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Abstract: Microbial exopolysaccharides (EPSs) are biopolymer materials with advantages such
as biodegradability, biocompatibility, ease of mass production, and reproducibility. The EPS that
was isolated from Rhizobium leguminosarum bv. viciae VF39 is an anionic polysaccharide with a
backbone structure consisting of one galactose, five glucose molecules, and two glucuronic acids,
along with 3-hydroxybutanoyl, acetyl, and pyruvyl functional groups. Through N-methyl-N′-nitro-
N-nitrosoguanidine (NTG) mutagenesis, we isolated and purified a mutant EPS from VF39, VF39
#54, which demonstrated enhanced physicochemical and rheological properties compared to the
wild-type VF39. The EPS structure of the VF39 #54 mutant strain showed a loss of glucuronic acid
and 3-hydroxybutanoyl groups compared to the wild-type, as confirmed by FT-IR, NMR analysis,
and uronic acid assays. The molecular weight of the VF39 #54 EPS was 250% higher than that of
the wild-type. It also exhibited improved viscoelasticity and thermal stability. In the DSC and TGA
analyses, VF39 #54 had a higher endothermic peak (172 ◦C) compared to the wild-type (142 ◦C), and
its thermal decomposition point was 260 ◦C, surpassing the wild-type’s value of 222 ◦C. Additionally,
the VF39 #54 EPS maintained a similar viscosity to the wild-type in various pH, temperature, and
metal salt conditions, while also exhibiting a higher overall viscosity. The cytotoxicity test using
HEK-293 cells confirmed that the VF39 #54 EPS was non-toxic. Due to its high viscoelastic properties,
the VF39 #54 EPS shows potential for use in products such as thickeners, texture enhancers, and
stabilizers. Furthermore, its thermal stability and biocompatibility make it a promising candidate for
applications in food, pharmaceuticals, and cosmetic formulations. Additionally, its ability to maintain
viscosity under varying environmental conditions highlights its suitability for industrial processes
that require consistent performance.

Keywords: exopolysaccharides (EPSs); NTG mutagenesis; viscoelasticity; thermal stability;
biocompatibility; FT-IR; NMR

1. Introduction

Polysaccharides, a class of biopolymers based on monosaccharide structures, have
drawn significant attention for their potential applications in films, hydrogels, emulsifiers,
and more [1–4]. Examples of industrially significant polysaccharides include cellulose,
alginate, and pullulan [5–7]. These materials offer various beneficial properties, such as
antioxidant and antibacterial effects, which depend on their monosaccharide composition,
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bonding patterns, and functional groups [8]. Microbial polysaccharides, a subclass of
polysaccharides, are secreted by algae, fungi, and bacteria. Microbial polysaccharides, in
particular, offer advantages such as mass production potential and ease of reproduction
compared to polysaccharides obtained from animal or plant sources [9–11].

Microbial polysaccharides are defined as polysaccharides that can be extracted from
microorganisms, and their types include capsular polysaccharides (CPSs), lipopolysac-
charides (LPSs), and exopolysaccharides (EPSs) [12]. Microbial EPSs include hyaluronic
acid, xanthan, alginate, cellulose, gellan, and succinoglycan [13–18]. Recently, numerous
research studies of microbial EPSs from various strains have revealed that microbial EPSs
have excellent biological and mechanical properties, such as antioxidant, antibacterial,
antibiofilm, and rheological properties [19–21]. Xanthan is representative of microbial
EPSs and has wide applications in industrial fields based on its inherent high thermal
stability, water solubility, biocompatibility, and viscosity [22–24]. Despite these advan-
tages, microbial EPSs have not been utilized in industrial applications because of their
production yields and differences in composition, which change depending on the media
conditions. Many researchers have continued to investigate and overcome these short-
comings through strain modification [25], optimization of culture conditions [26–28], and
metabolic engineering [29].

Nowadays, chemical mutagenesis is often chosen as a method for strain modification,
inducing mutations through chemical mutagens such as alkylating agents and azides,
including ethyl methanesulfonate (EMS), N-methyl-N′-nitro-N-nitrosoguanidine (NTG),
and N-ethyl-N-nitrosourea (ENU) [30]. Chemical mutagenesis can cause random mu-
tations, particularly in transitions and transversions, targeting specific genomic regions
with high guanine and cytosine (GC) content or other specific sites in the genome [31].
NTG mutagenesis, which works via alkylating mutations, is considered to be an efficient
mutagen due to its high mutation frequency [32]. This method has been applied to var-
ious bacterial strains. For example, the NTG treatment of Nonotus obliquus, a medicinal
fungus, resulted in 32 mutant strains that improved polysaccharide production by about
11-fold [33]. Additionally, EPSs from Komagataeibacter xylinus and its mutated strains have
exhibited different conformational morphologies and enhanced mechanical properties due
to NTG mutagenesis [34].

Among microbial EPSs, those produced by the Rhizobium species have been widely
studied. The Rhizobium species produce EPSs that form biofilms and play a crucial role
in the symbiotic relationships with legumes, facilitating nitrogen fixation [35,36]. Notable
examples of Rhizobial EPSs include succinoglycan and curdlan, but more recently, there has
been a growing interest in the structural characteristics and physicochemical properties of 3-
hydroxybutanoylglycan, an EPS produced by Rhizobium leguminosarum bv. viciae VF39 [37].
The EPS of VF39 is an acidic polysaccharide composed of glucuronic acid, galactose,
and glucose, with functional groups such as acetyl, pyruvyl, and 3-hydroxybutanoyl. In
previous work, this EPS demonstrated high antioxidant activity and viscoelastic properties,
suggesting its significant potential for industrial applications [38].

In this study, we utilized N-methyl-N′-nitro-N-nitrosoguanidine (NTG) mutagenesis
to induce mutations in Rhizobium leguminosarum bv. viciae VF39. We analyzed the EPS
produced by the mutant strain and compared it with the wild-type EPS. Our findings
revealed structural changes in the mutant EPS, resulting in improved physicochemical
properties, such as enhanced viscoelasticity. Through this study, we aim to present a novel
approach for developing advanced EPS materials via NTG mutation, with the potential for
enhanced industrial applications.

2. Materials and Methods
2.1. Materials

Rhizobium leguminosarum bv. viciae VF39 (VF39) was supplied by the Microbial Car-
bohydrate Resource Bank (MCRB) at Konkuk University, Seoul, Republic of Korea. All
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chemical reagents were purchased from Sigma-Aldrich Chemicals Co. (St. Louis, MO,
USA).

2.2. Rhizobium leguminosarum bv. viciae VF39 Strain Culture and Isolation of VF39 EPS

The VF39 strain was incubated for two days at 28 ◦C in a seed medium containing
0.1% trace elements. The composition of the seed medium was 5 g/L D-mannitol, 1 g/L
L-glutamic acid, 1 g/L dibasic potassium phosphate, 0.2 g/L magnesium sulfate, and
0.04 g/L calcium chloride. After incubation, the VF39 strain was transferred to a production
medium with the same composition but containing 10 g/L D-mannitol. The production
medium was adjusted to a pH of 7.20 and incubated at 28 ◦C for five days with shaking
at 150 rpm. The culture was then centrifuged at 8000 rpm for 15 min at 4 ◦C to remove
cell pellets. To the resulting VF39 EPS supernatant, three volumes of ethanol were added
to precipitate the EPS. The precipitated EPS was dried at 60 ◦C for 24 h, then dissolved
in distilled water and dialyzed in a membrane tube (MWCO 12–14 kDa) against distilled
water for three days. The dialyzed EPS was lyophilized for later use.

2.3. N-Methyl-N′nitro-N-Nitrosoguanidine (NTG) Mutagenesis

In Figure 1, an illustration of the general process of NTG mutation is presented. Briefly,
the VF39 strain was cultured for two days and then centrifuged at 1000 rpm for 3 min. After
centrifugation, the cell pellet was washed twice with a 20 mM solution of Tris-Maleate
buffer (pH 8.5). The NTG solution, prepared at a concentration of 0.5 mg/mL in 10%
acetone, was activated by shaking at 28 ◦C and 200 rpm for 30 min. Mutagenesis was
terminated by treating the cells with sodium thiosulfate in a saline solution [39]. The cell
suspension was then diluted to a concentration of 1/10−6, 1/10−7, 1/10−8 and spread on
a GMS medium containing 1.5% agar. The plates were incubated at 28 ◦C for two days.
Colonies that appeared larger and had more moisture were selected, and the mutant strain
was designated VF39 #54.
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Figure 1. Scheme of VF39 NTG mutagenesis. NTG was dissolved in distilled water with 10% acetone
for activation.

2.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

The 1H NMR spectrum was acquired at 600 MHz using a Bruker Avance spectrometer
(Bruker, Karlsruhe, Germany). For the 1H NMR, 10 mg of VF39 EPS was dissolved in 1 mL
of D2O. The VF39 EPS was measured at 25 ◦C. The VF39 #54 EPS was measured at 60 ◦C.
Additionally, the 13C NMR spectrum and heteronuclear single quantum coherence (HSQC)
spectrum were obtained at 600 MHz using a Bruker Avance III-600 spectrometer (Bruker,
Karlsruhe, Germany). For the 13C NMR, 80 mg of the VF39 EPS was dissolved in 1 mL of
D2O at 60 ◦C and measured at 25 ◦C.
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2.5. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR spectrum of the VF39 EPS was recorded using an FT-IR spectrometer in
ATR mode (resolution 0.5 cm−1, Bruker, Bremen, Germany) over a wavenumber range of
4000–650 cm−1. Each spectrum was obtained from lyophilized samples with 16 scans.

2.6. Glucuronic Acid Concentration Assay

The uronic acid concentrations were determined using the m-hydroxydiphenyl method,
as described by Blumenkrantz and Asboe-Hansen [40]. Briefly, 0.2 mL of VF39 EPS solutions
(ranging from 0.0625 to 0.5 mg/mL) were mixed with 1.2 mL of sulfuric acid/tetraborate,
and the mixtures were heated in a water bath at 100 ◦C for 5 min. After cooling in an ice
bath, 20 µL of m-hydroxydiphenyl reagent was added. The tubes were shaken, and the
absorbances measured at 520 nm within 5 min.

2.7. Differential Scanning Calorimetry (DSC)

A DSC analysis was performed using a Discovery DSC 2500 (TA Instruments, New
Castle, DE, USA). Dried samples (10 mg) were placed in a sealed aluminum pan and heated
under a nitrogen atmosphere. The heat flow was recorded at a scan rate of 10 ◦C/min over
a temperature range of 20–200 ◦C.

2.8. Thermal Gravimetric Analysis (TGA)

A TGA was conducted using an STA 449 F3 Jupiter (NETZSCH, Weimar, Germany).
Dried samples (10 mg) were prepared, and the weight loss was monitored under a nitrogen
atmosphere as the temperature increased from 20 ◦C to 600 ◦C at a rate of 10 ◦C/min.

2.9. Molecular Weight by Gel Permeation Chromatography (GPC)

GPC was performed using a Waters 2414 refractive index detector (Waters Corporation,
Milford, MA, USA) and a Waters 1525 binary pump (Waters Corporation, USA) with
NaNO3 solution in distilled water as the mobile phase. The column comprised Waters
Ultrahydrogel Linear (Waters Corporation, USA), 500, 250, and 120. Sodium nitrate (0.02 N)
was used as the elution solvent, and pullulan served as the calibration standard (pullulans
642,000, 334,000, 201,000, 110,000, 49,400, 2200, 9400, 6300 peak molecular weight). The
flow rate was set at 0.8 mL/min. GPC was performed in the instrumental analysis center of
Kyungpook National University.

2.10. Rheological Measurements

The viscoelastic properties were evaluated using a DHR-2 rheometer (TA Instruments,
USA). The sample solutions were prepared at varying concentrations (2 wt%, 4 wt%,
6 wt%, 8 wt%, 10 wt%) of the VF39 EPS. Except for viscosity measurements according
to concentration, the 2 wt% solution was commonly used for viscosity measurements
according to temperature, pH, and salt conditions. Viscosity tests were conducted at shear
rates ranging from 0.01 to 1000 s−1. Temperature studies were performed at 25 ◦C, 35 ◦C,
45 ◦C, 55 ◦C, 65 ◦C, and 75 ◦C [39]. pH studies were conducted at pH levels of 2, 5, 7, 9,
and 12, while viscosity measurements in salt conditions were tested using 0.25 M of NaCl,
KCl, MgCl2, and CaCl2 [41]. For the temperature sweep tests, the temperature ranged from
25 ◦C to 75 ◦C with a heating rate of 10 ◦C/min, and the sample pH was adjusted to 7.0 [39].
The amplitude sweep test was measured over a range of 0.1–1000%, with the frequency
kept constant. The frequency sweep test was conducted over a range of 0.1–600 Hz at a
constant strain of 0.5%.

2.11. Gelation Test by Metal Cations

Various metal ion solutions (NaCl, KCl, CaCl2, MgCl2, ZnCl2, FeCl2, FeCl3, CuCl,
CuCl2, AlCl3, CrCl3) were prepared at a concentration of 0.25 M in distilled water. The
VF39 EPS solutions (1% w/v, aqueous) were vortexed with an equal volume of each metal
ion solution for 2 min. All samples were then left undisturbed for 24 h at 25 ◦C [38].
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2.12. Antioxidant Test

The antioxidant activity of each sample was evaluated based on their scavenging
efficiency against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical [42]. A mixture of
2.0 mL deionized water, 1.0 mL VF39 EPS sample (at concentrations of 1, 2, 3, and 4 mg/mL),
and 0.4 mL DPPH solution (0.5 mM) was prepared. The mixtures were incubated in the
dark at 30 ◦C for 30 min, after which the absorbances were measured at 517 nm. The DPPH
radical scavenging activity was determined as follows:

DPPH radical scavenging activity (%) =
A0 − As

A0
× 100%

where A0 represents the absorbance of the control, and As is the absorbance of the samples.
Each test was performed in triplicate.

2.13. Cell Cytotoxicity

The cytotoxicity of the VF39 EPS was evaluated using WST-8 assays. Human embry-
onic kidney 293 cells (HEK-293, Korean Cell Line Bank, Seoul, Republic of Korea) were
seeded into 96-well culture plates containing a Minimum Essential Medium (MEM, WEL-
GENE, Gyeongsan-si, Republic of Korea) supplemented with 10% fetal bovine serum and
1% penicillin/streptomycin. The VF39 EPS was added to the wells at concentrations of 0.25,
0.5, and 1 mg/mL, and the plates were incubated at 37 ◦C in an atmosphere containing
5% CO2. The positive control comprised 10% (v/v) dimethyl sulfoxide (DMSO) dissolved
in MEM. After 48 h of incubation, the MTT assay reagent (QuantiMax, BIOMAX, Seoul,
Republic of Korea) was added to each well, and absorbance was measured at 550 nm [43].
Cell viability was determined using the following formula:

Cell viability (%) =
As − A0

Ac − A0
× 100%

As represents the absorbance value of the cells cultured with the EPS sample, while Ac
is the absorbance value of the control cells. A0 is the blank solution containing only the
minimal essential medium, MTT assay solution, and solubilization solution. All assays
were performed in triplicate for each sample.

3. Results and Discussion
3.1. Isolation of VF39 Wild-Type and #54 EPSs

The isolation and extraction of the EPSs were carried out using both the VF39 wild-
type strain and the NTG mutant #54 strain. After treating the VF39 strain with NTG,
randomly mutated colonies were cultured, as shown in Figure 2. Some mutant colonies
formed larger and wider biofilms compared with the wild-type under the same conditions.
Large, sticky, and moist colonies were selected for further analysis. These selected colonies
were individually cultured to produce EPSs from the mutant strains. Both the selected
mutant strains and the VF39 wild-type strain were then cultured again to produce the
EPSs. The cultured medium was centrifuged to separate the cells, and the EPS present in
the supernatant was purified using ethanol precipitation and dialysis. The purified EPS
solutions were freeze-dried, yielding EPSs from the VF39 wild-type and the mutant VF39
#54 strains, which were used for further analysis.

3.2. Characterization of VF39 Wild-Type and #54 EPSs

In Figure 3a, the structure of the VF39 wild-type EPS, as previously reported [37,38],
was determined through FT-IR and NMR analyses. The EPS structure consists of two
D-glucuronic acids, five D-glucose molecules, one D-galactose, one acetyl, two pyruvyl,
and one 3-hydroxybutanoyl functional group. This acidic polysaccharide is composed
of repeating octasaccharide units with β-1,3, β-1,4, β-1,6, and α-1,4 glycosidic bonds. A
similar structure was previously reported in the EPS of Rhizobium leguminosarum strains [44].
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The structure and properties of the NTG mutant VF39 EPS were compared with those of
the VF39 wild-type strain using GPC, FT-IR, NMR, and glucuronic acid assays.
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3.2.1. Fourier Transform Infrared (FT-IR)

To characterize the EPSs of the VF39 wild-type and #54, FT-IR spectra were analyzed.
As shown in Figure 4 and Table 1, the two EPS samples exhibited similar FT-IR spectra,
showing peaks in common with the previously studied Rhizobium leguminosarum strain [45].
The VF39 EPS exhibited both α- and β-glycosidic linkages, with corresponding peaks
at 1150 cm−1 and 860 cm−1. Notably, the VF39 #54 EPS showed a stronger intensity at
1150 cm−1, suggesting a higher presence of α-glycosidic linkages [38].
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Table 1. FT-IR peak analysis of the VF39 wild-type and #54 EPSs.

Wave Number (cm−1) Structural Designation

3305 O-H stretching vibration
2940 -CH2, -CH3 asymmetric stretching vibration
1750 C=O stretching vibration of carboxyl group
1620 C=O asymmetric stretching vibration of carboxyl group
1370 Symmetric stretching vibration of -COO- group
1240 C-O-C stretching vibration of glycosidic linkage
1150 Stretching vibration of α-glycosidic bond
1040 C-O-C asymmetric stretching vibration of glycosidic linkage
890 Stretching vibration of β-glycosidic bond

3.2.2. Nuclear Magnetic Resonance (NMR) Spectroscopic Analysis

In the 1H NMR spectra at Figure 5, both samples represented the structure of the
carbohydrate backbone. The ring protons that form the polysaccharide could be observed
between 3.3 and 4.5 ppm [46]. Peaks corresponding to the linkages between the monosac-
charide units of the polysaccharide were as follows: protons related to the α-glycosidic
bond appeared after 5.0 ppm, while protons associated with the β-glycosidic bond ap-
peared in the 4.5–5.0 ppm range [46]. Additionally, the methyl peak of the pyruvyl group,
commonly found in rhizobial polysaccharides, appeared between 1.4 and 1.5 ppm, and the
methyl peak of the acetyl group was observed between 2.1 and 2.2 ppm [47].
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Figure 5. The 1H NMR of the VF39 and #54 EPSs. The 1H NMR spectra was measured using a
10 mg/mL concentration of sample solutions dissolved with D2O (99%) at 60 ◦C.

However, some structural differences between the EPSs of the wild-type and the NTG
mutant strain were confirmed through 1H NMR analysis [46]. In the VF39 wild-type, the
presence of acetyl groups on D-glucose and D-glucuronic acid was identified by the split sig-
nal peaks related to the O-acetyl residue at δ 2.11 and 2.18 ppm. A similar split signal pattern
was observed for the pyruvyl functional group. In the wild-type, the pyruvyl residues were
linked to both D-glucose and D-galactose, with the latter containing 3-hydroxybutanoyl.
Consequently, the pyruvyl residue appeared as two distinct peaks: δ 1.47 ppm (linked to
D-galactose) and δ 1.44 ppm (linked to D-glucose). The 3-hydroxybutanoyl group was
identified through the -CH2- peak of methylene at δ 2.63 ppm and the -CH3 methyl peak
at δ 1.27 ppm. In contrast, the NMR spectra of the VF39 mutant strain #54 exhibited
distinct differences in the functional group peaks compared to the wild-type structure.
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Most notably, the absence of the 3-hydroxybutanoyl functional group was confirmed by
the disappearance of its characteristic peaks. Additionally, the signals for both the acetyl
and pyruvyl residues were simplified into singlet peaks: the acetyl residue appeared at δ
2.14 ppm, and the pyruvyl residue at δ 1.47 ppm [48]. The absence of the acetyl peak at δ
2.18 ppm indicated that the acetyl group on D-glucuronic acid was no longer present in the
mutant. Furthermore, the pyruvyl signal at δ 1.44 ppm, corresponding to pyruvyl attached
to galactose (which was linked to 3-hydroxybutanoyl in the wild-type), disappeared. This
signal was integrated into the peak at δ 1.47 ppm, suggesting that the chemical environment
had changed due to the loss of the 3-hydroxybutanoyl functional group. Based on the NMR
data, the EPS structure of the mutant strain #54 is depicted in Figure 3b. he assignments of
the NMR peaks are designated in Table 2.

Table 2. Peak analysis from 1H NMR of the VF39 wild-type and #54 EPSs.

Signal Number ppm Proton Assignment

1a 5.99 H-1 α-4,6-Glc-2Ac

1b 5.89 H-1 α-4,6-Glc-3Ac

1c 5.75 H-1 α-4,6-Glc

2 5.38 H-2 α-4,6-Glc-2Ac

3 4.92 H-2 β-4-Glc-2Ac

4 4.80 H-1 β-4,6-Glc-3

5 4.65 H-1 β-pyranose

6 4.59 H-1 Unidentified

7 4.48 H-1 β-anomeric pyranoside

8 Ring protons Ring protons of the β-linked residues
(except anomeric protons of H-1)

9 2.63 CH2 3-Hydroxybutanoyl-6 on β4,6-Gal-3

10 2.18 OAc Glc-3Ac

11 2.11 OAc GlcA-3Ac

12 1.47 CH3 of pyruvic acetal Glc-5,6 pyr

13 1.44 CH3 of pyruvic acetal Gal-5,6 pyr

14 1.27 CH3 Gal-3-Hydroxybutanoyl-6

3.2.3. Gel Permeation Chromatography (GPC)

The molecular weight of each EPS sample was determined using GPC analysis, as
shown in Table 3. This significant increase in molecular weight is likely responsible for the
greater stickiness and higher viscosity observed in the mutant strain colonies. In a similar
case, there was a report that the molecular weight of the EPS of Agrobacterium 19,358 strain
increased through NTG mutation [39].

Table 3. Substituent ratio analysis from 1H NMR peak intensity and molecular weight of the VF39
wild-type and #54 EPSs.

Sample

Molar Ratio of VF39’s Substituent Number Average
Molecular Weight

(Mn)

Weight Average
Molecular Weight

(Mw)

Peak Molecular
Weight

(Mp)
Polydispersity3-Hydroxyl

Butanoyl Acetate Pyruvate

VF39 0.32 1.34 2 161,880 327,400 ND 2.022
VF39 #54 - 0.72 1 301,170 363,100 515,140 1.205
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3.2.4. 13C NMR of the VF39 Wild-Type and VF39 #54 EPSs

In Figure S1, the 13C NMR spectrum for the VF39 #54 showed the absence of the
methylene peak at 45 ppm, which corresponds to the 3-hydroxybutanoyl functional group
in the wild-type EPS [49]. Additionally, as shown in Figure 6, the methyl peak of 3-
hydroxybutanoyl was also missing in the VF39 #54, confirming that this functional group
had been lost through mutation. Furthermore, the methyl peaks of the pyruvyl and acetyl
functional groups in the VF39 #54 appeared as singlets at 20 ppm and 25 ppm, respectively,
in contrast to the wild-type [49,50]. This indicated a reduction in the pyruvyl and acetyl
functional groups compared to the wild-type, as illustrated in the structure shown in
Figure 3b.
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3.2.5. HSQC NMR of the VF39 Wild-Type and #54 EPSs

HSQC NMR was used to identify the peaks corresponding to functional groups by
correlating the 1H NMR and 13C NMR spectra. As shown in Figure S2, the carbohydrate
backbone structure of the VF39 #54 EPS exhibited fewer signals compared to the VF39
wild-type. This reduction was likely due to a decrease in the number of functional groups
and monomers that constitute the backbone of the VF39 #54 EPS. Additionally, Figure 7
provides a zoomed-in view of the functional group region in Figure S2. In this result, no
signal for the 3-hydroxybutanoyl functional group was detected in the VF39 #54 EPS [38].
Furthermore, changes were observed in the pyruvyl and acetyl peaks of the VF39 #54
EPS. While two distinct peaks were present for the pyruvyl and acetyl groups in the VF39
wild-type, only one peak was observed for each group in the VF39 #54 EPS. This indicated
a reduction in the number of pyruvate and acetyl groups in the VF39 #54 EPS.
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3.2.6. Glucuronic Acid Concentration Analysis

In Figure 8, to evaluate the presence or absence of glucuronic acid in the EPS structure
of the VF39 mutant #54 strain, suggested by NMR analysis, a uronic acid concentration
analysis was conducted. The concentration of glucuronic acid was determined by measur-
ing absorbance at 520 nm using the m-hydroxydiphenyl method [40]. In the VF39 wild-type
EPS, an absorbance at 520 nm was observed, indicating the presence of glucuronic acid,
with concentrations corresponding to the EPS solution concentration. However, glucuronic
acid was not detected at any EPS concentrations in the VF39 #54. This confirmed the
absence of glucuronic acid in the mutant EPS, consistent with the changes in the acetyl
residue peaks observed in the NMR spectra.
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3.2.7. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

The thermal properties of polysaccharides were analyzed in Figure 9, to assess their
thermal stability, which is closely linked to their potential for industrial applications [51,52].
A thermogravimetric analysis (TGA) was used to examine degradation as a function of
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temperature, and differential scanning calorimetry (DSC) was used to analyze the heat flow
within the sample and determine the endothermic point.
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The TGA results showed that the mass loss from the VF39 EPS between 20 ◦C and
100 ◦C was due to water evaporation. At 600 ◦C, the VF39 EPS showed 79% weight loss,
and 21% of the residual weight was measured. The VF39 #54 EPS showed 81% weight loss,
and 19% of the residual weight was measured. Additionally, the temperature at which
rapid thermal decomposition began for the VF39 wild-type EPS was 222 ◦C. In contrast, the
VF39 #54 EPS exhibited thermal decomposition starting at a higher temperature of 260 ◦C,
indicating greater thermal stability for the NTG mutant strain.

DSC measurements were conducted for a further comparison of thermal stability. The
endothermic point, where rapid changes in heat flow occur due to molecular structure
changes, was identified [53,54]. The wild-type VF39 EPS had an endothermic point at
142 ◦C, while the VF39 #54 EPS showed an endothermic point at 172 ◦C, suggesting that
structural disordering due to heat transfer occurred at a higher temperature. These DSC
results, which aligned with the TGA findings, confirmed that the EPS of the NTG mutant
strain has a greater thermal stability than the wild-type.

3.3. VF39 Wild-Type and #54 EPS Rheological Measurements

The rheological properties of polysaccharides offer significant potential for commer-
cialization, serving as key indicators for their use as industrial materials in applications
such as thickeners, stabilizers, texture enhancers, and gelling agents [9,55]. These properties
are essential for the development of biomaterials that can maintain high viscoelasticity, even
under challenging conditions such as high temperatures and varying pH levels. To explore
their potential, the rheological properties of the VF39 EPS samples were measured and
analyzed under different conditions, including concentration, temperature, and pH. The
VF39 EPS exhibited pseudoplastic viscoelasticity, which is attributed to intermolecular inter-
actions such as hydrogen bonding between carboxyl and alcohol groups. These viscoelastic
properties were compared to those of xanthan gum, a commonly used polysaccharide [56].

3.3.1. Viscosity Measurements of the VF39 Wild-Type and #54 EPSs

In the viscosity measurement, the viscoelasticity of the VF39 EPS sample was compared
to that of xanthan gum. The results, measured at a concentration of 2% and a shear rate
ranging from 0.1 to 1000 s−1, are shown in Figure 10. The VF39 #54 EPS exhibited higher
viscoelasticity than both the wild-type VF39 EPS and xanthan gum, indicating greater
viscosity. Thus, the VF39 #54 EPS, enhanced through mutation, demonstrated a higher
potential for industrial applications where viscoelastic properties are crucial.
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3.3.2. Viscosity Measurements with Concentration, Temperature, pH, and Metal Salts

To industrially utilize viscoelastic materials, it is essential to maintain their properties
under various environmental conditions. Therefore, the VF39 wild-type and #54 EPS
samples were tested under different concentrations, temperatures, pH levels, and metal
salt conditions.

First, as shown in Figure 11a, both samples exhibited increased viscosity with increas-
ing concentration. As the EPS concentration increased from 2 wt% to 6 wt%, the viscosity
followed a similar trend to other exopolysaccharides such as xanthan and succinogly-
can [39,57]. Among the two samples, the VF39 #54 EPS demonstrated a higher viscosity
than the wild-type EPS at the same concentration. In Figure 11b, viscosity was measured
as the temperature increased from 25 ◦C to 75 ◦C. As expected, the viscosity of both EPS
samples decreased with rising temperature [58]. However, this decrease did not indicate
a decomposition of the EPS. Figure 12 shows that the viscosity of the VF39 EPS samples
recovered after the heating and cooling processes, suggesting that while intermolecular
interactions weaken at high temperatures, the samples did not break apart. Notably, the
viscosity of the VF39 #54 EPS remained above 1 Pa·s at a shear rate of 10 s−1 even at
75 ◦C, indicating that the VF39 #54 EPS maintained a higher viscosity under elevated
temperature conditions compared to the wild-type EPS. Additionally, the preservation of
the EPS structure after the heating and cooling process was confirmed using FT-IR. An
EPS sample 2 wt% solution was prepared by heating to 80 ◦C and freeze-drying the cooled
sample. In Figures S3 and S4, the FT-IR spectra appeared similar even after the heating
process, showing that the structure of the sample was not destroyed. In Figure 11c,d,
viscosity was measured under varying pH and metal salt conditions. The viscosity of the
EPS samples remained relatively stable across the pH range of 2.0 to 12.0, indicating greater
stability to pH changes than xanthan gum. For the metal salt conditions, four ion solutions
(NaCl, KCl, MgCl2, and CaCl2) at 0.25 M were used. All VF39 EPS samples showed sta-
bility under these salt conditions, with no significant changes in viscosity observed. In
salt conditions, the VF39 EPS samples showed viscosity changes of less than 5%, which
indicated a higher retention capacity compared to xanthan, whose viscosity decreased in
salt conditions [59,60].

3.3.3. Frequency Sweep Test and Amplitude Sweep Test

Rheological measurements were conducted using a 2 wt% concentration of the EPS
sample solution. The physical properties were analyzed by measuring the strain in pro-
portion to the applied stress and observing changes in material behavior accordingly. In
Figure 13a, the linear viscoelastic region (LVE) of the VF39 EPS samples was determined
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through amplitude strain testing. The storage modulus (G′) and loss modulus (G′′) of both
the VF39 wild-type and #54 EPSs were measured. The results indicated that, unlike the
wild-type, the VF39 #54 EPS exhibited a stronger G′ than G′′, suggesting weak gel-like
properties [61]. In Figure 13b, the frequency sweep test showed that the VF39 EPS exhibited
elastic properties at low frequencies, with G′ being greater than G′′. However, at higher
frequencies, the increase in G′′ indicated more viscous behavior. In contrast, the VF39 #54
EPS exhibited elastic properties across all frequency ranges, indicating a higher modulus
value and stronger physical properties compared to the wild-type EPS.
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3.4. Metal Chelating Gelation by Metal Cations

Some polysaccharides form hydrogels with specific metals through ion-based inter-
actions such as chelation [62,63]. For a hydrogel to form between a metal cation and an
anionic polysaccharide, the polysaccharide must have a three-dimensional structure that
effectively coordinates with the metal cation. A chelation test was conducted to evaluate
the potential for chelation and hydrogel formation of the VF39 EPS with metals, using
a 0.25 M metal ion solution. As shown in Figure 14, both the VF39 wild-type and #54
EPSs exhibited the same behavior. Both types of EPS formed hydrogel structures with two
metals, Fe3+ and Cr3+. The metal chelation test results indicated that the VF39 EPS formed
hydrogel structures due to the interaction of its carboxyl groups and the unique structure
of the EPS with the introduced metal ions [64].
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3.5. DPPH Radical Scavenging Antioxidant

The antioxidant effect was evaluated using the DPPH radical scavenging activity test.
The degree of radical scavenging was determined by measuring absorbance at 517 nm after
reacting the sample solution with DPPH. It has been reported that the radical scavenging
activity of the EPS is influenced by the presence of carboxyl groups with anionic charges [65].
As shown in Figure 15, the VF39 wild-type EPS exhibited a scavenging activity of 63%
at 4 mg/mL, which is attributed to the functional groups containing glucuronic acid and
carboxyl groups. The wild-type EPS demonstrated an antioxidant effect comparable to
ascorbic acid. However, the mutant EPS showed a significantly reduced antioxidant effect,
likely due to the absence of glucuronic acid and other functional groups containing anionic
carboxyl groups in its structure. These results confirm that the EPS structure of the mutant
strain differs from that of the wild-type, as reflected in its diminished antioxidant activity.
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3.6. Cell Cytotoxicity of VF39 Wild-Type and Mutant EPS

A cell cytotoxicity test was conducted to assess the cytotoxicity of the VF39 EPS and
the mutant strain using an MTT assay kit with HEK293 cells. The VF39 EPS was applied to
HEK293 cells at concentrations of 0.25, 0.5, and 1.0 mg/mL, and absorbance was measured
at 550 nm after 48 h. DMSO was used as a negative control. As shown in Figure 16, none
of the VF39 EPS samples exhibited cytotoxicity. The VF39 wild-type EPS showed cell
viability rates of 97.44%, 93.97%, and 93.22% at concentrations of 0.25, 0.5, and 1.0 mg/mL,
respectively. Similarly, the VF39 #54 EPS exhibited cell viability rates of 97.93%, 95.49%,
and 95.38% at the same concentrations. Therefore, both the VF39 wild-type EPS and VF39
#54 EPS were confirmed to be non-cytotoxic.
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4. Conclusions

We isolated the VF39 #54 strain, which exhibited improved viscoelasticity, through the
NTG-induced mutation of VF39. The isolated VF39 #54 EPS was structurally characterized
using FTIR, GPC, NMR, and uronic acid assays. Additionally, its physicochemical proper-
ties were analyzed through DSC, TGA, rheology, metal chelating gelation tests, and cell
cytotoxicity assays. Structural analysis and metal gelation tests revealed that the VF39 #54
EPS exhibited changes in functional groups compared to the wild-type EPS. Furthermore,
the DSC and TGA results demonstrated higher thermal stability and enhanced viscoelastic
properties. The VF39 #54 EPS displayed superior viscoelastic properties compared to the
wild-type and was able to maintain these properties even under various environmental
conditions. The VF39 #54 EPS showed a lower antioxidant activity than the wild-type
EPS, which indicated that the glucuronic acid unit and pyruvyl functional group of the
wild-type EPS were lost, and the carboxyl group was reduced. In addition, the VF39 #54
EPS showed no cytotoxicity in the cell cytotoxicity test, just like the wild-type EPS.

These findings indicate that the VF39 #54 EPS has significant industrial potential in
applications such as food and cosmetics, where viscoelasticity and thermal stability are
critical. Its enhanced properties make it suitable for use as a thickener, stabilizer, or gel agent
in formulations requiring consistent performance under diverse conditions. Additionally,
this study highlights a promising approach to developing biomaterials with improved
properties through targeted strain mutations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16223179/s1, Figure S1: 13C NMR of VF39, and #54 EPS.
13C NMR spectra was measured at 80 mg/mL concentration of sample solutions dissolved with D2O
(99%); Figure S2: HSQC NMR spectra of VF39, and VF39 #54 EPS. HSQC NMR spectra was measured
at 80 mg/mL concentration of sample solutions dissolved with D2O (99%); Figure S3: FT-IR spectra
of VF39 EPS, and VF39 EPS after heating and cooling sample; Figure S4: FT-IR spectra of VF39 #54
EPS, and VF39 #54 EPS after heating and cooling sample.
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