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Abstract: Polylactic acid (PLA) is a widely recognized biodegradable polymer. However, the slow
crystallization rate of PLA restricts its practical applications. In this study, camphor leaf biochar
decorated with multi-walled carbon nanotubes (C@MWCNTs) was prepared using the strong adhe-
sive properties of polydopamine, and PLA/C@MWCNTs composites were fabricated via the casting
solution method. The influence of C@MWCNTs as a novel nucleating agent on the melt behavior
and non-isothermal crystallization behavior of PLA was investigated using differential scanning
calorimetry (DSC). The crystallization kinetic parameters were obtained through the Jeziorny, Ozawa,
and Mo methods, and the crystallization activation energy of the PLA/C@MWCNTs composites was
calculated by the Kissinger method. The results show that the PLA/C@MWCNTs composites exhibit
higher crystallinity and crystallization temperatures than those of PLA. Non-isothermal crystalliza-
tion kinetic analysis reveals that the Mo method better describes the non-isothermal crystallization
kinetics of both PLA and PLA/C@MWCNTs composites. In addition, it was found that C@MWCNTs,
despite increasing the crystallization activation energy, can act as an efficient nucleating agent to
increase the crystallization rate of PLA. These experimental results provide valuable insights for
enhancing the slow crystallization rates associated with PLA.

Keywords: polylactic acid; biochar; multi-walled carbon nanotubes; crystallization rate; non-
isothermal crystallization kinetics

1. Introduction

In recent years, the depletion of petroleum resources and the growing problem of
plastic pollution have made biodegradable materials a focus of attention. These materials
are increasingly considered as alternatives to conventional petroleum-based polymers in
certain fields. Among them, polylactic acid (PLA), recognized for its excellent biodegrad-
ability, is considered a promising alternative. Due to its excellent properties, PLA has found
extensive applications in packaging, biomedical devices, and fibers [1–3]. However, its slow
crystallization rate significantly limits its broader adoption and development in certain
areas [4,5]. Therefore, improving the crystallization rate of PLA has become essential.

A substantial amount of research has focused on improving the crystallization rate
of PLA [6–8], with the addition of nucleating agents being recognized as an effective
approach [9]. Incorporating nucleating agents can enable PLA to crystallize at higher
temperatures during the cooling process [10]. Significant progress has been made in the
research of inorganic materials [11–13] and many of them have been utilized as nucle-
ating agents to enhance the crystallization process of polylactic acid (PLA), including
boron nitride [14,15], aluminum oxide [16], montmorillonite [17,18], graphene [19,20], and
multi-walled carbon nanotubes (MWCNTs) [21]. Notably, multi-walled carbon nanotubes
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(MWCNTs) exhibit a remarkable ability to substantially improve the crystallization rate of
PLA. Yousefzade et al. [22] investigated the isothermal and non-isothermal crystallization
kinetics of PLA and its nanocomposites with multiwalled carbon nanotubes (pristine and
functionalized). They analyzed the effect of nanofiller content on crystallization kinetics
and found that the addition of functionalized multiwalled carbon nanotubes at a concen-
tration of 0.2 wt% promoted the crystallization of PLA. Lin et al. [23] synthesized a novel
nucleating agent (MWCNTs@CeO2) and investigated its effects on the non-isothermal
crystallization kinetics of PLA composite films. The results showed that the addition of just
0.7 wt% MWCNTs@CeO2 significantly enhanced the crystallization rate of PLA, demon-
strating the effectiveness of MWCNTs@CeO2 as an effective nucleating agent with high
potential. Chen et al. [24] studied the crystallization kinetics of PLA composites reinforced
with Kenaf fiber and multi-walled carbon nanotubes. They found that the addition of
these fillers significantly enhanced both the crystallization rate and crystallinity of PLA,
indicating their effectiveness as nucleating agents.

Camphor trees, regarded as valuable medicinal plants, are plentiful in China. Extracts
from camphor leaves have been widely used in pharmaceuticals, food, and cosmetics [25,26].
However, no studies have yet explored the use of biochar derived from camphor leaves as
a nucleating agent to modify PLA. Moreover, multifunctional fillers have been shown to
significantly enhance the crystallization rate of PLA [27]. Considering the established role
of MWCNTs in improving PLA crystallization, this paper investigates the use of MWCNT-
modified camphor leaf biochar (C@MWCNTs) as a nucleating agent to prepare PLA-based
composites. The objective is to enhance the crystallization properties of PLA and broaden
its application fields.

Since PLA processing is primarily carried out under non-isothermal conditions, study-
ing the non-isothermal crystallization kinetics of PLA is of great significance. In this study,
MWCNT-modified camphor leaf biochar (C@MWCNTs) was prepared, and C@MWCNTs-
modified PLA-based composites were fabricated using the solution casting method. The
effects of C@MWCNTs on the non-isothermal crystallization behavior and kinetics of the
PLA composites were systematically analyzed.

2. Materials and Methods
2.1. Materials

The chemical reagents used in this experiment include polylactic acid (PLA, analytical
grade, Fengyuan Futailai, Bengbu, China), multi-walled carbon nanotubes (MWCNTs-
COOH, analytical grade, Zhongke Times Nano Energy Technology, Chengdu, China), Tris-
hydrochloride buffer solution (Tris-HCL, pH = 8.5, analytical grade, Feijing Biotech, Fuzhou,
China), and dopamine hydrochloride (analytical grade, Macklin Company, Shanghai,
China). HCL, KCl, K2CO3, and dichloromethane (CH2Cl2) were purchased from Guang-
dong Xilong Scientific Co., Ltd., Shantou, China. Camphor leaf biochar (C) was prepared
in our laboratory.

2.2. Methods

The preparation process of the PLA/C@MWCNTs composites is shown in Scheme 1.

2.2.1. Preparation of Camphor Leaf Biochar

Camphor leaves were first crushed into a powder and then sieved through a 300-mesh
screen to obtain a finer powder. The obtained powders were dried in a drying oven at
60 ◦C for 12 h. Next, the dried camphor leaf powders were heated from 30 ◦C to 450 ◦C
at a rate of 5 ◦C/min in a muffle furnace, and then kept at this temperature for 30 min.
Subsequently, the obtained powders were cooled to room temperature. The pre-carbonized
powders were then soaked in a saturated solution of potassium chloride and potassium
carbonate (KCl/K2CO3) for 12 h, with continuous stirring, followed by drying in an oven
at 80 ◦C. Subsequently, the dried powders were placed in a furnace and calcined in a
nitrogen atmosphere. The temperature was raised to 900 ◦C at a rate of 5 ◦C/min and
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kept at this level for 90 min, after which it was cooled to room temperature. The obtained
powders were then immersed in a 1 M hydrochloric acid (HCL) solution for 1 h, followed by
thorough washing with deionized water and anhydrous ethanol. Finally, the the camphor
leaf biochar (C) was obtained after drying in an oven at 60 ◦C for 12 h.
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2.2.2. Preparation of C@MWCNTs

Next, 0.2 g of camphor leaf biochar and 0.2 g of dopamine hydrochloride were dis-
solved in 80 mL of Tris-hydrochloride buffer solution, and the mixture was stirred mag-
netically for 2 h to obtain a homogeneous solution. Subsequently, 0.2 g of carboxylated
multi-walled carbon nanotubes (MWCNTs-COOH) was added to the solution, which was
then stirred magnetically for an additional 2 h and subsequently filtered. The resulting
product was washed several times with deionized water and anhydrous ethanol, and then
dried at 60 ◦C for 12 h to obtain the camphor leaf biochar@multi-walled carbon nanotubes
(C@MWCNTs).

2.2.3. Preparation of PLA and PLA/C@MWCNTs Composites

A specific amount of C@MWCNTs was dispersed in 20 mL of dichloromethane
(CH2Cl2) using ultrasonication for 30 min to obtain a uniform dispersion. An appro-
priate amount of PLA was then added to the dispersion, followed by ultrasonication for
1.5 h and magnetic stirring for 3 h. After ultrasonication for 5 min to remove air bub-
bles, the mixture was poured into a polytetrafluoroethylene (PTFE) mold and allowed
to dry naturally for 12 h. Finally, the PLA/C@MWCNTs composites containing 0 wt%,
0.1 wt%, and 0.3 wt% were prepared and designated as PLA, PLA/0.1%C@MWCNTs, and
PLA/0.3%C@MWCNTs, respectively.

2.2.4. Characterization of Non-Isothermal Crystallization

The non-isothermal crystallization behavior and kinetics of the samples were investi-
gated using a differential scanning calorimeter (DSC 25, TA, New Castle, DE, USA). Under
a nitrogen atmosphere, samples weighing 5–8 mg were heated from 30 ◦C to 200 ◦C at
a rate of 20 ◦C/min and held at 200 ◦C for 3 min to eliminate any thermal history, then
cooled to 30 ◦C at varying rates of 5, 10, 15, and 20 ◦C/min, and subsequently reheated to
200 ◦C at the same heating rate. The crystallinity of PLA during the crystallization process
was calculated using Equation (1):

Xc =
∆Hm − ∆Hcc

wf∆H0
m

× 100% (1)
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where ∆Hm denotes the melting enthalpy, ∆Hcc is the cold crystallization enthalpy, and
wf refers to the mass percentage of PLA in the composites. ∆H0

m represents the melting
enthalpy of 100% crystalline PLA, which is defined as 140 J/g [28].

3. Results and Discussion
3.1. Effects of C@MWCNTs on Melting and Crystallization Behavior of PLA

Figure 1 illustrates the melting and crystallization behaviors of the PLA, PLA/
0.1%C@MWCNTs, and PLA/0.3%C@MWCNTs composites. From Figure 1a, it can be
observed that the crystallization peak temperature of pure PLA is 97.5 ◦C and features a
broad peak. With the increase in C@MWCNTs content, the crystallization peak not only
shifts to higher temperatures, but also becomes sharper, demonstrating that C@MWCNTs
function as heterogeneous nucleating agents. This enhancement facilitates the nucleation
and crystallization of PLA, enabling it to crystallize at elevated temperatures during the
cooling process. As shown in Figure 1b, cold crystallization peaks were only observed in
the DSC heating curves of pure PLA and PLA with 0.1%C@MWCNTs. As we all know, cold
crystallization takes place during heating from the glassy state [29]. When the C@MWCNTs
content reaches 0.3 wt%, the cold crystallization peak of PLA disappears, indicating that the
addition of C@MWCNTs enhances the crystallization rate and ability of PLA, resulting in
more complete crystallization. In addition, when the C@MWCNTs content increases from
0 wt% to 0.3 wt%, the crystallinity of PLA increases from 16.35% to 28.81%, representing
an improvement of 76.21%. Liang et al. [30] found that the addition of 0.1% fluorinated
CNTs (CNTs-F) increased the crystallinity of PLA from 5% to 8%, representing a 60% im-
provement. Compared to CNTs-F, the nucleating agent (C@MWCNTs) used in this study
seems to be more beneficial for enhancing the crystallization behavior of PLA. As seen in
Figure 1b, the melting curves of pure PLA and PLA containing 0.1% C@MWCNTs each dis-
play a single melting peak, while the melting process of PLA containing 0.3% C@MWCNTs
exhibits bimodal melting behavior. Moreover, the higher temperature melting peak of PLA
with 0.3% C@MWCNTs shifts to a higher temperature when compared to the melting peak
of pure PLA. These results suggest that the incorporation of C@MWCNTs improves the
crystallization of PLA.
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3.2. Non-Isothermal Crystallization Kinetics of PLA/C@MWCNTs Composites

To investigate the effect of C@MWCNTs on the overall crystallization rate of PLA, the
non-isothermal crystallization kinetics of PLA and PLA/C@MWCNTs composites were
studied. In non-isothermal crystallization, the relationship between the relative crystallinity
(Xt) and temperature (T) can be expressed using Formula (2) [23,31]:

Xt =
∫ T

T0

(
dHc

dT

)
dT/

∫ T∞

T0

(
dHc

dT

)
dT (2)
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where T0 refers to the onset temperature of the crystallization process, T∞ represents the end
crystallization temperature, and dHc is the enthalpy change associated with crystallization
that occurs over an infinitesimal temperature interval, dT. The crystallization time (t) can
be determined based on the crystallization temperature, as expressed in Equation (3):

t = (T0 − T)/β (3)

where T represents the temperature at crystallization time t, and β is the cooling rate.
The semi-crystallization time (t1/2) refers to the duration required to reach 50% of

the final crystallinity of the sample, which can be directly obtained from the plot of rel-
ative crystallinity versus crystallization time. Figure 2 shows the variations in the t1/2
values and onset temperatures of the PLA and PLA/C@MWCNTs composites at various
cooling rates. As depicted in Figure 2a, with increasing cooling rates, the t1/2 values of
the PLA/C@MWCNTs composites decrease, indicating that higher cooling rates promote
nucleation and crystallization growth in the composites. At a given cooling rate, pure PLA
exhibits the highest t1/2 value. In addition, as the content of C@MWCNTs increases, the
t1/2 values gradually decrease, with PLA/0.3%C@MWCNTs showing the lowest t1/2 value.
The decrease in t1/2 indicates that the incorporation of C@MWCNTs into PLA enhances
and speeds up the crystallization process. Based on the observations in Figure 2b, it is
evident that as the crystallization rate increases, the onset crystallization temperature de-
creases. Furthermore, at the same crystallization rate, the onset crystallization temperature
of PLA/0.3%C@MWCNTs is the highest, while PLA exhibits the lowest onset crystalliza-
tion temperature. This further confirms that the addition of C@MWCNTs promotes the
crystallization of PLA.
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The Avrami equation [32–34] is commonly used to describe the isothermal crystalliza-
tion process of polymers by using the following Formulas (4) and (5):

1 − Xt = exp(−Ztn) (4)

log[−ln(1 − Xt)] = log Z + nlog t (5)

where n is the Avrami exponent, Z is the crystallization rate constant, and Xt is the relative
crystallinity at time t.

For the non-isothermal crystallization, the crystallization rate constant Z was modified
by the Jeziorny method [35] to accommodate the non-isothermal crystallization process
using Formula (6):

log Zc = (log Z)/β (6)

where Zc is the corrected crystallization rate constant, and β refers to the cooling rate.
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Figure 3 shows the relationship between log[−ln(1 − Xt)] and log t (with relative
crystallinity ranging from 5% to 95%) for the PLA and PLA/C@MWCNTs composites at
different cooling rates. The results obtained from the slopes and intercepts of these curves
are presented in Table 1. As seen in Table 1, a strong linear relationship (r2 > 0.997) exists be-
tween log[−ln(1 − Xt)] and log t for all samples. The n values for pure PLA range from 2.39
to 3.51; for PLA/0.1%C@MWCNTs, from 2.84 to 3.50; and for PLA/0.3%C@MWCNTs, from
3.28 to 3.97, indicating that the crystallization mechanism of PLA and its composites un-
dergoes three-dimensional spherical growth during non-isothermal crystallization [34]. In
addition, the Zc values for all samples increase with increasing cooling rates, demonstrating
that the non-isothermal crystallization rate increases as the cooling rate increases. At a given
cooling rate, the Zc values adhere to the following order: PLA/0.3%C@MWCNTs > PLA/
0.1%C@MWCNTs > PLA, indicating a higher crystallization rate for PLA composites con-
taining C@MWCNTs, consistent with the t1/2 results. Although Jeziorny applied Avrami’s
equation to describe non-isothermal crystallization by introducing a correction factor, this
approach has certain limitations, as highlighted in a recent study by Vyazovkin [36].
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Table 1. Avrami and Jeziorny parameters of PLA/C@MWCNTs composites.

Samples β (◦C/min) n Zc r2

PLA

5 3.13 0.367 0.99787
10 3.51 0.722 0.99904
15 3.00 0.930 0.99995
20 2.39 1.007 0.99982

PLA/0.1%
C@MWCNTs

5 3.50 0.411 0.99811
10 3.13 0.780 0.99961
15 3.40 0.926 0.99967
20 2.84 1.015 0.99992

PLA/0.3%
C@MWCNTs

5 3.97 0.618 0.99959
10 3.71 0.915 0.99993
15 3.38 1.000 0.99888
20 3.28 1.028 0.99931

Notes: β is the cooling rate; n is the Avrami exponent; Zc is the modified crystallization rate constant; r2 is the
linear correlation coefficient.
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The Ozawa method extended the Avrami equation to non-isothermal crystallization by
considering the effect of cooling rate on the polymer crystallization process. Assuming that
the non-isothermal crystallization process consists of infinitesimal isothermal crystallization
steps leads to the following Equations (7) and (8) [37,38]:

Xt = 1 − exp
(
−K(T)

βm

)
(7)

or
log[−ln(1 − Xt)] = log K(T)− mlogβ (8)

where K(T) denotes the cooling function associated with the crystallization rate, and m
represents the Ozawa exponent. To facilitate analysis, plots depicting log[−ln(1 − Xt)]
against logβ were generated for the PLA and PLA/0.1%C@MWCNTs composite systems
over a temperature range of 90–100 ◦C. Additionally, the PLA/0.3%C@MWCNTs system
was examined within the temperature range of 110–120 ◦C, as illustrated in Figure 4. Based
on Figure 4, it is evident that no straight lines are present, suggesting that the Ozawa model
does not effectively describe the non-isothermal crystallization behavior of pure PLA and
its composite materials. These results may be attributed to the adaptation of Avrami’s
equation in the Ozawa model, which consistently neglects the influences of the secondary
crystallization process [31].
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Mo et al. [39] combined the Avrami and Ozawa equations to propose a novel approach,
resulting in Equations (9) and (10):

log Z + nlogt = log K(T)− mlogβ (9)

logβ = log F(T)− αlog t (10)
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where F(T) = [K(T)/Z]1/m denotes the cooling rate required for a system to reach a specific
degree of crystallinity within a unit of time, and α represents the ratio of the Avrami
exponent (n) to the Ozawa exponent (m).

Figure 5 presents the plots of logβ versus log t (with relative crystallinity ranging from
20% to 80%) for the PLA and PLA/C@MWCNTs composites. Notably, the linearity of these
curves suggests that the Mo method accurately describes the non-isothermal crystallization
behavior of PLA and its composites. By analyzing the slopes and intercepts of the fitted
curves, the values of F(T) and α were derived, as detailed in Table 2. It can be seen that
the α values for PLA range from 0.743 to 0.865, while those for PLA-0.1%C@MWCNTs
range from 0.938 to 1.024, and for PLA/0.3%C@MWCNTs, the values range from 1.637 to
1.849. This result indicates that the addition of MWCNTs@Ag may affect the nucleation
and crystal growth mechanisms of PLA. Meanwhile, the values of F(T) increase with rising
relative crystallinity, indicating that PLA’s crystallization becomes increasingly difficult
as its crystallinity increases, which may lead to the termination of crystallization or the
ordering of flexible, linear macromolecules before completion. In addition, at the same level
of relative crystallinity, PLA exhibits the highest F(T) values, while PLA/0.3%C@MWCNTs
presents the lowest. These results further support the idea that incorporating MWCNTs@Ag
into PLA enhances the crystallization process. This finding is consistent with the results
from the Jeziorny equation analysis and t1/2.
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Table 2. Non-isothermal crystallization kinetic parameters for PLA/C@MWCNTs composites at
different relative crystallinities based on Mo equation.

Samples
Relative Crystallinities (%)

20 40 60 80

PLA
α 0.743 0.793 0.832 0.865

F(T) 12.886 16.202 19.421 23.455

PLA/0.1%C@MWCNTs
α 0.938 0.958 0.986 1.024

F(T) 12.242 15.735 19.077 23.227

PLA/0.3%C@MWCNTs
α 1.637 1.720 1.777 1.849

F(T) 7.449 10.804 14.294 19.243
Notes: α is the ratio of the Avrami exponent to the Ozawa exponent; F(T) represents the required cooling rate for
the polymer system to achieve a specific level of crystallinity within a defined crystallization time.
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3.3. Crystallization Activation Energy of PLA/C@MWCNTs Composites

The Kissinger formula is commonly used to evaluate the effective activation en-
ergy of the non-isothermal crystallization of polymers, and it can be expressed using
Equation (11) [10], as follows:

d
[
ln
(
β/T2

p

)]
d
(
1/Tp

) = −∆E
R

(11)

where β denotes the cooling rate, ∆E represents the activation energy of crystallization, Tp
is the peak crystallization temperature, and R is the gas constant.

By plotting ln
(
β/T2

p

)
versus 1/Tp and performing linear fitting, the activation energy

of each sample can be obtained from the slope of the fitted curve. Figure 6 shows the fitted
curves of ln

(
β/T2

p

)
versus 1/Tp for the PLA composites. The activation energy values of

the PLA, PLA/0.1%C@MWCNTs, and PLA/0.3%C@MWCNTs composites were calculated
to be −159.00 kJ/mol, −128.50 kJ/mol, and −103.86 kJ/mol, respectively. Clearly, the
PLA/C@MWCNTs composites exhibit higher crystallization activation energy than pure
PLA, suggesting that the addition of C@MWCNTs increases the energy barrier for PLA
crystallization. This is likely due to the reduced mobility of the PLA molecular chains
caused by the incorporation of C@MWCNTs, which hinders their rearrangement. A sim-
ilar phenomenon was reported by Zhao et al. [40] in their study on the non-isothermal
crystallization kinetics of PLA.
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4. Conclusions

In this study, camphor leaf biochar decorated with multi-walled carbon nanotubes
(C@MWCNTs) was prepared and utilized as a nucleating agent for PLA. PLA-based com-
posites containing different contents of C@MWCNTs were prepared using the solution cast-
ing method. The non-isothermal crystallization behavior of PLA nucleated by C@MWCNTs
was investigated by differential scanning calorimetry (DSC), and the corresponding non-
isothermal crystallization kinetics parameters were analyzed using the Jeziorny method,
Ozawa, and Mo models. The results indicate that the addition of C@MWCNTs increases
the crystallization temperature (Tc) and the crystallinity of PLA. Non-isothermal crystal-
lization experiments demonstrate that C@MWCNTs serve as a potent nucleating agent,
enhancing the crystallization rate of PLA during non-isothermal processes. This effective-
ness is further confirmed by several non-isothermal crystallization parameters including
semi-crystallization time (t1/2), modified crystallization rate constant, and F(T). In addition,
the Kissinger method was employed to determine the activation energy of PLA, and it is
observed that the addition of C@MWCNTs results in an increase in activation energy.
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