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Abstract: The requirement for the development of advanced technologies is the need to create new
functional thermostable soluble polysilsesquioxanes. Combining the potential of organosilicon chem-
istry and the chemistry of heterocyclic compounds is a promising direction for the formation of
novel organosilicon polymer systems with new properties and new possibilities for their practical
application. Using the classical method of hydrolysis and polycondensation of previously unknown
trifunctional (trimethoxysilylpropyl)glutarimide in the presence or absence of an acid or base catalyst,
a universal approach to the formation of new thermostable soluble polysilsesquioxanes with glu-
tarimide side-chain groups is proposed, which forms the basis for the synthesis of polysilsesquioxane
polymers with different functionality. The weight average molecular weight of silsesquioxanes, deter-
mined by gel permeation chromatography, is practically independent of the reaction conditions and is
10–12 kDa; at the same time, the molecular weight distribution remains low and amounts to 1.38–1.47.
According to thermogravimetric analysis, the resulting polysiloxanes have high thermal stability up
to 335 ◦C. By the dynamic light scattering method, it was established that in an aqueous solution,
silsesquioxane macromolecules are in an associated state, forming supramolecular structures due to
the intermolecular interaction of individual macromolecules. The average hydrodynamic diameter of
the particles was 46 nm. X-ray diffraction analysis showed the amorphous nature of the polymer.
Polymer film coatings based on synthesized silsesquioxanes are characterized by 98% transmission
in the visible spectrum and resistance to ultraviolet radiation, which is promising for the creation of
functional transparent film coatings.

Keywords: silsesquioxane; glutarimide; trimethoxy(propyl)silane; hydrolytic polycondensation;
film coating

1. Introduction

Silsesquioxanes are organo-inorganic hybrids with a general chemical formula of
(RSiO1,5)n, which have a stable inorganic silica-like framework surrounded by organic sub-
stituents attached to the silicon atom. The main advantage of silsesquioxane structures is
the variety of peripheral organic groups providing functionalization, which leads to a wide
range of properties and, therefore, to various applications of these molecules. Silsesquiox-
anes are a universal class of three-dimensional organosilicon compounds that have been the
subject of intensive research due to their combination of practically important and unique
properties for a long time. These are high chemical, thermal, and mechanical stability, hy-
drophobicity, low dielectric constant, and biocompatibility [1–4]. Interest in silsesquioxanes
continues to grow steadily due to their widespread use as protective coatings, insulating
layers, aerospace materials, catalyst carriers, ceramic precursors, photoresistors, etc. [5–7].
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Available literature data show that polysilsesquioxanes are UV-resistant materials
due to the presence of inorganic Si–O bonds in them [8–13]. UV-resistant materials have
attracted much attention due to their important practical applications. It is known that
polymer coatings gradually degrade when used outdoors due to exposure to ultraviolet
radiation, oxygen, moisture, and other factors. UV radiation leads to the destruction of
the polymer chain and loss of strength at a number of points in the structure. One of the
ways to protect materials from destructive ultraviolet radiation is to use polymer coatings
based on polymers containing chromophore groups, such as carbonyl, carboxyl, or nitrile,
which have absorption in the ultraviolet spectrum. Of particular interest from the point
of view of obtaining protective polymer coatings are polysilsesquioxanes with organic
substituents in the side chains, possessing the properties of a UV absorber that does not
change the transparency of the polymer in the visible region of the spectrum and having
high photostability and absorption capacity in the UV region of the spectrum. Therefore,
the synthesis of novel silsesquioxanes and the development of transparent UV-protective
coatings based on them are considered necessary and in demand for the creation of materi-
als that can protect against ultraviolet radiation. The properties of materials are determined
to a greater extent by the chemical structure of the inorganic core, as well as the possibility
of varying the nature and number of functional groups in organic substituents associated
with silicon atoms. Many nitrogen-containing heterocyclic compounds have physiological
and pharmacological properties and are components of biologically important molecules
such as vitamins, nucleic acids, antibiotics, pharmaceuticals, dyes, agrochemicals, and
others [14–16]. They have found wide application as synthons of organic synthesis for cre-
ation of new molecules and composites, as well as in medicinal chemistry, pharmaceutical
industry, and agriculture [17–22]. In this regard, at present, a promising direction for the
creation of new functionalized organosilicon polymer systems with new properties and new
practical application possibilities is to combine the potential of chemistry of organosilicon
and nitrogen-containing heterocyclic compounds.

Previously, we synthesized functional polysilsesquioxane with phthalimide side-chain
groups [23]. Continuing these researches, we became interested in the synthesis, study of
the physicochemical characteristics, and search for practical applications of other cyclic
imides of dicarboxylic acids. In this study, we present the synthesis of a novel representa-
tive of the class of thermostable soluble polysilsesquioxanes with glutarimide side-chain
groups using a simple and convenient classical method of hydrolytic polycondensation.
Glutarimide (2,6-piperidinedione), which belongs to chromophores (λmax 204 nm) contain-
ing two carbonyl groups, is a component of a number of molecules with a wide range of
biochemical and pharmacological activities [24–27]. The synthesis, structure, and properties
of a previously unknown monomer 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione and
functional polymers based on it are discussed. Polymer coatings based on the synthesized
silsesquioxanes demonstrated high transmittance in the visible spectrum and resistance to
ultraviolet radiation, which makes them promising for the creation of functional transparent
protective film coatings.

2. Materials and Methods
2.1. Materials

Piperidine-2,6-dione (glutarimide, GI) (98%), sodium hydroxide (NaOH, ≥98%, pel-
lets (anhydrous)), and hydrochloric acid (HCl, ACS, 37%) were purchased from Sigma-
Aldrich (Munich, Germany) and used without further purification. The sodium salt of
piperidine-2,6-dione is synthesized by the reaction of sodium methoxide and glutarimide.
Piperidine-2,6-dione sodium salt was prepared by the reaction of sodium methoxide with
glutarimide. Sodium methoxide was prepared by carefully adding freshly cut metallic
sodium (1.13 g, 49.2 mmol) to an excess of anhydrous methanol (7.88 g, 246.0 mmol) imme-
diately before use. To remove moisture, methanol (CH3OH, ACS, ≥99.8%, Sigma-Aldrich,
Munich, Germany) was kept over magnesium for 12 h and then distilled. The initial (3-
chloropropyl)trimethoxysilane was obtained by following the method of the literature [28]
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by alkoxylation of (3-chloropropyl)trichlorosilane. (3-Chloropropyl)trichlorosilane was
produced according to a literature method [29]. N,N-Dimethylformamide (DMF, 99.8%,
Sigma-Aldrich, Munich, Germany) was distilled with calcium hydride immediately before
use to remove moisture. Deionized water (resistivity ≥17.5 MΩ·cm, Vodoley-M water
purifier, RU) was used for all the aqueous solutions and in the preparation of silsesquioxane.

2.2. Synthetic Procedures
2.2.1. Synthesis of 1-[3-(Trimethoxysilyl)propyl]piperidine-2,6-dione monomer 1

To a solution of piperidine-2,6-dione sodium salt (7.53 g, 49.2 mmol) in DMF
(30 mL), in the presence of dibenzo-24-crown-8 ether (0.018 g, 0.04 mmol), (3-
chloropropyl)trimethoxysilane (9.78 g, 49.2 mmol) was added dropwise. The reaction
mixture was stirred at 70 ◦C for 2 h, and the resulting sodium chloride precipitate was
filtered off. The filtrate was then distilled under reduced pressure, yielding 12.19 g of target
monomer 1 with a yield of 90%. The boiling point of the product was 166 ◦C (2.00 torr),
and its melting point was 42 ◦C. Anal. Calc. (%) for C11H21NO5Si: C 47.98, H 7.69, N 5.09,
Si 10.20. Found (%): C 47.62, H 7.71, N 4.73, Si 9.82. FTIR (ν, cm−1): 2946 (CH2), 2842 (C–H
in Me), 1724, 1673 (C=O), 1460–1433, 1387–1355 (C–C, piperidine-2,6-dione cycle), 1312
(C–N), 1192 (Si–OMe), 1084 (Si–O), 1016 (C–O), 816 (Si–OMe). 1H NMR spectrum (400 MHz,
CDCl3, δH, ppm): 3.74–3.71 (m, 2H, NCH2), 3.54 (s, 9H, OCH3), 2.62 (t, 4H, 3J = 6.4 Hz,
CH2C(O), piperidine-2,6-dione ring protons), 1.91 (qu, 2H, 3J = 6.4 Hz, CH2CH2CH2,
piperidine-2,6-dione ring protons), 1.63–1.55 (m, 2H, CH2CH2CH2Si), 0.59–0.63 (m, 2H,
CH2Si). 13C NMR spectrum (100 MHz, CDCl3, δC, ppm): 172.49 (C=O), 50.65 (OCH3),
42.07 (NCH2), 33.01 (CH2C(O), piperidine-2,6-dione ring), 21.35 (CH2CH2CH2Si), 17.32
(CH2CH2CH2, piperidine-2,6-dione ring), 6.70 (CH2Si). 29Si NMR spectrum (79.5 MHz,
CDCl3, δSi, ppm): −42.4. MS m/z (Irel, %): 275 [M]+ (0.09), 274 [M–H]+ (0.11), 244 [M–
OMe]+ (10), 243 [M–OMe–H]+ (45), 202 [M–(CH2)3–OMe]+ (66), 162 [M–(CH2)3(C=O)2N–
H]+ (5), 121 [Si(OMe)3]+ (100), 91 [Si(OMe)3–OMe+H]+ (40), 90 [Si(OMe)3–OMe]+ (6), 77
[Si(OMe)3–Me3+H]+ (6), 61 [Si(OMe)3–OMe–Me2+H]+ (13), 59 [Si(OMe)3–(OMe)2]+ (12).

2.2.2. Synthesis of 1-[3-(Silsesquioxanyl)propyl]piperidine-2,6-dione (PSQ-GI) 2a–c

The monomer 1-[(3-trimethoxysilyl)propyl]piperidine-2,6-dione 1 was polymerized
under solvent and catalyst-free conditions using deionized water (pH 7). Deionized wa-
ter, which had been preliminary adjusted to have a pH of 3.0 or 10.0, was used as well.
Deionized water (2 mL) was added to the monomer 1 (0.275 g, 1.0 mmol) in a single drop
with stirring. After the addition, the reaction mixture became clear and homogeneous. The
reaction mixture was then heated to 70 ◦C and maintained at this temperature for 8 h with
vigorous stirring. After cooling to room temperature, a water–alcohol phase was separated
using a rotary evaporator. If hydrochloric acid or sodium hydroxide catalysts were used,
the following additional steps were taken to neutralize the reaction mixture: the mixture,
after separating the water alcohol layer, was washed with deionized water to achieve a
pH of 7 in the eluate. The remaining clear viscous substance was dried in a vacuum at
room temperature for 24 h. The final polysilsesquioxanes 2a–c containing glutarimide
side-chain groups were obtained as colorless solids. The yield of silsesquioxanes 2a–c was
78–87%, based on the ideal chemical formula for one unit of this product, [C8H12NSiO3.5,
FW = 206.277]. Anal. Calc. (%) for C8H12NO3.5Si: C 46.58, H 5.86, N 6.79, Si 13.62. Found
(%): C 46.02, H 5.90, N 6.28, Si 14.17. FTIR (ν, cm−1): 3376 (O–H), 2955, 2885 (CH2), 1722
and 1662 (C=O), 1457–1435, 1384–1353 (C–C, piperidine-2,6-dione ring), 1120 and 1042
(Si–O–Si). 1H NMR spectrum (400 MHz, CDCl3, δH, ppm): 3.65 (br, 2H, NCH2), 2.59 (br,
4H, CH2C(O), protons of the piperidine-2,6-dione ring), 1.89 (br, 2H, CH2CH2CH2, protons
of the piperidine-2,6-dione ring), 1.49 (br, 2H, CH2CH2CH2Si), 0.53 (br, 2H, CH2Si). 13C
NMR spectrum (100 MHz, CDCl3, δC, ppm): 172.54 (C=O), 41.79 (NCH2), 32.86 (CH2C(O),
the piperidine-2,6-dione ring), 21.23 (CH2CH2CH2Si), 17.19 (CH2CH2CH2, the piperidine-
2,6-dione ring), 9.78 (CH2Si). 29Si NMR spectrum (79.5 MHz, CDCl3, δSi, ppm, chemical
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shifts were assigned according to the literature [5,30,31]): −53.5 to −59.4 (T2) and −62.7 to
−69.1 (T3).

2.2.3. Preparation of a Polymer Film Coating Based on PSQ-GI

To prepare a polymer film coating based on 1-[3-(silsesquioxanyl)propyl]piperidine-
2,6-dione, 104.0 mg of polysilsesquioxane was dissolved in 0.70 mL of DMSO. The resulting
homogeneous solution was then filtered through a 0.45 µm PTFE syringe filter. Then, the
solution was divided into equal parts and applied to the silicate and quartz glass plates
by casting. To improve the adhesion of the coating, the substrates were pre-treated with
detergent and acetone for 15 min. After each treatment, they were thoroughly washed
with distilled water and dried at 100 ◦C for 30 min. The film samples were air-dried at
room temperature for two days to slowly evaporate the bulk of the solvent, then heated
at 50 ◦C for 2 h and further dried at 60 ◦C at 2 mbar in a vacuum drying oven for 5 h.
Complete solvent removal was monitored by tracking the weight of the coating film during
the curing process.

2.3. Characterizations

Fourier-transform infrared spectra were registered on a Varian 3100 FTIR spectrom-
eter in the wavenumber range of 400–4000 cm−1 with a sample in the form of a thin
film cast from solvent (CDCl3) on KBr glasses. The 1H (400.13 MHz), 13C (100.62 MHz),
and 29Si (79.50 MHz) NMR spectra were obtained on a Bruker DPX-400 spectrometer
(Bruker, Bremen, Germany) at 297 K using deuterated chloroform (CDCl3) as the solvent
with the sample content of 20–30 mg/0.5 mL (sample/CDCl3) in 5 mm standard glass
NMR tubes. The chemical shifts were expressed in ppm, relative to the solvent resonance
signals (7.26 ppm for 1H and 77.16 ppm for 13C) as the internal standard and tetram-
ethylsilane (0 ppm for 29Si) as the external standard. The mass spectrum was obtained
using a Shimadzu GCMS-QP5050A mass spectrometer (Shimadzu, Duisburg, Germany)
with an injector temperature of 200–250 ◦C, carrier gas helium, a detector temperature of
290 ◦C, a quadrupole mass analyzer, and ionization EI (70 eV). Chromatographic separa-
tion of trimethoxysilane monomer was carried out on a capillary column SPB-5 (60 m ×
0.25 mm × 0.25 µm), with an evaporator temperature of 230 ◦C, helium carrier gas, a flow
rate of 0.7 mL/min, a pressure of 280 kPa, and a gradient from 60 to 250 at 10 ◦C/min.
Ultraviolet–visible spectrum was run on a Shimadzu UV-2450 spectrophotometer (Shi-
madzu Corporation, Kyoto, Japan). The pH of solutions was measured by using a digital
pH electrode connected to a multiparameter laboratory benchtop pH, conductivity, and
oxygen meter (HI-2020 edge® Hybrid Multiparameter pH, EC, DO Meter, HANNA Instru-
ments, Leighton Buzzard, UK). The molecular weight and molecular weight distribution
of the samples were determined using gel permeation chromatography on a Shimadzu
LC-20 Prominence system equipped with a Shimadzu RID-20A differential refractive index
detector (Shimadzu Corporation, Kyoto, Japan). The column was 7.5 × 300 mm Agilent
PolyPore (PL1113-6500). The temperature was set at 50 ◦C. The solvent used was N,N-
dimethylformamide, and the flow rate was 1 mL/min. The prepared samples were weighed
and then dissolved in DMF at room temperature for 24 h with stirring. The concentration
of the solution was 10 mg/mL. Calibration was performed using a series of polystyrene
standards, Polystyrene High EasiVials (PL2010-0201), which contained 12 samples with
molecular weights ranging from 162 to 6,570,000 g/mol. To determine the hydrodynamic
particle diameter (Dh) of a test sample using dynamic light scattering, a ZetaPALS potential
analyzer equipped with a BI-MAS module (Brookhaven Instruments Corporation, Nashua,
NH, USA) was used. Deionized water and a 0.1 M NaNO3 water–salt solution with a
polysiloxane concentration of 0.1 mg/mL were used. The measurements were conducted in
a thermostated cuvette at an operating temperature of 25 ◦C and a scattered light recording
angle of 90◦ at a wavelength of 659 nm. Three sets of measurements of 10 scans each were
taken. The results obtained were averaged to give the average diameter of the particles.
Thermogravimetric analysis and differential scanning calorimetry were performed using
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STA 449 Jupiter (Netzsch, Selb, Germany) in an air atmosphere at a heating rate of 5 ◦C per
min from 20 to 800 ◦C; the weight of the samples was 11 mg. Analysis of the qualitative
and quantitative composition of the evolved gaseous thermolysis products was performed
using a QMS 403 C Aeolos quadrupole mass spectrometer (Netzsch, Germany) coupled
with the thermal analyzer. The D8 ADVANCE Bruker diffractometer (Bruker Corporation,
IN, USA), equipped with a CuKα radiation source (wavelength 1.5406 Å) and a scintillation
detector, was used to obtain powder X-ray diffraction data. The scans were carried out in
the range of diffraction angles 2θ from 5◦ to 80◦, with a step size of 0.02◦. The ultraviolet
irradiation test was performed using a 400 W high-pressure mercury vapor arc-discharge
lamp with a source of ultraviolet radiation in the spectral range of 240–340 nm. Elemental
analysis was made on a Thermo Scientific Flash 2000 CHNS-Analyzer (Thermo Fisher Sci-
entific, Cambridge, UK). Gravimetric determination of the silicon content was performed
using the method described in the literature [32].

3. Results and Discussion
3.1. Synthesis and Characterizations of Initial Monomer
1-[3-(Trimethoxysilyl)propyl]piperidine-2,6-dione

Most precursors of polyorganosiloxanes are chlorine-containing silanes. The hydrol-
ysis of organochlorosilanes, as well as the condensation of chlorosilanes and silanols, is
accompanied by the elimination of hydrogen chloride gas, which has a significant effect
on the process and composition of the resulting products due to the reverse reactions at
the Si–O bond and complexation with water [33]. The released toxic hydrogen chloride
is a dangerous reagent for the environment and does not comply with the principles of
green chemistry, and its disposal presents significant difficulties. Therefore, to obtain
silsesquioxanes in an environmentally friendly way due to the potential risks and dan-
gers associated with halogenated chemicals, we used an alternative chlorine-free method
for the synthesis of polyorganosiloxanes. Alkoxysilane RSi(OAlk)n, a representative of
a unique class of organosilicon compounds with hydrolytically active functional groups
at the silicon atom, was chosen as the initial monomer. Trifunctional silanes compounds
can undergo hydrolytic polycondensation easily, resulting in high molecular weight com-
pounds. The synthesis of alkoxy(alkyl)silane monomers as starting materials is a key
process for the environmentally friendly production of polyorganosiloxanes. Such a pro-
cess can be much more attractive from an economic and environmental point of view
compared to chlorine technology. It is known that trimethoxysilanes react much faster
compared to triethoxysilyl derivatives under hydrolytic polycondensation conditions [34].
In this regard, in order to search for organoalkoxysilane precursors for the synthesis of
new polyorganosilsesquioxanes, we chose the trimethoxysilylpropyl derivative of glutarim-
ide. New 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione, a starting monomer for the
production of novel polysiloxane materials containing side-chain glutarimide groups, has
been synthesized through the nucleophilic substitution reaction of the chlorine atom in (3-
chloropropyl)trimethoxysilane on piperidine-2,6-dione group (Scheme 1). Previously, using
this method, we successfully synthesized a series of bridged trialkoxysilylalkyl derivatives
of nitrogen-containing heterocycles [28,35].
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Scheme 1. The synthetic route of 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione 1.

Piperidine-2,6-dione sodium salt, the starting material for the synthesis of the target
trimethoxysilylpropyl functionalized imide 1, is formed as a result of the interaction of
sodium methoxide with glutarimide imide at 64 ◦C for 2 h in a methanol solution. The
reaction of the sodium salt with halogenopropyltrimethoxysilane in a stoichiometric molar
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ratio proceeds by heating in an anhydrous polar solvent N,N-dimethylformamide in the
presence of a dibenzo-24-crown-8-ether catalyst at 70 ◦C for 2.5 h. During the reaction, the
color of the reaction mixture changed from colorless to bright orange. The final colorless
crystalline product 1, isolated by vacuum distillation, is readily soluble in alcohols, CHCl3,
and polar organic solvents such as DMF, DMSO, and CH3CN and easily sublimates under
reduced pressure (Figure 1a).
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Figure 1. Images of the 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione (a) and 1-[3-
(silsesquioxanyl)propyl]piperidine-2,6-dione 2a (b).

The synthesized trimethoxysilane 1 was characterized using elemental analysis, FTIR,
1H, 13C, 29Si NMR spectroscopy, and mass spectrometry. The elemental analysis data
are in good agreement with the calculated elemental content. The mass spectrum of
trimethoxysilane 1 is characterized by a low-intensity molecular ion with m/z 275 (0.09%)
(Figure S1 in Supplementary Materials). The main peak [Si(OMe)3]+ with m/z 121 in the
mass spectrum of compound 1 has the highest intensity (100%). The FTIR spectrum of
compound 1 shows absorption bands at 2842, 1084, 1016, and 816 cm−1 corresponding
to methoxysilyl groups (Figure 2). Two characteristic absorption bands at 1724 cm−1

and 1673 cm−1, respectively, are due to symmetric and asymmetric vibrations of the two
C=O groups of the imide ring. This position of the split carbonyl absorption bands is
characteristic of many cyclic imides [36–38].
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(silsesquioxanyl)propyl]piperidine-2,6-dione (2a–c).

The 1H NMR spectrum of 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione 1 fully
corresponds to the declared structure (Figure 3, down). The 1H NMR spectrum shows
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signals of methoxy group protons and glutarimide fragment protons, as well as signals
related to the protons of the methylene groups of the propyl bridge. The ratio of integral
intensities corresponds to the theoretical one.
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The 29Si NMR spectrum of compound 1 contains one signal at δ −42 ppm (Figure S2,
in Supplementary Materials), the value of which corresponds to a tetracoordinated silicon
atom in trifunctional alkoxysilanes. Thus, both FTIR and 1H, 13C, and 29Si NMR analyses
indicated that trimethoxysilane 1 is the target product, which can be successfully used as a
precursor for the preparation of silsesquioxanes.

3.2. Synthesis and Characterizations of 1-[3-(Silsesquioxanyl)propyl]piperidine-2,6-diones

A new functional polysilsesquioxanes bearing glutarimide side-chain groups 2a–c
were synthesized by the facile reaction of hydrolytic polycondensation of trifunctional
1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione 1 in an aqueous medium at pH 7 (2a), 3
(2b), and 10 (2c) (Scheme 2).
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Scheme 2. The synthetic route of 1-[3-(silsesquioxanyl)propyl]piperidine-2,6-dione.

During hydrolysis, the methoxy groups of trimethoxysilane 1 are hydrolyzed to form
silanol and methyl alcohol. Further, the reactive trisilanol enters into a condensation
reaction leading to silsesquioxane, the main chain of which consists of a Si–O–Si bond
skeleton, in which the silicon atom is bound to the glutarimide fragment by a propylene
bridge. Polycondensation occurs in the following two ways: homofunctional condensation,
leading to the formation of a siloxane bond and water (condensation of silanol groups),
and heterofunctional condensation, leading to the formation of a siloxane bond and alcohol
(condensation of silanol and methoxy groups). The reaction was carried out for 8 h at
70 ◦C. The resulting polysilsesquioxanes are colorless solid products (Figure 1b and Table 1),
highly soluble in chloroform, alcohols, acetone, DMF, and DMSO. Based on the data in
Table 1, it can be seen that the yields of silsesquioxanes 2a–c, which were synthesized by
acid-, base-, or non-catalytic hydrolytic condensations of trimethoxysilane 1, are similar.

Table 1. Characteristics of silsesquioxanes 2a–c.

Silsesquioxane pH Yield, % Mn, kDa Mw, kDa Ð
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2a 7 87 7.1 10.1 1.42

2b 3 78 7.3 10.7 1.47

2c 10 79 8.5 11.7 1.38

The molecular weight characteristics of the PSQ-GI 2a–c were determined by gel
permeation chromatography using DMF as an eluent. The results obtained are presented
in Table 1 and Figure 5. Table 1 shows that polysiloxanes 2a–c synthesized under different
conditions of acidity in the reaction medium have similar weight average molecular weights
in the range of 10–12 kDa. The PDI (polydispersity index) of these polysiloxanes varies
from 1.38 to 1.47, indicating a relatively narrow distribution of molecular weights. The
GPC curves indicate the formation, in addition to the main polymer fraction, of a small
fraction of lower molecular weight hydrolytic polycondensation products (Figure 5). At
the same time, the content of the latter decreases significantly at pH 10. Thus, under base
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catalysis, the condensation of silanol groups leads to the production of a more narrowly
dispersed silsesquioxane with a PDI of 1.38.
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Figure 5. GPC curves of silsesquioxanes 2a–c: a—pH 7, b—pH 3, and c—pH 10.

The structure of 1-[3-(silsesquioxanyl)propyl]piperidine-2,6-dione 2a–c was charac-
terized by 1H, 13C, and 29Si NMR spectroscopy. The broader signals observed in the 1H
NMR spectra of the isolated silsesquioxanes 2a–c (Figure 3, up; Figures S3 and S4, in
Supplementary Materials) compared to the starting monomer 1 indicate the polymeric
nature of the compounds. According to 1H NMR spectroscopy data, the signals of methoxy
group protons at 3.54 ppm, which are characteristic of trimethoxysilane monomer 1, are
not present in the spectra of the products 2a–c of its hydrolytic polycondensation. This
indicates their complete conversion during hydrolysis. The 13C NMR spectra of PSQ-GI
2a–c (Figure 4, up; Figures S5 and S6, in Supplementary Materials) show broader signals
from the carbon nuclei of the alkyl chain and glutarimide fragments. Signals corresponding
to –OCH3 groups in the starting 1-[3-(trimethoxysilyl)propyl]piperidine-2,6-dione 1 at
50.65 ppm (Figure 4, down) are not observed in the spectra of the resulting silsesquioxanes.

The degree of condensation of silicon atoms is determined by the number of siloxane
bonds. According to the literature [30,39,40], there are four types of silicon atoms: T0, T1, T2,
and T3, depending on their degree of condensation (Figure 6). The degree of condensation
of silicon atoms without siloxane bonds is designated as T0. Silicon atoms with one siloxane
bond are designated as T1, while silicon atoms with two siloxane bonds are designated as
T2. The designation of T3 corresponds to completely condensed silicon atoms, which have
three Si–O–Si bonds.
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The 29Si NMR spectra of the synthesized silsesquioxanes 2a–c are shown in Figure 7.
Each spectrum exhibits chemical shifts in the region from –53 to –60 ppm and from –61 to
–71 ppm, corresponding to the structural units T2 and T3 [31]. The 29Si NMR spectra of the
polymers 2b and 2c show peaks in the range of –46 to –50 ppm that can be assigned to T1

species. The chemical shift of the monomer 1 at –42.4 ppm is missing.
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Figure 7. 29Si NMR spectra of 1-[3-(silsesquioxanyl)propyl]piperidine-2,6-dione (2a–c).

The percentage content of structural units T1, T2, and T3, calculated by integrating
their individual signals, allows the degree of condensation of polymeric silsesquioxanes to
be calculated using Equation (1) [40]:

DC [%] = (3·T3 [%] + 2·T2 [%] + T1)/3 (1)

Using the degree of condensation (DC), the residual amount of hydroxyl groups in
silsesquioxane can be calculated by applying Formula (2) [39]:

OH [%] = 100% − DC [%] (2)

The obtained values are presented in Table 2.

Table 2. The ratio of condensation products T1, T2, and T3, the degree of condensation, and the
proportion of residual Si–OH groups.

Compound pH T1 (%) T2 (%) T3 (%) DC (%) OH (%)

2a 7.0 – 40.83 59.17 86.39 13.61
2b 3.0 6.79 31.48 61.73 84.98 15.02
2c 10.0 2.53 34.18 63.29 86.92 13.08

Calculation of the ratio of the integral signal intensities of silicon atoms in different
structures, taking into account their relative contribution to the polycondensation products,
showed the content of silanol groups in the range of 13–15%.

This indicates significant incompleteness of the second stage of hydrolytic polyconden-
sation, namely, silanol condensation. From Table 2, it can be seen that silsesquioxanes 2a–c,
obtained at different pH values, are characterized by a fairly high degree of condensation
of about 87%.

The value of the width at half-height (w1/2) of the resonance peak of the silicon atom
of T3 SQ units is an identifier of the ladder structure of polysilsesquioxane; the narrower
w1/2, the higher the structure regularity. The values of half-peak (w1/2) 4.6 (2a), 4.4 (2b),
and 4.9 ppm (2c) indicate the presence of structural defects in the silsesquioxanes 2a–c
backbone, respectively.

The chemical structure of polysilsesquioxanes 2a–c obtained by hydrolysis and con-
densation of precursor 1 in water at pH 7 or in acidic or alkaline medium in the presence of
HCl (pH 3) or NaOH (pH 10) was characterized by Fourier-transform infrared spectroscopy
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(Figure 2). In general, the spectra of compounds 2a–c are almost identical. The absorp-
tion bands at 1192 and 816 cm−1 corresponding to the methoxysilyl groups of the initial
monomer 1 disappeared, confirming the completion of the hydrolysis reaction [41]. The
broad absorption band at 3376 cm−1 was stretching vibrations of residual associated Si–OH
groups. During hydrolysis and condensation, the glutarimide group remains unaffected.
This is evidenced by absorption bands at 1722 cm−1 (νs C=O) and 1662 cm−1 (νas C=O) and
1460–1435 cm−1 and 1387–1353 cm−1 (C–C bond deformation vibrations of the glutarimide
ring). Compared to the FTIR spectrum of 1-[3-(trimethoxysilyl)propyl]-piperidine-2,6-
dione, the absorption peaks of the C=O group at 1724 and 1673 cm−1 are shifted to the
low-frequency region by 2 and 11 cm−1 in samples 2a–c.

These results represent a different arrangement of carbonyl groups in the PSQ-GI
molecule. The change in the character of the absorption bands in the 1200–1000 cm−1

region indicates that the polycondensation reaction is taking place. This broad complex
Si–O–Si valence absorption band demonstrates the presence of various silsesquioxane
species. The new peak at 1042 cm−1 (νring-sym), which appears in the IR spectrum of
silsesquioxanes 2a–c (Figure 2), can be attributed to the stretching vibrations of the siloxane
bonds in low-symmetry structures such as ladder-like, open cage, or random network. The
observed high intensity of the absorption peak of the Si–O–Si bond at 1120 cm−1 suggests
the formation of a specific structure in PSQ-GI, which is likely to be a cage [42,43]. Thus,
the IR spectra showed that the resulting polymer molecules 2a–c probably have a mixed
ladder-like and cage structure.

The powder X-ray diffraction method was used to study the 1-[3-(silsesquioxanyl)propyl]
piperidine-2,6-dione 2a structure. The X-ray diffraction pattern of silsesquioxane 2a demon-
strates two distinct characteristic diffraction halos, which is in good agreement with the liter-
ature data regarding the structure analysis of the ladder polymers by XRD (Figure 8) [44–48].
The first halo (w) at 2θ = 6.98◦ indicates the intramolecular chain-to-chain distance, cor-
responding to the width of a double-chained molecule of ladder organosilicon polymers.
The 1-[3-(silsesquioxanyl)propyl]piperidine-2,6-dione 2a is amorphous, but the narrow and
sharp diffraction peak (w) with high intensity indicates that the polymer has a relatively
regular ladder-like skeleton, the rigidity of which limits movement around the longitudinal
axis. The second diffuse halo (t), covering a wide range of diffraction angles with a maxi-
mum at 2θ 18.78◦, corresponds to the average thickness of the ladder-like polymer chain.
The average thickness of the macromolecular chain of polysilsesquioxane 2a was found
to be at 4.72 Å, and the distance between two glutarimide side-chain groups through the
siloxane backbone of the ladder structure was 12.65 Å.
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The effective hydrodynamic diameters of polymer coils of synthesized 1-[3-(silsesquioxanyl)
propyl]piperidine-2,6-dione 2a were measured by dynamic light scattering in water and
aqueous salt solution. The hydrodynamic particle diameter was calculated using the Stokes–
Einstein relation (Equation (3)), according to which the diffusion velocity is inversely
proportional to the particle size [49]:

D = kBT/3πηDh (3)

where kB is the Boltzmann constant (1.380 × 10−23 kg·m2·s−2·K−1), T (K) is an absolute
temperature, η (kg·m−1·s−1) is the viscosity of medium, Dh (m) is the hydrodynamic
particle diameter, and D (m2·s−1) is the diffusion coefficient.

The obtained histograms of the dependence of the signal intensity on the hydrody-
namic diameter in aqueous and water-salt media indicate that silsesquioxane 2a forms a
colloidal system with a monomodal particle size distribution (Figure 9).
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The sizes of scattering particles of silsesquioxane 2a, corresponding to the effective
hydrodynamic diameter, differ in aqueous and aqueous salt media. In an aqueous salt
solution, the diameter of the scattering particles is 1.3 nm (Figure 9a). Traces of a low-
molecular-weight fraction are present in an aqueous solution of silsesquioxane 2a, but most
of the polysiloxane is in an associated state. The average hydrodynamic diameter of the
particles is 46 nm (Figure 9b). Macromolecules of PSQ-GI 2a in water are in an associated
state, forming supramolecular structures due to the intermolecular interaction of individual
macromolecules.

The formation of these associated structures can be due to hydrogen bonding between
carbonyl oxygen atoms in glutarimide fragments and hydroxyl groups Si–OH in different
macromolecular siloxane chains (Figure 10).
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The polysilsesquioxane 2a thermal properties were characterized by thermogravimet-
ric analysis and differential scanning calorimetry in an oxidative atmosphere, the results of
which are given in Figure 11. TGA data show that silsesquioxane 2a is stable up to 335 ◦C
(Td5), after which weight loss started, associated with thermal oxidative degradation. The
pyrolysis temperature of PSQ-GI 2a with a weight loss of 10% was 405 ◦C. This is due to
the presence of thermally stable glutarimide side-chain groups and the Si–O–Si siloxane
bond framework. The initial weight loss of the sample can be explained by the removal of
water. The unreacted OH groups present in product 2a condense, resulting in an increase
in the degree of cross-linking. Weight loss associated with thermal oxidative destruction is
characterized by two main stages. The first degradation stage with a 37% weight loss in the
range from 405 ◦C to 524 ◦C is attributed to the thermal decomposition of the organic side
chain groups of the silsesquioxane. In this case, an exothermic peak with a maximum at
495 ◦C is observed on the DSC curve. The mass loss is accompanied by peaks in the ion
current curves with mass numbers corresponding to low-molecular-weight products of
thermal oxidative degradation with m/z 12 (C), 28 (CO), 30 (NO, CH2O), 42 (NCO), and
44 (CO2) (Figure 12).
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decomposition of glutarimide groups, oxidation of free carbon, and thermal degradation of
the Si–O–Si main chain. Thermal degradation of the Si–O–Si backbone was mainly caused
by a random cleavage reaction in which an oxygen atom recombined with a non-adjacent
silicon atom within the same backbone to form volatile cyclic oligomers [50]. The mass loss
is accompanied by peaks in the ion current curves with m/z 12 (C), 30 (C2H6), and 44 (CO2)
(Figure 12). The residual mass of 28% can be attributed to SiO2 and char formed during
complete decomposition of the polymer.

3.3. A Polymer Film Coating PSQ-GI

A polymer film coating based on silsesquioxane 2a was obtained and deposited on
a flat glass substrate using the drop-casting method. Contact angle analysis was used to
evaluate its surface properties. Figure 13a shows a photograph of a water droplet (2 µL)
deposited on the surface of a PSQ-GI polymer film coating on silicate glass. The contact
angle of water was 75◦. This value is greater than that for deposited on untreated silicate
glass (Figure 13b), but less than 90◦, that is, the obtained PSQ-GI polymer film coating
belongs to hydrophilic materials.
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The transmittance of the polymer film coating was measured by UV-Vis spectroscopy.
The transmission spectra of the polymer film coating after different irradiation times were
used to investigate its resistance to UV radiation (Figure 14). The initial transmission spec-
trum of the film coating showed a high transmission (98%) in the visible wavelength range
and in the near ultraviolet region of the spectrum. In the ultraviolet region of the spectrum
below 277 nm, the transmittance was reduced due to the absorption of UV radiation by the
chromophoric carbonyl groups of the glutarimide moieties of silsesquioxane 2a. During
UV irradiation for 24 h, there were no significant changes in the transmittance of the film
coating. This is probably due to the fact that glutarimide fragments act as a UV-absorbing
material that protects against ultraviolet radiation, effectively scattering and absorbing light
in the wavelength range below 300 nm, and ultraviolet rays practically do not penetrate
through the polymer coating film.

When the polymer film is exposed to UV irradiation for a longer time (120 h), the
ultraviolet/visible spectrum remains almost unchanged, indicating its resistance to UV
radiation. The absence of weight loss of the film coating depending on the time of exposure
to UV radiation also indicates its resistance to UV radiation.

Thus, using the UV spectroscopy method, which allows studying solid polymer
films, it was shown that the polymer film coating based on silsesquioxane 2a, containing
chromophore groups C=O, can be used as a promising polymer material for protection
against UV radiation.

4. Conclusions

In summary, this study demonstrates a simple and universal approach to the forma-
tion of novel functional thermally stable soluble polysilsesquioxane bearing glutarimide
side-chain groups, which lays the foundation for the synthesis of polysiloxanes with vari-
ous functionality. A previously unknown trifunctional (trimethoxysilylpropyl)glutarimide
allowed the use of an environmentally friendly (chlorine-free) approach to create a func-
tional polyorganosilsesquioxane. Hydrolytic polycondensation in water or in an acidic
or alkaline medium provides the production of silsesquioxanes with a weight average
molecular weight of 10–12 kDa and a low polydispersity index of 1.38–1.47, which indicates
the formation of silsesquioxanes with a uniform distribution according to the degree of
polycondensation. A totality of research methods (IR, NMR, and XRD) indicate that the
synthesized silsesquioxanes have a mixed ladder and cage structure with defects in the
form of incompletely condensed silanol groups. Incompletely condensed silsesquioxanes
with residual silanol groups are of interest due to the possibility of their use in curable
composition modification, as well as for emulsions that impart surface hydrophobicity and
for producing optically transparent composite films. The powder X-ray diffraction method
showed the amorphous nature of the obtained silsesquioxane. According to DLS, the imide
fragments of silsesquioxane provide its solvation in an aqueous medium, including the
formation of supramolecular structures due to intermacromolecular association with non-
condensed hydroxyl groups. The resulting polysilsesquioxane has relatively high thermal
stability (Td5 = 335 ◦C and Td10 = 405 ◦C). Polymer film coatings based on silsesquioxane
with glutarimide side-chain fragments containing chromophoric carbonyl groups are char-
acterized by 98% transmittance in the visible spectral region and demonstrate resistance
to ultraviolet radiation for a long time. These properties make them promising polymeric
materials for UV protection.
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