is a typical growth behavior of nanowires, often found in the literature [22,23]. The
complexity of the shape of the plasmon absorption peak increases with the decreasing
symmetry of the pentagon in the cross section. We see a peak and a satellite on the UV-vis
absorption spectrum. The peak maximum is at a wavelength of 410 nm. This is different
from most results found in the literature [24,25]. According to Todd’s work, the absorption
peak moves towards the blue–green wavelength region with increasing AgNW diame-
ters, [26] which is what we see in our case. A surface plasmon can heat AgNW to 1000 ◦C,
which is higher than the melting point of silver [27]. This, as well as the high degree of
absorption in the blue wavelength region, inspired us to attempt laser-induced sintering of
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nanowires and their simultaneous integration into a thermoplastic polymer substrate with
a blue microsecond laser.
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3.2. AgNW/Polymer Flexible Composites Obtaining and Characterization

We used a dispersion of AgNW in ethanol, with a concentration of ~20 µL/cm2, to
deposit AgNW on a polymer substrate using a drop-casting method. We chose polyethylene
terephthalate (PET), polyvinylidene fluoride (PVDF), and polyethylene naphthalate (PEN) as
substrates. After AgNW deposition, our films were dried at room temperature for 24 h. To make
conductive free-form patterns on substrates we used a diode laser with 438 nm wavelength.
The process scheme can be seen in Figure 2a. This process is possible for any thermoplastics.
We have fabricated conductive patterns on commercial PEN and PVDF (Figure 2a). We chose
PET as a substrate for further research as it is one of the most used polymers.

The quality of the composite can be varied by modifying two main parameters: the
thickness of the AgNW coating and the amount of energy transferred per laser pulse.

It is possible to consider the influence of these two mechanisms on the target param-
eters of the composite separately. The selection of suitable laser processing parameters
for the formation of laser-induced composites is a critical step. By provoking surface plas-
mon excitation, silver nanowires can reach high temperatures, which can provoke various
phenomena occurring with the polymer substrate. The first is melting the nanowires and
sintering the contacts. This affects the mechanical and electrical properties of the composite
and is described in detail in the sections on electrical and mechanical properties. The
second process is the melting of the polymer at the polymer/AgNW interface and the
integration of the nanowires into the polymer. The third process is the pyrolysis of the
polymer substrate, occurring due to excess energy received from laser radiation.

In Figure 2b, we can see the effect of laser irradiation energy on the morphology
and electrical properties of the AgNW/PET composite. With increasing energy, we can
see a trend of decreasing resistance. This is due to the sintering of nanowires and, as a
consequence, the increase of the contact spot between nanowires (Figure 2c). For example,
with increasing energy from 0.03 J/pulse to 0.35 J/pulse, we see a drop in resistance from
118 to 43 mΩ/sq However, further increase of energy leads to pyrolysis of the substrate and
intensive melting of nanowires. For example, at an energy of 0.40 J/pulse we obtain a fully
pyrolyzed region with pronounced carbon structures, inside which are integrated AgNW
globules formed after melting (Figure 2c). Such phenomenon of Ag nanoscale objects is
described by Rodriguez et al. [12].

An important parameter for flexible electronics manufacturing is reproducibility.
Figure 2b shows that after the energy transition to 0.30 J/pulse, the reproducibility even on
small areas becomes not satisfactory. This is due to the density heterogeneity of the films.
Highly concentrated areas absorb laser radiation and heat up more than low concentrated
areas, causing local pyrolysis of PET.

Taking this into account, it is reasonable to determine the production of subsequent
samples at a power insufficient to cause the undesirable effects of the imperfections of
the drop-casting method but that allows the minimum resistance to be obtained, which is
0.30 J/pulse.

For a more detailed investigation of the processes occurring during laser sintering and
composite formation, we compared the XRD spectra of the original and laser-treated films.
In Figure 2d,e we see peaks attributed to metallic Ag. Five distinct diffraction peaks at
2θ = 38.13, 44.4, 64.4, 77.47, and 81.5◦ were indexed to the (111), (200), (220), (311), and (222)
reflections of metallic Ag. Ag in our case has a tetragonal distorted lattice and parameters:
a = b=4.088(1), c = 4.095(2) Å. This indicates the preservation of the crystalline structure of
AgNW after exposure to 0.30 J/pulse (0.19 J/cm2), which is in agreement with the literature
on laser welding and sintering of AgNW [28,29].

3.3. Laser Sintering AgNW/ PET Composite Morphology and Electrical Properties

To study the property of our obtained AgNW films, we fabricated 12 samples with
six different thicknesses on glass substrate and PET, respectively.

The thickness is an important parameter. Changing the thickness allows the indirect
changing of the amount of energy delivered per unit area per impulse [30,31]. Recent
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literature has reported the influence of the thickness of metallic nanoparticle and nanowire
films. Reducing the thickness of the layer has a positive effect in most cases, as it allows
more energy to be delivered per unit volume, resulting in a more uniform sintered film,
reduced porosity, and improved electrical and mechanical parameters. [31,32].

The reduction of porosity and free volume in the AgNW layer can influence the
thickness of the AgNW layer obtained after laser treatment. In order to study this, we
deposited six different thicknesses of AgNW films on a glass substrate, after which we split
the sample into two parts and looked at the cross-section in SEM, as well as taking the EDX
spectra. Glass was chosen as the substrate because it is much easier to split it into two parts
than any thermoplastic polymer substrate.

Figure 3a shows the concentration dependence of the layer thickness of irradiated
nanowires. Taking into account that small concentrations of the basic dispersion give low
homogeneity of the coating, we took several points and calculated the average thickness.
As we can see, the dependence can be described by a straight-line equation, but low
concentrations (12.5 and 25 µL/cm2) do not fit the trend due to the high inhomogeneity of
the layer.

In Figure 3b we see the EDX of the AgNW film, with a concentration of 62.5 µL/cm2. At
the top we see the scan area of the sample in the BSE picture, at the bottom the intensity of the
element peaks of each mapping point. We see the expected dominance of silver intensity in
the region related to the irradiated AgNW film, in the other regions we see the presence of
spectra of silicon, oxygen, and sodium, which are components of the glass substrate.

In Figure 3c we can see the EDX spectra. They clearly show the X-ray series of the
silver spectrum corresponding to the laser-irradiated AgNW film. In addition to them, we
can also see a series of spectra of the glass substrate components (Si, Na, O, etc.).

The most important characteristic for materials used in flexible electronics applications
is the electrical resistance of the material. In our case, the conductive layer is a thin
integrated AgNW layer.

Usually, such samples are characterized by the sheet resistance, which is the resistance
of a rectangular surface with a certain thickness [33,34].

A schematic representation of the four-probe sheet resistance measurement method is
shown in Figure 4a.

Figure 4b shows the dependence of sheet resistance of AgNW films before and after
laser treatment with energy of 0.30 J per pulse (0.19 J/cm2). As we said earlier, laser
treatment leads to the fusion of AgNW at their contact points and, as a consequence, to an
increase in the contact spot, which leads to a drop in resistance after laser treatment. This
effect is particularly noticeable in films with minimal AgNW content per unit area. From
surface concentrations above 50 µL/cm2 we almost observe a plateau in resistance.

We see that the resistance drops with increasing thickness for both treated and un-
treated films, which follows from Ohm’s law. It is also possible to achieve low sheet
resistance using this approach. However, this strategy is not suitable for flexible electronics
applications because thick conductive coatings will affect the flexibility of the products.
From this point of view, it is worthwhile to compare conductive coatings and films in terms
of surface resistivity and coating thickness.

We also calculated the resistivity of the composite, which in the case of an ideal
homogeneous film should remain constant and be equal to the resistivity of crystalline silver.
In Figure 4b, we see that in our case, the resistivity close to the resistivity of crystalline silver
is demonstrated by samples with a thickness of 4.1 ± 0.2 µm (75 µL/cm2) and 3.1 ± 0.2 µm
(62.5 µL/cm2). This is due to the inhomogeneity of our AgNW conductive layer. As the
thickness of the conductive layer decreases, the resistivity increases. This is due to the
increase in AgNW conductive layer inhomogeneity at small thicknesses.
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comparison [35–42].
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In Figure 4c we can see the comparison of conductive coatings and films with our
work [35–42]. Note that for the whole range of thicknesses, our results are superior to
most of the results mentioned in the literature and better than all the results obtained with
nanoscale silver. Only the results of Park et al. with imprinted Au NP are superior to our
AgNW/PET composites. Laser allows for much better results than inkjet and lithography,
and the technology is more cost-effective than lithography, more environmentally friendly,
and easily scalable [43].

3.4. Electromagnetic Shielding Performance of AgNW/PET Composite

The purpose of EMI shielding is to encapsulate the area to be shielded with a shielding
sheath of some conductive or magnetic material to provide EM insulation. The first purpose
is to limit the leakage of EM energy outside the area and its effect on external equipment.
The second purpose is to prevent EM energy from outside the area from entering the area
and affecting internal equipment [44]. Quantitatively, the shielding efficiency is evaluated
by the shielding efficiency SE. This is defined in decibels (dB) according to the formula:

SE = 20 lg E1/E2 (1)

where E1 is the electromagnetic wave (EMW) amplitude at an arbitrary point of the shielding
space without the screen and E2 is the EMW amplitude at the same point with the screen. For
a material, the SE can be interpreted as the inverse of the trans-mittance S21 (dB):

SE = −10lg(S21) (2)

Figure 5 shows the dependence of the transmittance coefficient (S21) in all investigated
frequency ranges (0.01–40 GHz). The SE increases with increasing surface density of AgNW
deposited from the base dispersion. The shielding efficiency increases from 40 dB to 90 dB
when the surface density increases from 12.5 µL/cm2 to 75 µL/cm2 respectively. It can be
seen that samples with concentrations of 12.5 and 25 mL/cm2 tend to decrease in shielding
efficiency with increasing frequency. This is due to the fact that laser-treated thin films are
structures containing dielectric and conducting regions [44]. The influence of inhomogeneity
increases with increasing frequency, which creates a specific slope of the curves for these
samples. However, in the context of shielding values, this weak slope does not have a
significant effect.

At surface densities of 37.5–75 µL/cm2, we see a trend of increasing shielding efficiency
with increasing frequency. Thus, in films with a surface density of 37.5 µL/cm2, the
shielding efficiency shows a weak increase from 70 to 74 dB and 75 µL/cm2 film shows
an increase in shielding efficiency from 77 dB to 90 dB. The increase in shielding efficiency
with increasing frequency for high continuity films is attributed to the skin effect.

The interaction between incident electromagnetic waves and the surface/interface
of an electromagnetic shield can be divided into reflection (R), absorption (A), multiple
reflection, and transmission (T). The coefficients are calculated using parameters S11 and
S21. The formulas are described below:

R = Pr/Pi= 100.1S11 · 100%, (3)

T = Pt/Pi= 100.1S21 · 100%, (4)

A = 100% − T − R, (5)

where Pi, Pr, Pt are the incident, reflected, and transmitted wave powers. The scattering
matrix parameters S11 and S21 (the scattering matrix parameter, which is the transmission
coefficient) should be taken in dB.
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It is possible to determine the energy balance for these three components that make
up the interaction of the electromagnetic wave with the screen. Using the Formulas (3)–(5),
we calculated these components and made the reflection, absorption, transmission (RAT)
diagram (Figure 6). The results of the calculations are shown in Figure 6a–c. Since there
is a weak tendency for the shielding efficiency to vary up or down, we averaged the RAT
values in the following ranges: 0.01–7 GHz, 17–26.5 GHz, and 26.5–40 GHz and listed the
corresponding results as columns. We can conclude that the main mechanism of shielding
is reflection. The scheme of the interaction of radio waves with AgNW/PET composite is
shown in Figure 6d. The increase of transmittance components with increasing frequency
is related to the morphology of AgNW/PET composite. It is a porous structure which
can be described as a network. Examples of mesh structures with similar transmittance
component growth have already been mentioned in the literature [45].

Modern science places extremely stringent demands on materials. In particular, shield-
ing materials must not only have a high shielding capacity, but also be flexible and, more
importantly, thin. In view of such requirements, we have compared those mentioned in the
literature with ours, correlating shielding effectiveness with thickness.

In Figure 7 you can see the graph. It can be seen that our AgNW/PET composite has
a shielding efficiency superior to the coatings mentioned in the analysis. The graphene
nanosheet coatings obtained by Panda et al. and Yuan et al. surpass our results, but only at
thicknesses many times greater than ours [45–60].

In general, similar results can be achieved using ordinary thick materials. However,
their high density and high weight are not suitable for aerospace, telecommunication
applications, and materials for wearable and flexible electronics.
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To evaluate the shielding efficiency, taking into account the thickness of the screen, the
parameter of specific shielding efficiency (SSE) is used, which is calculated by the following
formula [44]:

SSEt = SET/ρ × t (6)

where ρ—density in g/cm3 and t—thickness in mm.
In Figure 7b, you can see a graph comparing SSE for different manuscripts. In the com-

parison of SSEt values, we used only metallic nano-objects of different shapes (nanowires,
nanoplates, nanoparticles, etc.). As we can see, our coating shows one of the best results for
thicknesses below 5 microns.

3.5. Mechanical Properties AgNW/PET Composite

Flexible electronics involves the use of materials under a load that bends or curls the
product. We have conducted various mechanical stability tests to evaluate the suitability of
our composites for flexible electronics applications. The results of these tests are shown in
Figure 8.

Figure 8a–c shows optical photographs of AgNW films before laser treatment and
after laser treatment. The images of maximum and minimum concentrations (12.5 µL/cm2

and 75 µL/cm2) for laser treated films are also shown. Adhesion was tested according
to ASTM D3359. The adhesion of the films without laser treatment is at 0–1B, which
means a peel percentage of 35–65%. This level of adhesion is not suitable for use in flexible
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electronics applications. The treated films show adhesion level 5B for concentrations of
12.5–50 µL/cm2 and 4B for 62.5 and 75 µL/cm2. The decrease in adhesion level is due
to the fact that the large thickness (about 4 µm) prevents the sintering of AgNW located
in different planes. The high adhesion of AgNW to the substrate indirectly confirms the
formation of a composite at the PET/AgNW interface.
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We tested AgNW/PET composites for resistance to tape tear-off. We fabricated a
conductive pattern, in the form of paths with different widths (500 µm, 1 mm, 3 mm,
and 5 mm), at the ends of which were contact pads for measuring equipment (Figure 8d).
The results of resistance changing after each detachment are shown in the histogram in
Figure 8d. Each of the conductors retained electrical conductivity after five cycles of
the taping test. The resistance of the 500 µm track changed the most. Removal of the
same amount of AgNW from paths of different widths left different amounts of surviving
contacts, which is associated with the increase in resistance.

High adhesion of the conductive layer to the substrate is one of the main requirements
for flexible electronics. However, it is not the only one. The material must be able to
retain its properties after bends of various radii. To test the durability of the AgNW/PET
composite, we performed bending tests with radii of 0.5 mm, 1 mm, 2 mm, 5 mm, and
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10 mm. Figure 8e shows the graph of resistance variation as a function of bending radius.
The resistance remained at the same level regardless of the bending radius. The sintered
contacts between single AgNW after laser treatment retained high tensile strength.
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Figure 8. Mechanical properties. (a)—Optical image of untreated film before and after the ASTM
D3359 test; (b)—optical image of processed film with CAgNW = 12.5 µL/cm2 before and after the
ASTM D3359 test; (c)—optical image of processed film with CAgNW = 75 µL/cm2 before and after the
ASTMD D3359 test; (d)—change in resistance after a tape test; (e)—changing of resistance at different
bending radius; (f)—thermoforming demonstration.

Flexible electronics involves the constant bending and unbending of devices, which
requires materials to be resistant to fatigue damage. To test the durability of AgNW/PET
composites, we tested them for 1000 cycles of bending-extension with a radius of 0.5 mm. We
measured the resistance of the AgNW/PET composite after every 100 bends (Figure S3).

AgNW/PET composite retains the thermoplastic substrate’s thermoforming ability,
without loss of electrical properties. This expands the scope of its potential applications
and makes it possible to use it in various technological processes [69]. Demonstration of the
thermoforming process together with detailed characterization of mechanical properties
provides a basis for the integration of such composites into industry.

4. Conclusions

In this work, we demonstrated the laser sintering of AgNW with their subsequent
integration into the substrate and formation of AgNW/PET composites. In the UV-Vis
spectroscopy, we found absorption peaks at 345 and 410 nm, respectively. These two peaks
are related to the plasmon surface resonance phenomenon. Considering this, we made
AgNW films on a polymer substrate and treated them with a laser with a wavelength of
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432 nm. After treatment, we characterized our films by SEM, EDX, and XRD and measured
the sheet resistance. From the results, we found that the AgNW were heated by the laser
exposure, which led to their sintering or melting, and the melting of the surface of the
polymer substrate, followed by the integration of wires and the formation of a composite.
The obtained AgNW/PET composite has a low sheet resistance of about 30 mΩ/sq. We
also conducted shielding efficiency measurements. Our composite is capable of shielding
in wide frequency ranges at the level of 89 dB with thickness about 3.1 ± 0.2 µm. In
order to fully evaluate the applicability of the obtained material in flexible electronics
applications, we conducted comprehensive mechanical tests, including an ASTM D3359
test, tape test, bending resistance test, cyclic bending test, and thermoforming. As a result,
the AgNW/PET composite demonstrated high adhesive strength and bending resistance,
including cyclic loads, while maintaining the ability to thermoform. The results obtained
are an important addition to the field of manufacturing thermoplastic polymer composites
for flexible electronics applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym16223174/s1, Figure S1: Photo before and after washing off
excess AgNW after laser treatment; Figure S2: Search for modes for laser processing. The figure
shows that we can only work in a narrow range of laser speeds and power. 100% speed corresponds
to 100 mm per minute; Figure S3: Cyclic load for 1000 cycles. Measurements were taken every
100 bending-extension cycles; Video S1: Sample washing process.
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