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Abstract: This work aims to enhance natural rubber’s dielectric properties and antibacterial activity by in-
corporating silver nanoparticles and titanium dioxide. Deproteinized natural rubber (DPNR) was modified
through the graft copolymerization of acrylic acid and acrylamide using N′, N′-Methylenebisacrylamide as
a crosslinking agent, resulting in poly(acrylic acid-co-acrylamide)-modified, deproteinized natural rubber
(MDPNR). This modification facilitated coordination with silver ions and interaction with titanium
dioxide. Silver nanoparticles were generated under heat and pressure. Modified natural rubber
composites containing silver nanoparticles and titanium dioxide (MDPNR/Ag-TiO2) were prepared.
Scanning electron microscopy (SEM) revealed well-distributed silver in the modified natural rubber
matrix, while agglomeration of titanium dioxide was observed at a high loading. Both MDPNR
and MDPNR/Ag-TiO2 showed high thermal stability compared to DPNR. The MDPNR/Ag-TiO2

composites exhibited higher Tg and lower tan δ, indicating higher stiffness due to the restriction
of chain movement compared to that in MDPNR. DPNR exhibited a low dielectric constant, en-
hanced by poly(acrylic acid-co-acrylamide) modification and silver nanoparticle/titanium dioxide
incorporation. Incorporating 0.5 phr of AgNO3 and 2.5 phr of TiO2 in the composites increased the
dielectric constant by 1.33 times compared to that of MDPNR. MDPNR showed no antibacterial
activity, while the MDPNR/Ag-TiO2 composites exhibited promising antibacterial activity against
Staphylococcus aureus and Escherichia coli.

Keywords: natural rubber composites; silver nanoparticles; titanium dioxide; dielectric properties;
antibacterial activity

1. Introduction

Composite materials with dielectric properties have garnered interest across various
applications, including energy storage systems, flexible electronic equipment, sensors, and
electrical robots [1–3]. A high dielectric constant allows for greater electrical energy storage,
making materials more efficient for power storage systems. The development of energy
storage devices with antibacterial properties represents a novel concept, integrating both
energy storage capabilities and multifunctionality. Such systems can be highly beneficial
for applications, such as healthcare storage devices and wearable electronics. Devices
in healthcare are often exposed to bacteria, including Staphylococcus aureus (S. aureus)
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and Escherichia coli (E. coli). S. aureus is a Gram-positive bacterium, while E. coli is a
Gram-negative bacterium. These bacteria are known to cause infections, particularly in
vulnerable patients. Devices with antibacterial properties are safer because they reduce
the risk of bacterial contamination that may come into contact with the skin or human
body. Moreover, antibacterial materials prevent the growth of bacteria that can degrade the
materials over time, thereby prolonging the shelf life of devices. Therefore, these devices
require materials with biocompatibility, environmental friendliness, good thermal and
mechanical stability, an enhanced dielectric constant, and antibacterial properties.

Among the polymers, natural rubber shows promise as a biopolymer matrix for preparing
composite materials [4–6]. Natural rubber, derived from the rubber tree (Hevea Brasiliensis), ex-
hibits high elasticity, flexibility, and tensile strength. It is easily processed and compounded
with other materials, and is capable of forming films [7,8]. Moreover, it is biodegradable
and renewable, making it more environmentally friendly than synthetic alternatives [9].
Considering these properties, natural rubber is an attractive choice for diverse applications.
However, natural rubber has certain limitations, such as a low dielectric constant and
susceptibility to bacterial contamination, which restrict its use in advanced applications
like electronics, energy storage devices, healthcare, and environmental systems [10]. En-
hancing the functional properties of natural rubber to meet these demands is an area of
growing interest. One approach involves incorporating functional fillers, such as graphene
and titanium dioxide [11–13]. To improve the compatibility of natural rubber with po-
lar fillers, modified natural rubber composites have been developed. Previous work has
demonstrated that graft the copolymerization of polar monomers, such as acrylic acid and
acrylamide, onto deproteinized natural rubber can enhance its polarity and interactions
with fillers [14]. This environmentally friendly modification method utilizes water as a
medium, avoiding harmful organic solvents. The process involves using deproteinized
natural rubber (DPNR), which suppresses side reactions during chemical modification,
enhances biocompatibility, and reduces allergic reactions, making it particularly suitable
for medical and sensitive applications [15]. Modified DPNR/filler composites exhibit im-
proved mechanical and thermal properties. Furthermore, poly(acrylic acid-co-acrylamide)
is capable of coordination with silver ions and interaction with titanium dioxide. Compos-
ites of poly(acrylic acid-co-acrylamide)-modified DPNR incorporating silver nanoparticles
and titanium dioxide show enhanced compressive moduli, good structural stability, and
effectiveness in dye removal [16]. Thus, the modification of deproteinized natural rubber
by introducing polar functional components can enhance its compatibility with fillers,
potentially improving the properties of modified natural rubber composites for a variety
of applications.

Titanium dioxide (TiO2), known for its favorable physical and chemical properties,
including electronic properties, photocatalytic activity, chemical stability, and low toxicity,
is particularly interesting [17,18]. Bunriw et al. prepared natural rubber/TiO2 composites
as environmentally friendly materials for triboelectric nanogenerator (TENG) applications,
aiming to harvest mechanical energy into electricity [19]. The addition of TiO2 improved
the dielectric constant of the natural rubber composites. The enhancement of the TENG
electrical output with the highest power density of 237 mW/m2 was achieved. Therefore,
these natural rubber/TiO2 composites are promising for developing large-scale energy
harvesting devices.

Silver-containing materials exhibit photocatalytic activity and antibacterial proper-
ties [20–23]. Silver nanoparticles may penetrate bacteria cells and release silver ions that
disrupt metabolic processes and inhibit cell growth. Appamato et al. developed a triboelec-
tric nanogenerator using a natural rubber–silver nanocomposite applied as a shoe insole to
harvest human footstep energy [24]. These Ag nanoparticles created interfacial polarization
between the conductive metal nanoparticle and the insulating polymer, thereby improving
the dielectric constant and electrical output. Additionally, they exhibited antibacterial
activity against Staphylococcus aureus, the bacterium responsible for foot odor. Zheyan
Soo et al. prepared silver-doped TiO2 nanofibers for antibacterial applications [25]. The
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silver-doped TiO2 nanofibers demonstrated stronger antibacterial activity than bare TiO2
nanofibers, indicating a synergistic enhancement in antibacterial performance through
the combination of Ag nanoparticles and TiO2. Among the nanofibers, those with 2% Ag
content showed the highest antibacterial performance, reducing Salmonella Albany and
S. aureus by 5.92 ± 0.00 and 1.38 ± 0.07 logCFU, respectively.

This study focuses on the preparation of poly(acrylic acid-co-acrylamide)-modified,
deproteinized natural rubber composites incorporating silver nanoparticles and titanium
dioxide (MDPNR/Ag-TiO2), aiming to enhance the dielectric constant and antibacterial
activity of natural rubber. Incorporating silver nanoparticles and titanium dioxide into
the modified natural rubber matrix has emerged as a promising strategy for imparting
additional functionalities. This work contributes to the development of modified natural
rubber composites for advanced applications, such as energy storage devices in healthcare,
where high dielectric constants are essential for effective energy storage and transfer. The
biocompatibility, flexibility, and antibacterial properties of modified natural composites
further enhance their potential for use in flexible and wearable medical devices. This
research evaluates the physical, thermal, and dielectric properties of the composites, as
well as their antibacterial performance against Staphylococcus aureus and Escherichia coli.

2. Materials and Methods
2.1. Materials

Natural rubber (NR), with a 60% dry rubber content and preserved using high am-
monia, was received from Chemical and Materials Co., Ltd. (Bangkok, Thailand). Urea
was purchased from RCI Labscan Limited (Bangkok, Thailand). Sodium dodecyl sul-
fate (SDS) and acrylamide (AM) monomer were acquired from Loba Chemie Pvt. Ltd.
(Mumbai, India). Acrylic acid (AA) monomer and cumene hydroperoxide (CHP) initiator
were supplied by Aldrich (St. Louis, MO, USA). The AA monomer was passed through a col-
umn packed with alumina adsorbent for purification. Tetraethylene pentamine (TEPA) was
purchased from Acros Organics (Geel, Belgium), and Terric16A (10 wt%) was obtained from
the Rubber Authority of Thailand (Bangkok, Thailand). N′, N′-Methylenebisacrylamide
(MBA) was provided by Alfa Aesar (Ward Hill, MA, USA). Silver nitrate (AgNO3) was
obtained from Quality Reagent Chemical, controlled by QReC New Zealand (Rawang,
Malaysia). Titanium dioxide (TiO2), the anatase phase with an oil absorption value of
26 g/100 g and a residue from a 45 µm sieve of ≤0.1%, was obtained from Cernic Interna-
tional Co., Ltd. (Nakhon Pathom, Thailand). Throughout the study, deionized (DI) water
was used.

2.2. Preparation of Poly(Acrylic Acid-Co-Acrylamide)-Modified, Deproteinized Natural Rubber
Comprising Silver Nanoparticles and Titanium Dioxide (MDPNR/Ag-TiO2) Composites

The poly(acrylic acid-co-acrylamide)-modified, deproteinized natural rubber compos-
ites containing silver nanoparticles and titanium dioxide (MDPNR/Ag-TiO2) were pre-
pared following the method outlined by Inphonlek et al. [16]. First, deproteinized natu-
ral rubber (DPNR) was obtained by removing proteins from NR latex, as described by
Kawahara et al. [26]. The NR latex was mixed with 0.1%w urea and 1%w SDS under continu-
ous magnetic stirring for 60 min. The mixture was then centrifuged at 15,000 rpm for 30 min
to separate the rubber phase from the aqueous phase containing proteins and impurities.
The washing process was repeated twice by redispersing the cream fraction in 1%w SDS,
followed by centrifugation. The rubber phase was collected and dispersed in water in the
presence of Terric16A as a stabilizer. Next, the poly(acrylic acid-co-acrylamide)-modified,
deproteinized natural rubber (MDPNR) was synthesized via graft copolymerization of
acrylic acid and acrylamide, using MBA as the crosslinking agent. Briefly, DPNR latex was
transferred to a reactor and stirred mechanically at 100 rpm under a nitrogen atmosphere.
The following chemicals were added in sequence: CHP, acrylic acid (50 mol% neutralized
with 20%w NaOH solution), acrylamide, MBA, and TEPA. In this study, the monomer
content was set at 20 phr, maintaining a 70:30 weight ratio of acrylic acid to acrylamide.
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MBA was used at 1.00%w of the monomer. The CHP and TEPA contents were fixed
at 1 phr. Polymerization was carried out for 6 h at 50 ◦C under a nitrogen atmosphere.
Subsequently, the resulting MDPNR latex was mixed with a 1% w/v AgNO3 solution
and a 10% w/v TiO2 dispersion. The composites were prepared with a fixed AgNO3
concentration of 0.5 phr and varying TiO2 contents of 1.0, 2.5, and 5.0 phr, denoted as
MDPNR/Ag-1.0TiO2, MDPNR/Ag-2.5TiO2 and MDPNR/Ag-5.0TiO2, respectively. The
mixture was stirred at 600 rpm under dark conditions for 30 min and then subjected to an
autoclave (HVA-110, Hirayama Manufacturing Corporation, Saitama, Japan) at 120 ◦C and
15 psi for 50 min. The resulting product was dried in a hot-air oven at 60 ◦C for 24 h. Addi-
tionally, samples containing either AgNO3 or TiO2 alone, referred to as MDPNR/Ag and
MDPNR/5.0TiO2 composites, respectively, were prepared for comparison. The prepared
samples were stored for analysis, as shown in Figure 1.
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appearance of the obtained samples after drying.

2.3. Fourier Transform Infrared Spectroscopy

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was
conducted to analyze the chemical structure of the prepared composites using an FTIR
spectrophotometer (Tensor 27, Bruker, Billerica, MA, USA). Each spectrum was scanned
from 4000 to 500 cm−1, with a resolution of 4 cm−1, and 64 scans were performed.

2.4. Morphological Analysis

The morphology of the prepared composites was observed using a scanning electron
microscope (SEM). The dried samples were fixed on the stub and coated with gold under
vacuum using a sputter coater (EM ACE600, Leica microsystems, Wetzlar, Germany). The
surface morphology of samples was investigated using a JSM-7800F field emission scanning
electron microscope (JEOL Ltd., Tokyo, Japan). Additionally, the element composition and
distribution of the composites were determined by energy-dispersive spectroscopy coupled
with SEM (SEM/EDS).

2.5. Thermogravimetric Analysis

The thermal stability of various types of composites was assessed using a thermo-
gravimetric analyzer (TG 209 F3 Tarsus, Netzsch, Germany). For each sample, 10 mg of
dried material was placed in a sample pan and heated from 50 to 600 ◦C at a heating rate of
10 ◦C/min. The measurement was carried out under a nitrogen atmosphere. The change in
the remaining sample weight was continuously monitored throughout the measurement.

2.6. Dynamic Mechanical Analysis

The thermomechanical properties of the composites were evaluated using dynamic mechani-
cal analysis (DMA) performed on a DMA850 instrument (TA Instruments, New Castle, DE, USA).
A temperature sweep test was measured with a dynamic strain of 0.1% and a frequency
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of 1 Hz. The samples were tested over a temperature range from −80 to 100 ◦C, with a
heating rate of 2 ◦C/min.

2.7. Dielectric Constant Testing

The dielectric constant was measured by using an impedance analyzer (Keysight
E4294A, Agilent, Santa Clara, CA, USA) at room temperature. The samples were placed
between the electrodes. The measurements were performed at varying frequencies ranging
from 102 to 107 Hz.

2.8. Antibacterial Activity Evaluation

The antibacterial activity of the prepared composites was assessed using the disk
diffusion method. Staphylococcus aureus TISTR 746 (S. aureus) and Escherichia coli TISTR 527
(E. coli) were chosen as representative Gram-positive and Gram-negative bacterial strains,
respectively. The suspensions of microorganisms in CriterionTM Nutrient Broth (NB) were
spread as thin layers on CriterionTM Mueller–Hinton (MH) agar in Petri dishes. Specimens
measuring 6 mm in diameter were UV-sterilized for 1 h on each side prior to testing.
Subsequently, the specimens were placed on top of the smeared agar, and then the plate
was incubated at 37 ◦C for 24 h. Amoxicillin antibiotic disks were used as the positive
control. The absence of bacterial growth, indicated by clear inhibition zones around the
disk specimens, signified that those inhibitory concentrations had been achieved.

3. Results
3.1. FTIR Analysis

Modified natural rubber composites incorporating silver nanoparticles and titanium
dioxide were prepared in this study. The deproteinized natural rubber was first modified by
grafting with poly(acrylic acid-co-acrylamide) via emulsion graft copolymerization, acting
as the polymeric matrix. The modified natural rubber was capable of forming coordination
bonds with silver ions due to the presence of the carbonyl groups, carboxylate ions, and
nitrogen atoms of amide groups in the polymeric matrix [27,28]. The silver ions were
reduced to metallic silver atoms under a high temperature and applied pressure. These
metallic silver atoms aggregate, forming clusters that grow into stable silver nanoparticles.
Meanwhile, titanium dioxide can interact with modified natural rubber through hydrogen
bonding [29]. As a result, the silver nanoparticles and titanium dioxide were distributed in
the modified natural-rubber-based matrix.

The chemical functional groups in the samples were determined using FTIR analysis,
as seen in Figure 2. In the FTIR spectrum of DPNR, peaks around 3000–2800 cm−1 were
observed, attributed to the C-H stretching vibration of the polyisoprene backbone. Addi-
tionally, a peak at 1663 cm−1 was attributed to C=C stretching. Peaks at 1446 and 1375 cm−1

were observed, corresponding to -CH2 and -CH3 stretching vibration, respectively [30].
After modification through graft copolymerization, the FTIR spectrum of MDPNR exhib-
ited a broad band around 3500–3000 cm−1, indicating the presence of O-H and the N-H
stretching of poly(acrylic acid-co-acrylamide). A peak at 1664 cm−1 was attributed to
the C=O stretching. Another peak at 1561 cm−1 corresponded to carboxylate, resulting
from the partial neutralization of acrylic acid. The presence of new peaks confirmed the
success of the modification process [14,31,32]. In the case of the MDPNR/Ag, MDPNR/Ag-
TiO2, and MDPNR/TiO2 composites, their spectra exhibited characteristics similar to
those of modified natural rubber. The C=O stretching vibrations remained unchanged
at 1664 cm−1. However, the characteristic peaks of N-H stretching, O-H stretching, and
carboxylate slightly shifted to a lower wavenumber. The peaks corresponding to N-H
and O-H stretching vibrations shifted from 3396 to 3340 cm−1, and carboxylate peaks
shifted from 1561 to 1559 cm−1. These corresponded to the results of the previous report by
Anancharoenwong et al. [33]. These changes indicate the interactions of modified natural
rubber with silver and titanium dioxide in the composites [34–36].
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3.2. Morphology

The morphology of MDPNR and its composites, which include MDPNR/Ag, MDPNR/
Ag-TiO2 with varying TiO2 contents, and MDPNR/TiO2, is illustrated in Figure 3. SEM
images revealed that the surface of MDPNR appeared relatively smooth, whereas the
composites exhibited rougher surfaces due to the distribution of solid particles within the
natural-rubber-based matrix. At higher magnification, the titanium-dioxide-containing
composites exhibited solid particles approximately 240 ± 61 nm in size, as measured using
ImageJ software (IJ 1.46r image analyzer software). The elemental composition and distri-
bution of the samples were investigated by EDS analysis. Figure 4 depicts the composites’
EDS spectra and mappings corresponding to Ag and Ti. The spectra revealed the presence
of C, O, and Na in MDPNR. Additionally, a characteristic signal for Ag was observed in
MDPNR/Ag [37], and signals corresponding to Ti appeared in MDPNR/5.0TiO2 [38,39].
The MDPNR/Ag-TiO2 composites with different TiO2 contents exhibited signals indicative
of modified natural rubber, Ag, and Ti, confirming the incorporation of these elements
in the composites. However, the Ag peak appeared faint, likely due to the relatively low
Ag content in the composites. EDS mappings demonstrated that Ag was well-distributed
on the sample surface. The modified natural rubber can act as a stabilizing agent for
the formation of stable silver nanoparticles with good dispersibility within the polymer
matrix. Ti was also dispersed in the modified natural-rubber-based matrix. However, tita-
nium tended to agglomerate at a higher loading, particularly evident when incorporating
5 phr of titanium dioxide, with agglomerate sizes ranging from 0.82 to 12.28 µm. The
elemental compositions of the composites from EDS analysis are summarized in Table 1.
The results indicated that carbon was the dominant element in the composites, ranging
from a 66.44 to 84.67 weight percentage and a 75.06 to 88.19 atomic percentage, due to its
presence as the primary component of the modified natural rubber matrix. Incorporating
silver nanoparticles and titanium dioxide into the composites reduced the weight and
atomic percentages of carbon. The composites contained a small amount of silver, with
values ranging a from 0.61 to 1.08 weight percentage and a 0.08 to 0.13 atomic percentage.
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An increase in the weight and atomic percentages of titanium was observed with higher
titanium dioxide contents. The titanium weight and atomic percentages were increased
from 1.53 to 8.21 and 0.42 to 2.36 for MDPNR/Ag-1.0TiO2, MDPNR/Ag-2.5TiO2, and
MDPNR/Ag-5.0TiO2, respectively.
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Figure 4. EDS spectra (first column) and EDS mappings, with green spots indicating silver (second col-
umn) and yellow spots indicating titanium (third column), of (a1–a3) MDPNR; (b1–b3) MDPNR/Ag;
(c1–c3) MDPNR/Ag-1.0TiO2; (d1–d3) MDPNR/Ag-2.5TiO2; (e1–e3) MDPNR/Ag-5.0TiO2;
(f1–f3) MDPNR/5.0TiO2.
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Table 1. Elemental composition derived from EDS results of the composites.

Samples
Weight (%) Atomic (%)

C O Na Ag Ti C O Na Ag Ti

MDPNR 84.67 14.57 0.76 0.00 0.00 88.19 11.39 0.41 0.00 0.00
MDPNR/Ag 75.88 19.40 3.65 1.08 0.00 82.06 15.75 2.06 0.13 0.00

MDPNR/Ag-1.0TiO2 75.63 19.65 2.23 0.96 1.53 82.17 16.03 1.26 0.12 0.42
MDPNR/Ag-2.5TiO2 70.93 19.92 1.72 0.75 6.69 80.11 16.89 1.01 0.09 1.90
MDPNR/Ag-5.0TiO2 69.26 19.69 2.22 0.61 8.21 79.31 16.93 1.33 0.08 2.36

MDPNR/5.0TiO2 66.44 25.73 2.93 0.00 4.90 75.06 21.82 1.73 0.00 1.39

3.3. Thermal Properties

The thermal gravimetric analysis (TGA) and the first derivative of TGA (DTG) curves
of the MDPNR/Ag-TiO2 composites, compared to those of DPNR and MDPNR, are pre-
sented in Figure 5. The TGA thermograms indicate weight loss occurring within the
temperature range of 50 to 600 ◦C, followed by residue formation. Detailed parameters,
such as the temperature at 5% weight loss (T5), temperature at maximum process rate
(Tmax), and residue content, are provided in Table 2. As a result, DPNR decomposition
occurred between 336 and 476 ◦C, and almost no residue remained at 600 ◦C. After modifica-
tion of DPNR via grafting with poly(acrylic acid-co-acrylamide), MDPNR exhibited initial
weight loss between 70 and 170 ◦C due to the evaporation of absorbed and bound water.
Since the natural rubber was modified with a hydrophilic polymer, the MDPNR could
absorb water molecules in its structure. Subsequent weight loss between 180 and 291 ◦C
was attributed to the decomposition of carboxylic acid and amide side groups. Principal
decomposition, involving the natural rubber and the polymer backbone of poly(acrylic
acid-co-acrylamide), occurred at 336–476 ◦C [40,41]. The shift in Tmax to a higher tempera-
ture than DPNR suggests the improved thermal stability of MDPNR. From the result, the
decomposition characteristics of the MDPNR/Ag-TiO2 composites were similar to those
of MDPNR. However, metallic silver and titanium dioxide in the composites reduced T5
compared to MDPNR. This may be due to the heat conductivity of silver and titanium
dioxide, accelerating the decomposition process of side groups [42]. Nonetheless, the
decomposition of the main components of the composites, comprising natural rubber
modified with poly(acrylic acid-co-acrylamide), exhibited no difference in Tmax values,
indicative of the high thermal stability of the composites. Furthermore, the residues of the
composites were higher than those of MDPNR, and they increased with increasing silver
and titanium dioxide contents in the composites.
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Table 2. Thermal degradation temperature and residue from TGA curves of the DPNR, MDPNR,
MDPNR/Ag, MDPNR/Ag-TiO2 composites with various TiO2 contents, and MDPNR/TiO2.

Samples T5 (◦C) Tmax (◦C) Residue at 600 ◦C (%)

DPNR 343.61 376.61 0.36
MDPNR 307.69 381.69 8.38

MDPNR/Ag 306.44 380.96 10.01
MDPNR/Ag-1.0TiO2 302.27 383.27 10.28
MDPNR/Ag-2.5TiO2 279.08 381.08 11.02
MDPNR/Ag-5.0TiO2 291.98 380.98 14.57

MDPNR/5.0TiO2 301.16 380.16 12.62

3.4. Dynamic Mechanical Properties

The viscoelastic behavior of the MDPNR/Ag-TiO2 composites was investigated
through temperature sweep testing. Figure 6a,b illustrate the storage modulus (E′) and loss
tangent (tan δ) of the composites over a temperature range from −80 to 100 ◦C, respectively.
All samples displayed a high storage modulus in the glassy state at low temperatures, as
shown in Figure 6a. With increasing temperature, the storage modulus gradually decreased
due to the increased mobility of the polymer chains [43]. The storage modulus decreased
significantly due to the transition to a rubbery state. In dynamic mechanical analysis, the
material’s glass transition temperature (Tg) can be determined from the peak in the tan δ

curve (Figure 6b). The viscoelastic properties are summarized in Table 3. As can be seen
from the result, DPNR exhibited a single tan δ peak corresponding to the Tg of natural
rubber, which was found to be −54.89 ◦C. The MDPNR showed two tan δ peaks. The first
peak corresponded to the bulk of the modified natural rubber, while the second peak may
be attributed to the polymeric chain network formed due to the modification. As observed
in the bulk of the polymer, the Tg of MDPNR shifted to a lower temperature (−57.21 ◦C).
This shift may be attributed to structural irregularities and intercalation between rubber
chains, which decrease the number of chain entanglements and facilitate more effortless
movement of the rubber chains. Interestingly, the Tg values of the MDPNR/Ag-TiO2
composites appeared to increase compared to MDPNR. The Tg values of MDPNR/Ag-TiO2
composites increased from −56.90 to −55.43 ◦C when TiO2 was increased from 1.0 to
5.0 phr. Simultaneously, the peak height of tan δ decreased, suggesting increased stiffness
and the restriction of polymer chain movement, probably due to the interaction of silver
and titanium dioxide with a modified natural rubber matrix [44]. Silver can coordinate with
active functional group-containing modified natural rubber [45], while titanium dioxide can
interact with modified natural rubber through polar–polar interaction and hydrogen bond-
ing between the hydroxylated titanium dioxide surface and modified natural rubber [46].
These findings suggest that the composites exhibit good stability against deformation.

Table 3. Viscoelastic properties of MDPNR/Ag-TiO2 composites.

Samples Tan δ Peak Position (◦C) Tan δ Peak Height

DPNR −54.89 2.861
MDPNR −57.21 1.045

MDPNR/Ag −57.28 0.858
MDPNR/Ag-1.0TiO2 −56.90 0.933
MDPNR/Ag-2.5TiO2 −56.41 0.939
MDPNR/Ag-5.0TiO2 −55.43 0.908

MDPNR/5.0TiO2 −56.83 1.036
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3.5. Dielectric Property

The materials’ dielectric properties are important in studying their electrical response
in an external electric field. The dielectric constant measures the ability of materials
to store electrical energy from an electric field in their structure. Figure 7a illustrates
the dielectric constants of DPNR, MDPNR, and MDPNR/Ag-TiO2 composites across
frequencies ranging from 102 to 107 Hz. DPNR exhibited a low dielectric constant due to the
non-polar characteristic of natural rubber. The MDPNR and MDPNR/Ag-TiO2 composites
demonstrated a high dielectric constant at a low frequency. However, the dielectric constant
decreased with increasing frequency, possibly due to the molecular movement’s incapability
and decreased orientation polarization at higher frequencies [47,48]. A comparison of
dielectric constants of samples at 1 kHz is presented in Figure 7b. Notably, the dielectric
constant of MDPNR was 74.54, which was higher than that of DPNR. This increase can
be attributed to the modification of natural rubber with poly(acrylic acid-co-acrylamide),
introducing a polar component to its structure [49–51].
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Furthermore, introducing silver nanoparticles and titanium dioxide enhanced the
dielectric constant, suggesting that the composites possess more incredible electrical en-
ergy [52]. Silver and titanium dioxide act as fillers dispersed in the natural rubber-based
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matrix. Interfacial polarization occurred within the composites due to differences in the
polarizations of the matrix and fillers, increasing the dielectric constant [53]. Indeed, the di-
electric constant increases with higher titanium dioxide contents. Specifically, the dielectric
constant values of MDPNR/Ag-TiO2 composites increased to 91.03 and 99.46 when TiO2
was added at 1.0 and 2.5 phr, respectively. At 5.0 phr, the dielectric constant does not differ
significantly from that observed at 2.5 phr due to the agglomeration of titanium dioxide
at a high loading. However, it exhibited a high dielectric constant in the broad frequency
range. These correspond to the report by Sintharm et al., describing that the dielectric
behavior of composites depends on the dielectric property of the polymer matrix and filler,
chemical composition, chemical structure, and filler dispersion in the composites [54]. Thus,
the enhancement of the dielectric constant of natural rubber through modification with
poly(acrylic acid-co-acrylamide), incorporating silver nanoparticles and titanium dioxide,
improved the dielectric constant, and made the composites more efficient for applications.

3.6. Antibacterial Activity

The antibacterial behavior of the MDPNR/Ag-TiO2 composites against S. aureus and
E. coli, compared to that of MDPNR, was examined, as shown in Figure 8. The results
indicated that clear zones were not observed around the MDPNR samples on the agar
plates against S. aureus and E. coli, suggesting no antibacterial activity. Interestingly, all
composites demonstrated the ability to inhibit bacterial growth and form clear zones
around the samples for both S. aureus and E. coli. The size of the clear zones for the
samples was summarized in Table 4. It was observed that the composites composed
of silver nanoparticles and/or titanium dioxide showed the inhibition zone, suggesting
the effectiveness of silver nanoparticles and titanium dioxide for antibacterial activity.
The antibacterial activity may be attributed to the penetration of silver particles and the
release of silver ions, which interfere with bacterial cell membranes, disrupting their
functions and leading to cell death [55]. Additionally, titanium dioxide may penetrate
bacterial cell walls and disrupt essential cellular functions. As a result, the size of the
clear zone for MDPNR/Ag composites against S. aureus and E. coli was measured as
12.0 ± 1.0 mm and 15.3 ± 0.6 mm, respectively, showing intense antibacterial activity. For
the MDPNR/Ag-TiO2 composites, the addition of titanium dioxide at 1.0 and 2.5 phr did
not differ from the size of the clear zones compared to MDPNR/Ag. The inhibition zone
was 11.7 ± 0.6, 12.0 ± 0.0 mm for S. aureus and 14.0 ± 0.0, 13.7 ± 0.6 mm for E. coli when
titanium dioxide was added at 1.0 and 2.5 phr, respectively. However, upon increasing the
titanium dioxide content to 5.0 phr, the inhibition zone against S. aureus and E. coli decreased
to 10.7 ± 1.5 and 11.3 ± 2.5 mm, respectively. This reduction may have been due to the high
titanium dioxide content, which could have resulted in poor distribution in the modified
natural rubber matrix, as observed in SEM images, thereby reducing antibacterial efficacy.
Nevertheless, the antibacterial efficiency of the MDPNR/Ag-5.0TiO2 composites remained
more remarkable than that of MDPNR/5.0TiO2, which contains only titanium dioxide. It
was indicated that the incorporation of silver nanoparticles and titanium dioxide promoted
the antibacterial activity of natural rubber composites. Therefore, these MDPNR/Ag-TiO2
composites exhibited antibacterial activity for both S. aureus and E. coli and could have
potential for many applications.

Table 4. Antibacterial inhibition zone of MDPNR, MDPNR/Ag, MDPNR/Ag-TiO2 with various TiO2

contents, and MDPNR/TiO2 composites.

Samples
Zone of Inhibition (mm)

S. aureus E. coli

MDPNR 0.0 ± 0.0 0.0 ± 0.0
MDPNR/Ag 12.0 ± 1.0 15.3 ± 0.6

MDPNR/Ag-1.0TiO2 11.7 ± 0.6 14.0 ± 0.0
MDPNR/Ag-2.5TiO2 12.0 ± 0.0 13.7 ± 0.6
MDPNR/Ag-5.0TiO2 10.7 ± 1.5 11.3 ± 2.5

MDPNR/5.0TiO2 9.3 ± 1.2 8.7 ± 0.6
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4. Conclusions

The modification of deproteinized natural rubber (DPNR) through graft copolymer-
ization facilitated the introduction of functional groups and enhanced interaction with
silver nanoparticles and titanium dioxide. This modification was successfully achieved
in this work, resulting in poly(acrylic acid-co-acrylamide)-modified, deproteinized nat-
ural rubber incorporating silver nanoparticles and titanium dioxide (MDPNR/Ag-TiO2)
composites. SEM-EDS mappings revealed that silver nanoparticles exhibited a uniform
distribution in the modified natural rubber matrix. However, titanium dioxide tended to
agglomerate at higher loadings, particularly noticeable at 5 phr of titanium dioxide. The
MDPNR/Ag-TiO2 composites demonstrated good thermal stability. The shift in Tg to a
higher temperature and the decrease in the tan δ peak height indicate increased stiffness
and resistance to deformation in the MDPNR/Ag-TiO2 composites. The modification of
DPNR with polar components, along with the presence of silver nanoparticles and titanium
dioxide, improved the dielectric properties of the composites. Additionally, the existence
of silver nanoparticles and titanium dioxide endowed the composites with antibacterial ac-
tivity against S. aureus and E. coli. These composites, demonstrating good thermal stability,
improved dielectric properties, and antibacterial activity, could have useful application in
various fields.
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