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Abstract: This work is devoted to the creation of biocompatible fibrous materials with a high an-
timicrobial effect based on poly-3-hydroxybutyrate (PHB) and chlorophyll (Chl). The data obtained
show the possibility of obtaining fibrous materials from PHB and Chl by electrospinning methods.
The obtained electrospun matrices were investigated by the SEM, DSC and FTIR methods. Various
key properties of the matrices were evaluated, including hydrophilicity and mechanical strength, as
well as photodynamic and light-dependent antimicrobial effects against the conditionally pathogenic
microorganism Staphylococcus aureus. The results demonstrate a significant improvement in electro-
spinning properties for a concentration of 0.5% Chl and a reduction in fiber formation defects, as
well as an increase in the strength of nonwovens. It was found that the antimicrobial potential of
Chl-PHB (with concentrations of Chl of 1.25 and 1.5%) is higher than that of Chl in free form. It was
also determined that irradiation increases the inhibitory effect of Chl, both in free form and in the
form of a complex with a polymer.

Keywords: poly-3-hydroxybutyrate; electrospinning; chlorophyll; antibacterial properties

1. Introduction

The development of antimicrobial nonwoven materials attracts considerable interest
nowadays [1]. Three main approaches are used to impart antibacterial properties such as
antiadhesion, biocide release and contact-active antimicrobial modification [2].

The problem of microorganisms’ resistance to many existing antibiotics has become
a pressing issue, irrespective of the method of modification, and a number of existing
antimicrobial agents should be subjected to certain criticism. There has been some research
on the toxicity of metal nanoparticles [3]. The mechanism of toxicity may be related either
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to the presence of free metal ions [4] or to the small size of nanoparticles, which allows
them to penetrate easily into the body, bypassing protective barriers, the respiratory system
and the digestive tract [5]. The well-known antimicrobial properties of silver nanoparticles
show greater toxicity than macroparticles, due to the induction of oxidative stress, which
leads to mitochondrial dysfunction and increased permeability of cell membranes [6].
Aluminum and copper oxides are also highly antimicrobial. They have been criticized for
their negative effects on mitochondrial function and reduced cell viability [7]. As a result,
the search for new antimicrobial agents of natural origin that are safe for living organisms
is a major focus today.

Chlorophyll (Chl) is one of these promising compounds with high antimicrobial
activity [8]. Chl is a key molecule in plant photosynthesis. It is widely known as a green
pigment and a porphyrin, activating the energy transport process [9].

According to the study of I. Stojiljkovic et al., the mechanism of the light-independent
inhibition of Chl and other metalloporphyrins consists in the fact that they enter into micro-
bial cells through interaction with heme receptors and bind to cytochromes that interfere
with electron transfer to oxygen and cause the generation of active oxygen species [10].
Furthermore, chlorophylls and their derivatives are well known as photosensitizers that can
generate singlet O2 with sufficient quantum yields. This has led to their use in antimicrobial
photodynamic therapy (PDT) applications [11].

Chlorophyll contains four pyrrole nitrogen rings bonded to a central magnesium atom
and a fifth ring containing carbon atoms and a long phytol tail. The phytol tail of chloro-
phyll confers hydrophobicity and limits binding efficacy with respect to carcinogens and
mutagens [12]. Therefore, the development of ways to control the hydrophilic properties of
Chl is particularly important. There is also great interest in designing biomimetic polymer
systems for targeted delivery and sustained release of Chl for controlled antimicrobial
activity.

Despite the limitations due to the tendency of Chl to form aggregates as well as
the problems of immobilizing Chl at room temperature, there have been numerous at-
tempts to create a stable polymer–Chl system [13]. The electrospinning (ES) process has
been very successful in incorporating natural pigments and tetrapyrroles into a polymer
matrix [14,15].

Successful ES of polyacrylonitrile–Chl systems was demonstrated by Ince Yardimci
et al. and Liu et al. [16,17]. Polylactide–Chl systems were successfully obtained by blotting
of nonwoven materials in the work of Williams et al. [18]. However, these polymers have
very high glass transition temperatures (above 70 ◦C for polyacrylonitrile and above 60 ◦C
for polylactide), which makes it difficult to rapidly absorb and control the release of Chl,
due to the glassy nature of the amorphous phase of the polymer matrix. Sandra et al. and
Cao et al. have successfully demonstrated polyvinyl alcohol–Chl nonwoven systems [19].
However, polyvinyl alcohol is soluble in water, making it difficult to control the hydrophilic
properties of the material, thus limiting its application [20]. The success of Jassin et al. in
obtaining poly(methyl methacrylate)–Chl systems is particularly noteworthy [21]. Poly-
methylmethacrylate is an amorphous, rubber-like polymer. The choice of a biocompatible
matrix for Chl with a glass transition temperature below room temperature, hydrolytic re-
sistance, good forming properties for ES and the potential to create biomimetic structures is
still a question. One such polymer is polyester of bacterial origin—poly-3-hydroxybutyrate
(PHB). PHB is a thermoplastic, semi-crystalline polymer with a glass transition temperature
of 6 ◦C which is hydrophobic and can be easily modified [22,23]. PHB can act as a matrix
for antimicrobial agents and is characterized by sufficiently high strength properties and
impressive biocompatibility [24–26].

In previous investigations, we studied the antimicrobial properties of Chl extracted
from Urtica dioica in PLA and PVP polymer matrices against both Gram-positive and
Gram-negative bacteria [27]. This article aimed to prepare antimicrobial matrices based on
PHBs filled with different Chl concentrations by the ES method. In this work, we solved
the problem of the preparation of molding solutions with different concentrations of Chl
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and studied the antimicrobial activity of the obtained materials against Staphylococcus
aureus, a Gram-positive microorganism that colonizes mucous and cutaneous epithelia of
animals and humans, which (due to decreased resistance of the host organisms) can show
pathogenic characteristics.

2. Materials and Methods
2.1. Materials

Poly-3-hydroxybutyrate (PHB) powder (16F, BIOMER, Frankfurt, Germany) with a
molecular weight of 350 kDa and a density of 1.248 g/cm3; chlorophyll (Chl) as a Chla
and Chlb mixture (3:1) extracted from dried nettle leaves (Urtica dioica) [28]; chloroform
(CL) Amresco (Solon, OH, USA); dimethyl sulfoxide (DMSO) (99.5%, PanReac Applichem,
Barcelona, Spain); sterile physiological solution (0.9% NaCl, Khimikom, Nizhny Novgorod,
Russia); meat-peptone agar (MPA, Khimikom, Nizhny Novgorod, Russia); meat-peptone
broth (MPB, Khimikom, Nizhny Novgorod, Russia); and the industry turbidity standard
for determining total microorganism concentrations (BAK-10 kit, Ormet, Yekaterinburg,
Russia) were used in this work. Staphylococcus aureus (strain 209-P) was provided from
the cell culture collection of the All-Russian Research Institute of Veterinary Sanitation,
Hygiene and Ecology.

2.2. Preparation of PHB-Chl Matrices
2.2.1. Preparation of Forming Solutions

The pre-dried PHB was dissolved in CL at a concentration of 7% at 60 ◦C in a magnetic
stirrer for 12 h until a homogeneous transparent solution was obtained. Chl was dissolved
with CL (75 mg in 25 mL) at 25 ◦C, followed by stirring for 60 min. Next, a portion of the
Chl solution was selected and injected into the PHB solution with constant stirring at 25 ◦C.
The solutions were homogenized for 60 min.

The parameters of the PHB-Chl solutions for electrospinning are shown in Table 1. The
viscosity of the PHB-Chl solutions was measured using the Brookfield Rotary Viscometer
DV2TLV according to the ASTM D2983 [29] with a spindle LV-3 at 25 ◦C (for 100 mL
of solution). The electrical conductivity of the PHB-Chl solutions was measured using
the SanXin DDS-11C Laboratory Conductometer (SanXin Instrumentation, CaoHeJing,
Shanghai, China) according to GOST 8.292-2013 [30] at 25 ◦C (for 25 mL of solution).

Table 1. Parameters of PHB-Chl solutions for electrospinning.

Solution
Number

Chl
Content, %

PHB Content in
ES Solution, g

Chl Content in
ES Solution, mg

Electrical Conductivity,
µS/cm

Viscosity,
Pa s

Flow Rate of
ES Solution,

mL/min

1 0 3.5 0 10 1.00 150
2 0.5 3.5 9.0 12 0.90 210
3 1 3.5 17.5 12 0.80 213
4 1.25 3.5 22.0 12 0.85 225
5 1.5 3.5 26.5 14 1.20 235

2.2.2. Electrospinning of PHB-Chl Solutions

Electrospinning (ES) of PHB-Chl solutions with different concentrations of Chl was per-
formed using an EFV-1 ES scale with a single capillary (Moscow, Russia). The characteristics
of the ES were as follows: a protective chamber with temperature and humidity control (the
temperature was 25 ◦C; the humidity was 38–40%); pressure control (0–10 kgf/cm2); sta-
tionary collector electrode (30 × 30 cm2); voltage control (16–20 kV); the distance between
the electrodes was 200–220 mm. The flow rate of the molding solution was calculated as
the ratio of the polymer solution consumed on the web to the molding time and is shown
in Table 1.
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2.3. Investigation of Electrospun PHB-Chl Matrices
2.3.1. Microscopy

Microphotographs of the PHB-Chl fibrous materials were obtained by the Tescan
VEGA3 scanning electron microscope (Tescan, Wurttemberg, Czech Republic) with the
platinum layer and an accelerating voltage of 20 kV.

The morphology of the fibers was investigated by the Olympus Stream Basic software
(Olympus, Tokyo, Japan) on the optical microscope the Olympus BX43 (Olympus, Japan,
Tokyo). Average diameters and diameter distributions were determined in 10 areas of the
materials using z-stacking on an area of 900 × 650 mkm of each sample according to the
standard technique [31].

2.3.2. Surface Density

The surface density of PHB-Chl fibrous materials was investigated using the analytical
weighing machine the Balance XPR106DUHQ/A (Mettler Toledo, Columbus, OH, USA)
according to the standard technique [32]. Average values were counted from 10 iterations.

2.3.3. Mechanical Properties

Mechanical properties were investigated by the universal testing machine the Instron
electropuls e3000 (Instron, Norwood, MA, USA) with a load cell of 5 N capacity and a
crosshead speed of 5 mm/min, according to a standard technique [33]. The room conditions
were controlled at 22 ◦C and 40% relative humidity. Elongation at break and maximal
strength were registered automatically. Average values were counted from 10 iterations.

2.3.4. DSC

The crystalline structure of PHB in the PHB-Chl matrices (melting temperature and
enthalpy of melting) was investigated by the Netzsch 214 Polyma (Netzsch, Selb, Germany)
in an argon atmosphere according to the standard technique [34]. The heating and cooling
rate was 10 ◦K/min. Test samples were cut from 3 different areas of the electrospun material
with a total weight of 7 mg. The enthalpy of melting and the melting temperature were
calculated using Netzsch Proteus software.

2.3.5. FTIR

Infrared spectra were obtained by Fourier Transform IR (FTIR) spectroscopy using
the Bruker LUMOS II Research Infrared Fourier Microscope (Bruker, Karlsruhe, Germany)
with the module for measuring multiple disturbed total internal reflection on diamond
crystal [35]. The range of measurement was 600–4000 cm−1, and the resolution was 2 cm−1.
All spectra were taken at least 10 times in 3 areas of each sample and average values were
calculated. Spectra of pure Chl were obtained by the KBr pellet technique, using 1 mg of
powder in 50 mg of spectroscopic-grade KBr.

2.3.6. Contact Angle

Wettability was investigated by contact wetting angle measurements on the FMA050
optical microscope with the Altami studio 3.4 software [36]. Water droplets (2 µL) were
measured 5 times in 3 areas of each sample. The test samples were 30 × 30 mm2.

2.3.7. Swelling

Water uptake ability was investigated by swelling tests performed according to a
published technique [37]. The test samples were 10 × 10 mm2. The samples were weighed
using VL-64 analytical scales (Gosmetr, Moscow, Russia) after different exposure times in
phosphate-buffered saline (PBS). The measurements were carried out 3 times. The degree
of swelling was calculated using the following formula:
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real time wet weight − dry weight
dry weight

× 100% (1)

2.4. Microbiological Assay
2.4.1. Cells and Culture Conditions

The daily cultures of Staphylococcus aureus (209-P strain) were cultivated on a slanted
MPA at a temperature of 37 ◦C for at least 24 h in a dry-air thermostat. Suspensions of
109 colony-forming units (CFU) per milliliter were prepared from the daily cultures in
sterile saline solution according to the turbidity standard. The obtained concentrations
were confirmed using a spectrophotometer at λ = 600 nm. Then, serial dilutions with
10-fold increments (108, 107, 106 and 105 CFU/mL) were prepared from the suspensions of
the daily cultures by titration in sterile saline solution.

2.4.2. Minimum Inhibitory Concentration (MIC) Analysis

To determine the minimum inhibitory concentration (MIC) of the Chl and Chl-PHB,
fragments of polymer forms with active substance contents of 3.75 to 90 µg and Chl
solutions with equivalent active substance contents were prepared. The dilution step was
3.75 µg. Each sample was placed in a test tube containing sterile liquid nutrient medium
(MPB) contaminated with Staphylococcus aureus.

Irradiation of the samples was performed in quartz cuvettes using a UV lamp (20 W)
with a light irradiation range of 400–500 nm (emission peak—450 nm) for 25 min. Samples
that were intended for studying the light-independent effect were not irradiated.

Next, the tubes were then incubated in a thermostat at 37 ◦C for 5 days. Observations
were made daily to assess the presence of visible turbidity in the medium, which indicated
bacterial growth. These results were compared with those obtained from control samples
containing sterile medium and control samples not treated with the active substance or its
polymeric form.

The experiments were carried out in triplicate.

2.4.3. Reduction in Microorganism Growth Study

To calculate the percentage reduction in microbial cell growth in the presence of the
tested preparations with irradiation and without it, the absorbance of a pure sterile medium
MPB (sterility control) and a control inoculation with microorganisms without the addition
of any of the preparations were measured, as well as sterile media with the addition of the
preparations and experimental inoculation of microorganisms with the prepared solutions.
The reduction in microbial growth in the presence of the tested preparations was calculated
using the following formula:(

1 − absorbance of test solution − absorbance of corresponding control
absorbance of assay growth control − absorbance of sterility control

)
× 100 (2)

2.4.4. Determination of Inhibition Zone Diameter

Determination of the antibacterial activity of Chl and Chl-PHB on a solid nutrient
medium was performed by measuring the diameters of inhibition zones. To this end, a
microbial suspension at a concentration of 105 CFU/mL was inoculated in Petri dishes
containing sterile MPA medium. From samples of the polymer matrices (preparation
contents—0.5%, 0.75%, 1.25% and 1.5% (wt.%) relative to the mass of PHB), fragments with
an area of 1 cm2 were placed in the center of the inoculated Petri dishes. Then, 100 µL of
Chl solution containing an equivalent amount of active substance was added to the wells
created with a sterile punch in the center of the MPA plates.

To study the photodynamic activity of the preparations, some of the Petri dishes
with samples were irradiated with a UV lamp (20 W) with a light irradiation range of
400–500 nm (emission peak—450 nm) for 25 min. Samples that were intended for studying
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the light-independent effect were not irradiated. Samples intended for the detection of the
light-independent effect were not irradiated.

Next, the samples were incubated in a thermostat (37 ◦C, 72 h). The results were
recorded daily according to the diameter of the growth inhibition zone (mm). To confirm
the lack of polymer toxicity, PHB samples without active substances were used. The
experiments were carried out in triplicate.

To avoid the impact of light on the Chl, all the experiments were performed in a room
with diffuse side lighting and without additional light sources.

3. Results
3.1. Structure and Properties of the PHB-Chl Matrices

Microphotographs of the electrospun PHB-Chl matrices obtained by SEM are shown
in Figure 1. Microphotographs obtained by optical microscopy in reflected light and the
distributions of average diameters are shown in Figure 2. The results of the analysis of the
morphology of the fibrous materials are presented in Table 2.
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Table 2. Morphological properties of PHB-Chl electrospun materials.

Chl Content, % Average Diameter, µm Surface Density, g/cm3 Thickness, mm

0 2.7 0.0018 0.0584
0.5 2.9 0.0079 0.2224
1 2.1 0.0060 0.2156

1.25 2.6 0.0052 0.1368
1.5 3.2 0.0097 0.3524

It is important to note that all the obtained materials had a highly developed surface
and a high degree of porosity, which is typical for electrospun materials. The initial PHB
fibers had many elliptical thickenings. The size of these thickenings varied from 20 to
35 µm. The origin of these defects may have been due to the low electrical conductivity of
the ES solutions, leading to an irregular flow of electric charge through the primary jet of
the polymer solution. As a result, an uneven deformation of the polymer in the jet could
be observed. While this process occurs, competition arises between the orientation and
relaxation processes of polymer macromolecules. Such thickenings are more common for
lower-molecular-weight PHB. In PHB-CL systems, such fiber deformations are especially
common when using PHB with a molecular weight of 300–500 kDa [38,39]. The limitation in
the choice of PHB of a lower molecular weight is always due to its higher degradation rate
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and better biocompatibility in case of application in antimicrobial biomedical materials [40].
According to the study of Foster et al. [41], the formation of defects is not due to moisture.
Thickening, according to the results presented in the studies of Thanh et al., Sadat-Shojai,
Vanhausden et al. and Olkhov et al., can occur for a number of reasons: it may be due to the
type of solvent, insufficient conductivity–viscosity balance in the system or the low molecu-
lar weight of the polymer [42–45]. As a consequence, a large number of approaches to their
elimination are known, ranging from the variation of solvents, plasticizers and modifying
additives to the introduction of more electrically conductive molecules, including polar
ones [42,46,47]

Straight sections of PHB fibers are characterized by a cylindrical geometry and an
average diameter of 2.7 µm, with a diameter range of 1.5 to 3.5 µm.

With the addition of Chl, a decrease in the number of thickenings on the fibers
could be observed, which, in our opinion, was due to the influence of polar chlorophyll
molecules [48]. As shown in the works of Olkhov et al., Santos et al. and Li et al., the
addition of polar molecules has an effect on fiber diameter, diameter distribution, electro-
spinning rate and even the thermal properties of fibers, due to the role of additives in the
polymer crystallization process [48,49]. It should be noted that systems with polar sub-
stances are characterized by the presence of intermolecular interactions and the formation
of more perfect crystalline fibrous structures [50].

The structural formula of Chl is given in Figure 3.
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Polar molecules of Chl equalize the electrostatic field at the moment of pulling a drop
of ES solution into the interelectrode space during the ES process. It should be noted that
with a content of 0.5% chlorophyll, thickenings were observed, the sizes of which were
significantly lower than at a higher concentration (1–1.5%). Their number per unit area
of the electrospun material was also significantly reduced. For 0.5% of Chl, the average
number of thickenings was reduced by 64% in comparison to 1.5% of Chl. The increase in
the size of the thickenings on the fibers was apparently due to the agglomeration of Chl
molecules in the amorphous regions of the PHB fibers. And chlorophyll is characterized
by a fairly high tendency to agglomeration [52]. From the data shown in Table 2, it can
be seen that the average diameter of the PHB fibers practically does not depend on the
concentration of Chl in the studied range. But it should be noted that at the maximum
Chl content (1.5%), large-diameter fibers (5–6 µm) appeared, which was due to the effect
of the additive on the viscosity of the polymer solution. The presence of fibers of various
diameters, from 1.2 to 6 microns, in nonwoven fabric makes it possible to form a material
with a denser structure, where fibers of small diameters fill the spaces between large fibers.



Polymers 2024, 16, 3221 11 of 21

This is indicated by the data on the surface density, which was at a maximum for nonwoven
fibrous materials with a chlorophyll content of 1.5%. In addition, the introduction of
chlorophyll makes it possible to form a thicker layer of material. To study the effect of Chl
on the supramolecular structure of PHB in fibers, the DSC method was used. The results
are shown in Table 3 and Figure 4.

Table 3. Thermal properties of PHB in PHB-Chl electrospun materials.

Chl Content, %
Melting Temperature, ◦C

(1 Heating)
∆ ± 0.2 ◦C

Enthalpy of Melting, J/g
(1 Heating)
∆ ± 0.5 J/g

Melting Temperature,
◦C (2 Heating)

∆ ± 0.2 ◦C

Enthalpy of Melting, J/g
(2 Heating)
∆ ± 0.5 J/g

0 176.4 78.43 173.5 80.5
0.5 163.3 44.58 158.3 38.74
1 163.5 48.44 159.3 46.81

1.25 160.2 32.31 155.7 8.235
1.5 156 25.05 - -
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It is important to note that PHB is a semi-crystalline polymer, the crystallization of
which is initiated mainly by the homogeneous formation of crystallization nuclei, which
can lead to a very low density of their formation [53]. This can be well observed from the
DSC curve of pure PHB (1 heat, Figure 4). As a result, cold secondary crystallization occurs,
which also affects the formation of the amorphous phase [54]. This can be observed from
the DSC curve of pure PHB (2 heat, Figure 4), where approximately 40% of the crystal
did not have time to crystallize under the experimental conditions and a differentiated
low-temperature shoulder formed in the range of 154–160 ◦C. Secondary crystallization
could also have led to a decrease in the mechanical properties of the polymeric material and
to the noticeable differentiation of the melting peak in the DSC curves, where two types of
crystalline formations can be observed: small (incomplete) fractions, which melt at lower
temperatures, and large (completed) fractions, which melt in the range of the pure PHB
melting region [55]. Many researchers note the role of nucleating particles and copolymers
of various natures as nuclei of the crystallization process of PHB [56–58]. And such a
role is quite likely for the chlorophyll molecule, given its structure. However, in practice,
we see how aggregation prevails over the ability to nucleate PHB. As can be seen from
Figure 4, it is impossible to talk about the nucleating effect of Chl in the PHB-Chl system.
However, a significant effect on the crystallization of PHB can be observed. The melting
point of chlorophyll a is 117–120 ◦C, and the melting point of chlorophyll b is 120 ◦C [59].
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Thus, as the chlorophyll content increases, the crystallinity of PHB decreases by more than
three times, which indicates an obstacle to the formation of a crystalline phase. The thermal
properties of PHB in the PHB-Chl electrospun materials are shown in Table 3.

It can be seen that with an increase in the concentration of Chl, the heat and melting
point of the crystalline phase of PHB decrease. The dependence persists even with the
repeated melting of materials. With a Chl content of 1.5%, a low-temperature peak of
PHB melting can be observed, which may indicate the incompleteness of the polymer
crystallization process. During the secondary melting of materials, the occurrence of two
melting peaks could be observed, which indicated the presence of two populations of
crystallites in the crystal structure of PHB: large and small (unfinished). It should be noted
that PHB materials with a Chl content of 1.25% had a low melting point during secondary
melting, while with a Chl content of 1.5% this indicator was practically absent. The side
effects can be explained by the strong intermolecular interaction between the polar groups
of PHB and chlorophyll. Moreover, when melting the fibers, chlorophyll dissolves better in
the PHB matrix, which leads to a significant inhibition of polymer crystallization. The effect
is maximal at high concentrations of chlorophyll. These assumptions are largely consistent
with a decrease in the melting temperature of the main PHB melting peak by more than
10 degrees at the first heating and by more than 15 degrees at the second heating. And at
lower temperatures, smaller crystallites melt or have significant structural defects.

It is also possible to note a small peak at the first melting in the range of 60–80 ◦C, which
is most pronounced for 0.5% chlorophyll. This peak probably signals the hydrogen bonds
that are formed between Chl and PHB molecules. With an increase in the concentration
of Chl, the molecules begin to aggregate to a greater extent, as a result of which the peak
gradually disappears. This assumption is consistent with the peculiarities of the formation
of defects on the fiber surface, confirming the difference in the intensity of the aggregation
of chlorophyll molecules at low concentrations.

The state of the internal structure of an electrospun fibrous material affects its strength
properties. Figure 5 shows the dependence of the tensile stress on the deformation of
nonwoven fibrous materials with different Chl contents.
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All stress–strain curves of PHB-Chl electrospun materials have a similar appear-
ance [60,61]. With increasing load, the relative elongation of nonwovens increases to the
limit value, at which point the filaments rupture and the breaking load decreases until the
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complete destruction of the sample. As can be seen in Figure 5, the initial PHB material is
characterized by a smooth increase in tensile stress from deformation. At the same time,
it is characterized by an extremely low value of the breaking stress at rupture relative to
compositions with Chl. When chlorophyll is introduced into PHB, there is a decrease in
elongation and a significant increase in the tensile strength of nonwoven fibrous materials.
When chlorophyll is added to PHB, fibrous materials become more rigid and brittle, as was
previously observed for some Chl derivatives [62]. This may be caused by a significant in-
termolecular interaction, which leads to a decrease in the mobility of PHB macromolecules
in amorphous regions.

As shown in Figure 5, the strength of PHB-Chl fibrous materials decreases with
increasing Chl concentration. This strength behavior can be explained by a decrease in the
degree of crystallinity and the size of crystallites (Figure 4, Table 3) and an increase in fiber
defects due to the agglomeration of Chl molecules (Figure 1). With a Chl content of 0.5%,
the smallest defects can be observed on the fibers and, accordingly, they are characterized
by the highest strength values.

Since Chl has a high bactericidal effect, antibacterial properties should be expected
in nonwoven fibrous matrices of PHB-Chl. The bactericidal effect may occur in the case
of chlorophyll release on the surface of the fibers. To establish this fact, the surface of the
fibers was investigated using FTIR spectroscopy methods (incomplete internal reflection
mode) and by measuring the wetting edge angle. The FTIR spectra are shown in Figure 6.
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The analysis of the FTIR spectra (Figure 6) showed that the most pronounced chemical
groups of PHB correspond to peaks at 1721 cm−1 (group C=O), 1052 cm−1 (group C-O-
C), 1278 cm−1 (group -CH3) and 3000-2700 cm−1 (-CH fluctuations in the main chain).
As can be seen, all the characteristics of the signals of the pure PHB are found in the
composite materials. In addition, a new peak was detected in the area of 1640 cm−1, which
is characteristic for –NH groups. This peak is clearly visible on the spectrum of pure Chl.
On the spectra of fibrous materials, the superposition of the Chl peak on the corresponding
peaks of PHB in the region of 2900–3000 cm−1 is clearly noticeable, leading to the formation
of a triplet. The new peak observed at 3440 cm−1 corresponds to adsorbed water. However,
this peak is pronounced in pure Chl and may contribute to the FTIR spectrum of PHB-Chl
systems. In general, based on the results of the analysis of the spectra of PHB-Chl fibrous
materials, it can be concluded that chlorophyll is partially located on the surface of the
fibers, which significantly affects the FTIR signal. The signal is taken from the surface
(depth of penetration of the IR beam into the sample—approximately 2 µm, which is
comparable to the average fiber diameter) and does not give a complete picture of the
structural organization in the mass of fibers. In a large number of reports about PHB-based
composites investigated by FTIR, it is noted that FTIR research is mainly of a qualitative
nature [63,64]. It is also impossible to deny the existence of an intermolecular interaction
between chlorophyll and PHB.

The results of measuring the wetting contact angle are presented in Table 4. A decrease
in the wetting edge angle in the area of 0.5–1% Chl content in the compositions indicates a
decrease in energy on the surface of the sample, i.e., a decrease in energy on the surface of
the fibers, which may indicate an increase in the polarity or hydrophilicity of the material.
The increase in polarity can be justified by the presence of chlorophyll molecules in the
surface layers of fibers. An increase in the wetting angle at a 1.25–1.5% Chl content may be
due to the presence of multiple thickenings on the fibers, leading to an increase in surface
roughness and distortion of the wetting edge angle.

Table 4. Wettability of PHB in PHB-Chl electrospun materials.

Chl Content, % Contact Angle, Degree

0 117 ± 0.46
0.5 111 ± 0.48
1.0 112 ± 0.51

1.25 124 ± 0.48
1.5 126 ± 0.52

Since the wetting angle of electrospun materials could largely be determined by the
surface morphology, both of individual fibers and of the entire system, the change in
hydrophilicity was estimated by analyzing the water absorption of the material [65]. The
swelling performance of an electrospun material largely depends on the degree of surface
development and the proportion of open pores in the material, but the speed of the process
and the slope of the swelling curve may indicate the hydrophobicity of the material [66].
The swelling degrees in PBS for the PHB-Chl electrospun materials are shown in Figure 7. It
can be clearly seen that with an increase in the concentration of the additive, the percentage
and amount of liquid that can be absorbed into the material increases linearly. Often, a more
intense accumulation of liquid can be caused by hydrogen bonds that can form between
the additive and water molecules [67]. Moreover, at concentrations of 0–1.25%, the same
slope of the swelling curves and the same dynamics can be observed. And in the case of
1.5%, the process is more intensive, which can be explained by the high content of Chl. This
experiment confirms that the contact angle of PHB in PHB-Chl electrospun materials is
primarily determined by the surface structure.
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3.2. Microbiological Testing of PHB-Chl Matrices
3.2.1. MIC Determination

The antimicrobial activity of Chl, both when complexed with PHB and as a free form,
has been investigated against the Gram-positive bacterium S. aureus strain 209-P. Both
forms demonstrated antimicrobial activity across all tested concentrations.

After the first set of studies, the minimum inhibitory concentration (MIC) of Chl was
found to be in a dose range from 11.25 to 15 µg. The MIC of Chl-PHB was in the range of
15–18.75 µg.

Following additional experiments, the MIC for the free form of Chl was determined to
be 12.75 µg, while the MIC for the polymer form was 13 µg. After irradiation treatment,
the MIC decreased to 10.25 µg for Chl and to 10 µg for Chl-PHB. Table 5 presents the
data obtained.

Table 5. Determination of Chl and Chl-PHB MICs relative to S. aureus.

Preparations MIC, µg
No Irradiation Irradiation (450 nm)

Chl 12.75 ± 0.5 10.25 ± 0.25
Chl-PHB 13.0 ± 0.5 10.0 ± 0.5

Therefore, in order to achieve equivalent effects on microbial cells under irradiation
conditions, 80% of the nonirradiated dose was sufficient for Chl and 76% was sufficient for
Chl-PHB.

Based on the data collected, a decision was made regarding the choice of preparation
concentrations for further experimentation. In this process, both ineffective and excessively
high concentrations were eliminated.

3.2.2. Study of Microbial Growth Inhibition

MIC is not an absolute indicator but the lowest concentration of an antibacterial
substance that causes suppression of microflora growth noticeable to the naked eye [68].
Therefore, it is necessary to determine the percentage of microorganism growth inhibition.

The spectrophotometric analysis of the microorganism cultures treated with Chl and
Chl-PHB at the selected concentrations based on the MIC calculation demonstrated that the
inhibition of Staphylococcus growth by these doses did not exceed 93%. Thus, the microor-
ganisms were not completely killed, but their growth was slowed down or stopped. At the
same time, slight growth (about 7%) persisted. When studying antimicrobial substances of
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various origins, researchers obtained the MIC90 values at which they noted the presence of
10% microorganism growth [69–73]. In other words, MIC was not a guarantee of bacterial
destruction and did not provide complete control of the microbial population. According
to J.M. Blondeau et al., to achieve a bactericidal effect, different MIC multiplicities may be
required depending on the drug used, the type of microorganism and the density of the
bacterial population [74].

In the current study, the inhibition exceeded 99.5% at an active substance concentration
twice the MIC (Table 6). These results confirm a bactericidal or persistent bacteriostatic effect.

Table 6. Preparation-induced reduction in CFU growth of S. aureus.

Preparations Reduction in CFU Growth, %
MIC 2 × MIC

Chl 91.93 ± 0.43 99.68 ± 0.1
Chl-PHB 92.67 ± 0.75 99.75 ± 0.1

The data obtained allow us to hypothesize that in future experiments, optimal out-
comes will be achieved with samples of the preparation containing an active substance
concentration at least two times the MIC.

3.2.3. Photodynamic and Light-Independent Inhibitory Effects

The inhibitory effect study on a solid nutrient medium revealed a direct relationship
between the diameter of the inhibition zone and the dose of active substance and irradiation
exposure (Figure 8). Previously, the incorporation of Chl into the polymer matrix of
poly(lactic acid) (PLA) was investigated. The Chl contents were 0.1–0.5 wt.% relative to the
PLA mass. A content of 0.5% (15 µg) showed the best results [75]. Therefore, this was the
starting point of the current study.
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Figure 8 presents data on the diameter of the inhibition zone of growth on the fifth
day of the experiment. This time period was chosen because the diameter of the zone at
lower Chl concentrations (0.5% and 1%) decreased significantly over time, which may be
attributed to incomplete suppression of bacterial growth.
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In Petri dishes with PHB samples without active substances, there were no differences
in microbial growth compared to the control culture. This suggests that the polymer
has no inhibitory effect on Staphylococcus. This has been previously confirmed in other
studies [76].

As can be observed from the data presented in Figure 8, at a 0.5% concentration of
the active ingredient in the Chl-PHB complex and Chl solutions, there was no significant
difference in their effects on microorganisms. However, after irradiation, an increase in
efficiency of 10% and 22%, respectively, was noted for Chl and Chl-PHB.

Similarly, the irradiation efficiency increased by 11.1% and 11.5% for the polymeric
and free forms at a Chl content of 1%.

The polymer complex without irradiation treatment was 10% more effective than the
active substance at a concentration of 1.25%. The efficiency increase upon irradiation was
24.14% and 18.75% for the free and polymeric forms, respectively.

The polymer form containing 1.5% Chl was 9.7% more effective than the free form.
The irradiation increased the inhibition level by 25.8% and 23.5% for Chl and Chl-PHB,
respectively.

Therefore, it can be inferred that, out of all the preparations studied, the Chl-PHB
complex containing 1.5% of the active substance demonstrated the highest antimicrobial
activity, both when subjected to irradiation and in the absence thereof. Similar results were
obtained with the polymeric form containing 1.25% of the active substance.

It should be noted that the dose-dependent effectiveness of the active substance on
bacteria was demonstrated in our previous works devoted to the study of the antimicrobial
properties of hemin in the composition of PHB, as well as FeIIICl-Tetraphenylporphyrin
in complex with poly-N-vinylpyrrolidone (PVP), against Gram-positive (S. aureus) and
Gram-negative (E. coli and S. typhimurium) microorganisms. It was found that the higher
the dosage of porphyrins, the more significant the inhibition of bacterial growth [74,76,77].
There are studies showing similar trends in the change in drug effectiveness not only
depending on dosage, but also on the effect of irradiation. Thus, the work of K.A. Zhdanova
et al. presents data proving an increase in the inhibitory effect of meso-aryl-substituted
porphyrins and their complexes with Zn after irradiation [78]. I. Mendonça et al., studying
the antimicrobial photodynamic potential of lipid extracts of microalgae (Bacillariophyta,
Chlorophyta, Cyanobacteria, etc.), established the presence of a high inhibition degree of a
Staphylococcus aureus methicillin-resistant strain as a result of irradiation [79]. This thesis
was also confirmed in studies of phytochemicals (berberine, curcumin, farnesol, gallic acid
and quercetin) by A.S.C. Gonçalves et al. [80], mesoporous silica nanoparticles loaded with
IR780 iodide by H. Z. Alagha et al. [81], and natural anthraquinones—rubiadin 1-methyl
ether—by J. Marioni et al. [82].

Summing up the obtained results, it should be noted that electrospun PHB-Chl systems
obtained in the work differ from a wide range of analogues in terms of the very high pro-
ductivity of the ES process, which does not require special additional synthesis conditions,
and the simplicity of the system preparation in a single solvent. This was the first time such
a significant effect of Chl on the supramolecular structure of PHB was recorded, where
the Chl molecule prevents the crystallization of the polymer; and at a concentration of
1.5%, the proportion of the crystalline fraction of the polymer, as can be seen from the DSC
results, decreased by more than three times. At the same time, despite the fragility of the
obtained systems, their properties remain sufficient for use as materials with antimicrobial
properties. Thus, the obtained materials with a highly developed structure are of interest
for further research.

4. Conclusions

In this work, new nonwoven fibrous materials based on a natural biopolymer—poly-3-
hydroxybutyrate—and chlorophyll with a pronounced antibacterial effect were obtained by
electrostatic molding. The materials are characterized by heterogeneity with a chlorophyll
content in the range of 0.5–1.5. The average diameter of the fibers is in the range of
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1.2–6 microns. It has been established that the formation of the supramolecular structure
of PHB fibers is strongly influenced by the intermolecular interaction between PHB and
chlorophyll. At the same time, there is a significant slowdown in the rate of crystallization
of PHB, which leads to a decrease in heat and melting point. As follows from the results
of the IR spectroscopy study conducted in the mode of incomplete internal reflection and
with a marginal wetting angle, chlorophyll molecules were detected in the surface layers
of the PHB fibers, and thus the antibacterial effect of the obtained materials was justified.
In microbiological experiments, MICs were determined for the free and polymer forms of
Chl with irradiation and without it (12.75, 13.0, 10.25 and 10.0 µg, respectively). It was also
found that the efficiency of bacterial cell growth suppression of more than 99% is achieved
at a concentration of drugs no lower than 2×MIC. The Chl-PHB complex at active substance
concentrations of 1.25 and 1.5% had a more significant inhibitory effect than free Chl. The
irradiation increased the antimicrobial potential of both preparation forms. Potentially, the
results obtained can be used in the development of new drugs against microbial infections.
However, a more informed conclusion can be drawn after in vivo testing.
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