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Abstract: Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties
due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide
blocks, enabling its use in various industrial applications, including membrane technologies. In this
study, PEBA membranes modified with a holmium-based metal–organic framework (Ho-1,3,5-H3btc)
were developed for enhanced pervaporation separation of water/isopropanol and water/phenol
mixtures. The effect of 1–7 wt.% Ho-1,3,5-H3btc content variation and the selection of a porous
substrate (commercial from fluoroplast F42L (MFFC) and developed membranes from polyvinylidene
fluoride without (PVDF) and with a non-woven polyester support (PVDF-s)) on dense and/or
supported membrane properties, respectively, was investigated. The dense and supported PEBA/Ho-
1,3,5-H3btc membranes were studied by use of Fourier transform infrared spectroscopy, scanning
electron and atomic force microscopies, swelling measurements, and pervaporation experiments. The
supported membrane from PEBA with 5 wt.% Ho-1,3,5-H3btc applied onto the PVDF-s substrate
exhibited optimal pervaporation performance: a 1040 g/(m2h) permeation flux and a 5.2 separation
factor in water/phenol (1 wt.%) mixture separation at 50 ◦C due to optimal values of roughness,
swelling degree, and selective layer thickness. This finding highlights the potential of incorporating
Ho-1,3,5-H3btc into PEBA for developing high-performance pervaporation membranes.

Keywords: polyether block amide; metal–organic frameworks; mixed-matrix membranes; iso-
propanol; phenol; pervaporation

1. Introduction

Polymers, with their unique properties and diverse applications, play a key role in
the modern world and industries, including construction, automotive, medical, electronics,
packaging, and textiles [1]. Among polymers, segmented polymers deserve special atten-
tion, as they consist of several segments with different properties. This structure makes it
possible to obtain materials with combined unique properties that cannot be achieved with
homopolymers [2,3].

Polyether block amides (PEBAs) or Pebax® elastomers (trade name) are a class of block
copolymers that combine the unique structural properties of rigid polyamide blocks, soft
polyester blocks, and unplasticized thermoplastic elastomers (TPEs) [4]. Rigid polyamide
blocks provide mechanical strength and thermal stability, while soft polyester blocks im-
part flexibility and elasticity, making them promising for use in membrane technologies.
PEBA-based membranes have already proven themselves as membrane materials for use in
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reverse osmosis, dialysis, gas separation, and pervaporation [5,6]. However, the transport
characteristics of the currently available PEBA membranes are insufficient for the effective
removal of organics from water. PEBA membranes are actively used for pervaporation
separation of different mixtures, such as pyridine/water [7–9], ethanol/water [10–13],
toluene/water [14,15], aniline/water [16,17], phenol/water [16,18–22], furfural/water [23],
ethyl acetate/water [24–26], isopropylbenzene/water [27], 1-ethyl-2-methylbenzene/
water [28], butanol/water [29,30], isopropanol/water [31–33], and propyl propionate/
water [34]. PEBA-based membranes are most often used to remove phenol from water.
Phenolic compounds can be potentially toxic, carcinogenic, teratogenic, and mutagenic.
The separation and recovery of phenolic compounds are crucial from both an industrial
perspective and in terms of environmental safety. Conventional methods such as extraction,
distillation, chemical oxidation, electrochemical oxidation, and adsorption can successfully
remove phenolic compounds from water [35–38]. However, these methods have a number
of disadvantages, such as the use of a large number of chemical reagents, high energy con-
sumption and costs, etc. [39]. Some advanced technologies are free of these disadvantages,
for example, the use of various enzymes (peroxidase, laccase, and tyrosinase) [40] allows for
the removal of phenolic compounds under mild conditions, but there is a problem with fur-
ther processing of the enzyme medium. Membrane technologies, on the other hand, do not
have these drawbacks, and the creation of membrane modules using cascading purification
steps has great potential for industrial applications of purification. Alcohols also contain a
hydroxyl group in their structure such as phenols, and the removal of alcohols, particularly
isopropanol, is a pressing issue due to its impact on environmental safety, human health,
and water quality. In contrast to traditional processes, pervaporation demonstrates signifi-
cant potential in the removal of organic compounds, offering high separation efficiency,
simple equipment, ease of operation, and low energy consumption. This technology is
considered a promising solution for separating and recovering low-concentration phenols
from wastewater.

There are several studies presented in the literature on the creation of mixed-matrix mem-
branes (MMMs) based on PEBAs to enhance the pervaporation process. Different substances
such as 4-(trifluoromethyl)-N(pyridine-2-yl)benzamide and 4-(dimethylamino)-N(pyridine-
2-yl)benzamide [12], mesoporous silicate MCM-41 [15,41], two-dimensional molybdenum
disulfide nanosheets [8], NaX nanozeolites [42], graphene oxide (GO) modified with ionic
liquid (IL) (N-octylpyridiniunm bis (trifluoromethyl) sulfonyl imide [OPY][Tf2N]) [30], ze-
olitic metal azolate frameworks, RHO-[Zn(Heim)2] (MAF-6, Heim = 2-ethylimidazole) [22],
mesoporous molecular sieves MCM-41 modified with IL (1-ethyl-3-vinylimidazolium
bis[(trifluoromethyl)sulfonyl]imide ([EVIM][Tf2N]) and N-octyl-pyridinium bis[(trifluoro-
methyl)sulfonyl]imide ([OMPY][Tf2N])) [29], ZSM-5 zeolite [26,43,44] and [Hmim]
[PF6] IL [25], Cu2O nanocrystals [9], carbon nanotubes [45], metal–organic frameworks
mbox(MOFs) [7,11,13,16,18,20,21,23,24,46–49], etc., have been used as modifiers for
PEBA membranes.

MOFs are very relevant and promising modifiers for PEBA-based membranes due
to their unique properties. In [46], the use of zeolitic imidazolate framework-71 (ZIF-71)
nanoparticles and nanosheets as fillers in PEBA membranes was studied for efficient phenol–
water separation. The results showed that the incorporation of ZIF-71 nanosheets led to
improved selectivity, mainly due to the formation of a “brick-and-mortar” structure within
the membrane that inhibited water transport while maintaining phenol permeation. MMMs
from PEBAs were developed by incorporating ZIF-8 nanoparticles using interface induction
to control their directional distribution [47]. This controlled distribution improved the
stability and separation performance of the membranes. The directional distribution of
the nanoparticles protected the ZIF-8 structure from direct contact with the feed, ensuring
long-term stability over 100 h of operation. Reference [48] focused on overcoming the
permeability–selectivity trade-off in pervaporation by designing high-performance PEBA
MMMs. A novel solvent-assisted linker exchange strategy was employed to introduce
fluoroalkyl groups into MOF-808, tailoring its pore size. The resulting fluorinated MOF-
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808/PEBA MMMs exhibited enhanced butanol permeation and separation performance
due to the “push–pull effect” created by the fluorinated MOF-808, enhancing butanol
affinity and repelling water. The use of functionalized MIL-101 within a PEBA matrix
was studied to create MMMs for the selective separation of phenol [49]. By introducing
different organic ligands to MIL-101, improved interfacial compatibility and hydrophobicity
compared to unmodified MIL-101 were demonstrated, leading to improved performance
in phenol pervaporation. PEBA/ZIF-71 membranes were developed for the pervaporation
removal of phenol and aniline from water [16]. The incorporation of ZIF-71 resulted in a
significant reduction in water membrane permeability, maintaining or slightly reducing
the permeability of phenol and aniline, causing increased selectivity toward these aromatic
compounds due to the preferential sorption and diffusion of the aromatic solutes within the
inner ZIF-71 channels. In [18], PEBA membranes were modified with porous HZIF-8 (ZIF-8
with polystyrene (PS) to improve compatibility. The resulting PEBA/HZIF-8 membrane
exhibited enhanced phenol/water separation performance due to the π–π interaction
between the imidazole ring skeleton in HZIF-8 and phenol molecules. This interaction was
facilitated by the PS on the surface of HZIF-8, leading to improved compatibility between
the filler and the PEBA matrix.

Thus, the introduction of MOFs into the PEBA matrix led to an improvement in the
transport characteristics of MMMs. To the best of our knowledge, there is no research
devoted to the development of pervaporation MMMs based on PEBAs modified with
Ho-based MOFs. This work is a continuation of a previous work [50], where a range of five
Ho-based MOFs (Ho-1,3,5-H3btc, Ho-1,2,4-H3btc, Ho-1,2-H2bdc, Ho-1,3-H2bdc, Ho-1,4-
H2bdc) were synthesized and studied as perspective modifiers for the PEBA matrix. The
developed Ho-1,3,5-H3btc turned out to be the most promising for PEBA modification in
vacuum filtration for dye removal due to its needle-shaped structure, crystal morphology,
and uniform distribution of particles in the polymer matrix. However, its effect as a
modifier of pervaporation PEBA membranes has not yet been studied.

Thus, the aim of this study was to study the effect of Ho-1,3,5-H3btc on the structural,
physicochemical, and transport properties of PEBA-based membranes and to develop per-
vaporation PEBA/Ho-1,3,5-H3btc membranes with improved performance for enhanced
isopropanol and phenol removal from water. The effect of Ho-1,3,5-H3btc content variation
and the selection of a porous substrate (commercial MFFC and developed substrate from
PVDF without/with the use of a non-woven polyester support) on dense and supported
membrane properties, respectively, was investigated. The study of developed MMMs was
carried out by methods of Fourier transform infrared spectroscopy, scanning electron mi-
croscopy, atomic force microscopy, and swelling measurements. The transport properties of
developed membranes were evaluated for pervaporation separation of water/isopropanol
and water/phenol mixtures.

2. Materials and Methods
2.1. Materials

Polyester block amide (PEBA, Pebax-2533) from Hebei Luozheng Technology Co.,
Ltd. (Shijiazhuang, China) was used as a membrane material. An Ho-based MOF—Ho-
1,3,5-H3btc (prepared from Ho(NO3)3·5H2O and trimesic acid)—was used as a mem-
brane modifier. The synthesis and characterization of highly porous Ho-1,3,5-H3btc (with
needle-shaped structure, a needle length of ~50 µm, and crystal morphology) was de-
scribed in our previous study [50]. Isopropanol (i-PrOH), N,N′-dimethylacetamide (DMA),
phenol (PhOH), and n-butanol from Vekton (St. Petersburg, Russia) were used with-
out further purification. Polyvinylidene fluoride (PVDF, XF2170P, molecular weight of
300,000–500,000 g/mol) from Transcool LLC (Moscow, Russia) was used as a polymer
for porous substrate preparation onto a non-woven polyester support (Novatexx 2430,
Freudenberg Filtration Technologies, Weinheim, Germany). A commercial membrane
MFFC (based on fluoroplast F42L) from Vladipor (Vladimir, Russia) was also used as a
porous substrate.
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2.2. Dense Membrane Preparation

To develop dense membranes, a 10 wt.% PEBA solution and PEBA/Ho-1,3,5-H3btc
composites were prepared in n-butanol at 85 ◦C for 5 h with constant stirring. Up to
7 wt.% Ho-1,3,5-H3btc with respect to the PEBA weight was added into the polymer matrix.
Then, PEBA and PEBA/ Ho-1,3,5-H3btc dispersions were sonicated at ambient temperature,
poured into glass Petri dishes for the formation of dense membranes by solvent evaporation,
and placed at 60 ◦C in an oven for 24 h. The thickness of the dense PEBA and PEBA/
Ho-1,3,5-H3btc membranes measured with a micrometer was equal to 80 ± 10 µm.

2.3. Supported Membrane Preparation

The preparation of the supported PEBA and PEBA/Ho-1,3,5-H3btc membranes was
carried out as follows: the prepared PEBA or PEBA/ Ho-1,3,5-H3btc dispersions were
applied onto a porous PVDF-based or commercial MFFC membrane followed by drying in
air for 24 h. The concentration of the PEBA solution was 3 wt.%.

To prepare a porous PVDF substrate, 15 wt.% PVDF was dissolved in DMA at
100–120 ◦C for 4 h with constant stirring using an overhead stirrer. Two types of porous
PVDF substrate were prepared by using non-solvent-induced phase separation (NIPS):
without (PVDF substrate) and with a non-woven polyester support (PVDF-s substrate).
The PVDF solution was deposited onto a glass or a non-woven polyester support using a
casting blade with a gap width of 200 µm, followed by immersion in a coagulation bath
containing distilled water at ambient temperature [51].

Table 1 shows the designations of the membranes developed in this study.

Table 1. Developed dense and supported membranes based on PEBA and PEBA/Ho-1,3,5-
H3btc composites.

Membrane Type Content of
Ho-1,3,5-H3btc, wt.% Support

PEBA-0 dense 0 -
PEBA-1 dense 1 -
PEBA-3 dense 3 -
PEBA-5 dense 5 -
PEBA-7 dense 7 -

PEBA-0/MFFC supported 0 MFFC
PEBA-0/PVDF supported 0 PVDF

PEBA-0/PVDF-s supported 0 PVDF-s
PEBA-5/PVDF-s supported 5 PVDF-s

2.4. Pervaporation Experiment

The transport properties of the developed PEBA and PEBA/Ho-1,3,5-H3btc mem-
branes were studied for pervaporation using a laboratory cell with stirring at 22 ◦C [52]. The
compositions of the feed and permeate were studied on a gas chromatograph, Chromatec
Crystal 5000.2 from Chromatec (Nizhny Novgorod, Russia), with a column “Hayesep R”
and a thermal conductivity detector.

The permeation flux J (kg/(m2h)) of the developed PEBA and PEBA/Ho-1,3,5-H3btc
was calculated by Equation (1) [53]:

J =
W
A·t , (1)

where W (kg) is the weight of the permeate (the mixture that permeated through the
membrane), A (m2) is the effective membrane area, and t (h) is the time of the measurement.

The separation factor (β) was calculated by Equation (2) [54]:

β =

yi
yj
xi
xj

, (2)
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where yi and yj are the weight of the components—isopropanol or phenol and water in the
permeate; xi and xj are the weight of the components—isopropanol or phenol and water in
the feed.

The permeance P/l was calculated by Equation (3) [48]:

P/l =
ji

pi f − pip

, (3)

where ji is the partial flux of component i, l is the membrane’s thickness, and pi f and pip

are the vapor pressures of component i in the feed and the permeate, respectively. Gas
permeation units (GPUs) were used to express the permeances of isopropanol and water
(1 GPU = 1 × 10−6 cm3 (STP)/cm2 s cm Hg; 1 m3 m/m2 s kPa = 1.33 × 108 GPU).

The pervaporation separation index (PSI) was calculated by Equation (4) [55]:

PSI = J·(β − 1), (4)

To ensure the reliability of the results, all data were collected in triplicate, and the
average value was used for analysis. The average accuracies obtained were as follows:
±0.7% for iPrOH and PhOH content in the permeate, ±5% for permeation flux of the dense
membranes, and ±8% for permeation flux of the supported membranes.

2.5. Fourier Transform Infrared Spectroscopy

The structural analysis of dense PEBA and PEBA/Ho-1,3,5-H3btc membranes was per-
formed using a BRUKER-TENSOR 27 Spectrometer (Bruker, Ettlingen, Germany) equipped
with an attenuated total reflectance (ATR) accessory. The spectra were collected in the range
of 600–4000 cm−1 at ambient temperature.

2.6. Atomic Force Microscopy

The surface topography of the PEBA and PEBA/Ho-1,3,5-H3btc membranes was
studied by atomic force microscopy (AFM) using the NT-MDT NTegra Maximus atomic
force microscope from NT-MDT Spectrum Instruments (Moscow, Russia) with standard
silicon cantilevers and a rigidity of 15 N·m−1 in tapping mode. AFM images were taken of
the 2 membranes, with one photo at different membrane sites. The roughness measurement
error was 20%.

2.7. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was used to study the cross-sectional and surface
morphology of the dense and supported PEBA-based membranes. A Zeiss AURIGA Laser
(Carl Zeiss SMT, Oberhochen, Germany) was applied to carry out the experiment.

2.8. Swelling Degree

The swelling degree (sorption) was studied in a water/isopropanol mixture, water,
and isopropanol for dense PEBA and PEBA/Ho-1,3,5-H3btc membranes by using the
gravimetric method at 25 ◦C. Each dense membrane was lowered into a water/isopropanol
mixture, water, or isopropanol, and the weight of the membranes was checked regularly un-
til a constant swelling weight was reached. To calculate the swelling degree (S), Equation (6)
was used [52]:

S =
ms − mo

mo
·100% (5)

where ms (g) is the weight of the swollen dense membrane, and mo (g) is the initial weight
of the dry dense membrane.

3. Results and Discussion

This section is divided into three subsections:
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• “Section 3.1” focuses on the development of the dense PEBA and PEBA/Ho-1,3,5-
H3btc membranes; the study of their transport is presented in “Section 3.1.1” and their
structure and physicochemical properties are discussed in “Section 3.1.2”;

• “Section 3.2” focuses on the development of the supported PEBA and PEBA/Ho-1,3,5-
H3btc membranes; the study of their transport is presented in “Section 3.2.1” and their
physicochemical properties are discussed in “Section 3.2.2”;

• “Section 3.3” is dedicated to the comparison of the performance of the developed
membranes with PEBA-based membranes from literature data.

3.1. The Development and Investigation of Dense PEBA and PEBA/Ho-1,3,5-H3btc Membranes
3.1.1. Pervaporation Performance of Dense PEBA and PEBA/Ho-1,3,5-H3btc Membranes

In order to select the optimal concentration of the modifier, Ho-1,3,5-H3btc from
1 to 7 wt.% was introduced into the PEBA matrix. Figure 1 shows the transport properties
(permeation flux, isopropanol content in permeate, separation factor, PSI, water, and
isopropanol permeances) of the dense membranes based on PEBA and PEBA/Ho-1,3,5-
H3btc (1–7 wt.%) for pervaporation separation of a water (95%)/iPrOH (5%) mixture.
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It was found that the introduction of Ho-1,3,5-H3btc up to 7 wt.% led to an increase in
permeation flux to 35 g/(m2h). The introduction of needle-shaped Ho-1,3,5-H3btc with a
highly porous structure into the PEBA matrix led to morphological changes in the mem-
brane during the modification process, namely the formation of “plastic deformations”
in the inner structure and increased surface roughness (confirmed by SEM and AFM).
This led to a greater effective active contact surface with increased sorption center num-
bers, causing more membrane swelling in the feed (confirmed by swelling degree data),
which consequently led to an increase in permeability [56–59]. With the introduction of
up to 5 wt.% Ho-1,3,5-H3btc into the PEBA matrix, a rise in isopropanol content in the
permeate was noted to 18 wt.%, which could be associated with the hydrophobization
of the membrane surface during the modification process [50], which is more attractive
for isopropanol penetration. A further increase in the Ho-1,3,5-H3btc content in the PEBA
matrix to 7 wt.% resulted in a decrease in the isopropanol content in the permeate to 12 wt.%
compared to the PEBA-5 membrane. This effect may be caused by excessive swelling in
isopropanol (confirmed by swelling degree data), which is embedded between the PEBA
polymer chains, increasing the free volume and thereby facilitating the penetration of the
second feed component—water [60]. Based on the component content in the permeate, the
separation factor was also calculated to account for membrane selectivity, the values of
which demonstrate the same dependence (Figure 1c).

A far more informative approach to present pervaporation data is through membrane
permeances, as it directly reflects the intrinsic properties of the separation membranes [54].
It was shown that the PEBA-based membranes had more permeance for isopropanol than
for water (Figure 1b). This may be due to the hydrophobic nature of PEBA, and the introduc-
tion of Ho-1,3,5-H3btc into the polymer matrix leads to the surface hydrophobization [50],
causing an increase in the iPrOH permeance. The PSI calculated to account for the efficiency
(Figure 1c) demonstrated that the PEBA-5 membrane (with 5 wt.% Ho-1,3,5-H3btc) had the
optimal performance due to the highest value of both the separation factor and PSI.

Thus, the PEBA-5 membrane has the optimal pervaporation performance among
developed dense membranes: the highest isopropanol content in the permeate with high
permeation flux and the highest isopropanol permeance, separation factor, and PSI values,
which demonstrate the efficiency of the separation of the water/isopropanol mixture. The
introduction of 5 wt.% Ho-1,3,5-H3btc into the PEBA matrix was chosen as optimal for
further membrane improvement through the development of supported membranes.

3.1.2. Structure and Physicochemical Properties of Dense PEBA and
PEBA/Ho-1,3,5-H3btc Membranes

The structural characteristics of the PEBA and PEBA/Ho-MOFs membranes were
studied by FTIR spectroscopy (Figure 2).

The FTIR spectra of the PEBA-0 membrane exhibited characteristic peaks attributed
to various functional groups in the polyamide and polyether segments. The peak at
3305 cm−1 corresponds to the stretching vibration of N-H, the peak at 1735 cm−1 to the
stretching vibration of C=O, the peak at 1639 cm−1 to the stretching vibration of H–N–C=O,
and the peak at 1370 cm−1 to the stretching vibration of C–N groups in the polyamide
segment [20,21]. The peak at 1104 cm−1 is assigned to the stretching vibration of the C-O-C
group in the polyether segment [20,21,23,61]. For the modified PEBA-5 membrane, there
were no new bands or band shifts in the FTIR spectrum. This suggests that the Ho-MOFs
are physically blended with the PEBA matrix without forming chemical covalent bonds.
Such interaction has been previously observed in studies devoted to the development of
PEBA/MOF membranes [20,23].

The morphology of the dense membranes based on PEBA and its composite with
different contents of Ho-1,3,5-H3btc was studied by SEM (Figure 3).
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The presented SEM micrographs of the pristine PEBA-0 membrane show a uniform
surface structure with a rough and ribbed cross-sectional structure and the absence of
visible defects (Figure 3a). The introduction of 1 wt.% Ho-1,3,5-H3btc leads to a slight
change in the cross-section and surface structures, while a further increase in the modifier
concentration strongly alters the internal morphology of the membranes, leading to the
formation of gross “plastic deformations” on the cross-sectional structure, which may be
due to the crystalline nature of the modifier. The surface of the modified membranes
changes toward the formation of a more pronounced “comb-like” structure, which may
be associated with the migration of needle-shaped Ho-1,3,5-H3btc to the surface of the
membranes during their formation [62]. At the same time, the Ho-1,3,5-H3btc particles were
not visible in the cross-sectional and surface structure of any of the modified membranes,
indicating their uniform distribution in the polymer matrix and the absence of clusters
and agglomerates of Ho-MOF. The absence of particle agglomerations would not create an
obstacle to mass transport through modified membranes.

Since the first stage of pervaporation, according to the “solubility–diffusion” mecha-
nism, is the sorption of the components of the separated mixture on the membrane surface,
changes on the surface during modification should affect the membrane properties. The
surface topology of membranes based on PEBA and the PEBA/Ho-MOF composite with
different contents of Ho-1,3,5-H3btc was studied by AFM. AFM images with a scan size of
30 × 30 µm are shown in Figure 4. Based on AFM data, the average roughness (Ra) of the
membrane surface was calculated and is also presented in Figure 4.

AFM data confirmed that the introduction of Ho-1,3,5-H3btc into the PEBA matrix
resulted in an increase in the surface roughness of the membranes, which was consistent
with the SEM data (Figure 3). The data in Figure 4 show that as the Ho-1,3,5-H3btc content
in the PEBA matrix increases, there is an increase in the membrane average roughness.
The PEBA-7 membrane has the highest average roughness (Ra = 8.6 nm) compared to the
other membranes (also in agreement with SEM data (Figure 3e)), indicating that the largest
number of Ho-1,3,5-H3btc particles migrated to the membrane surface. An increase in
surface roughness provides a larger effective surface area for contact with the components
of the feed, which is one of the factors leading to easier sorption and faster penetration of
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substances through the membrane. This leads to improved permeation flux of the modified
membranes, which is consistent with the pervaporation data (Figure 1).
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The swelling of the dense PEBA and PEBA/Ho-1,3,5-H3btc membranes was studied
in a water/isopropanol (5 wt.% isopropanol) mixture, isopropanol, and water. Data on the
swelling degree are presented in Table 2.

Table 2. The swelling degree of the dense PEBA and PEBA/Ho-1,3,5-H3btc membranes in a wa-
ter/isopropanol (5 wt.% isopropanol) mixture, isopropanol, and water.

Membrane
Swelling Degree, %

Water Isopropanol Water (95%)/Isopropanol (5%)

PEBA-0 2 ± 0.2 100 ± 10 4 ± 0.4
PEBA-1 4 ± 0.4 132 ± 13 6 ± 0.6
PEBA-3 5 ± 0.4 141 ± 14 8 ± 0.8
PEBA-5 6 ± 0.6 150 ± 15 8 ± 0.8
PEBA-7 8 ± 0.7 170 ± 17 10 ± 1

It was found that the developed dense membranes with an increasing content of
Ho-1,3,5-H3btc increased their swelling ability in isopropanol, but practically did not swell
in water and the water/isopropanol mixture (isopropanol 5 wt.%), since this mixture
consists mainly of water. This was due to the introduction of a hydrophobic modifier
into the PEBA matrix, leading to hydrophobization of the membrane surface (confirmed
by the contact angle value increasing previously in [50]) and, as a result, an increase in
the sorption of isopropanol on the membrane surface and improved permeation flux and
isopropanol permeance for the modified membranes [32]. A high swelling degree in
isopropanol was observed for all membranes, confirming the selectivity of the developed
membranes toward alcohol. The highest degree of swelling in isopropanol was observed
for the PEBA-7 membrane, which corresponded to the highest permeation flux among all
modified membranes (Figure 1).

3.2. The Development and Investigation of the Supported PEBA and
PEBA/Ho-1,3,5-H3btc Membranes
3.2.1. Pervaporation Performance of Supported PEBA and
PEBA/Ho-1,3,5-H3btc Membranes

In order to increase the permeation flux of the dense membranes developed, supported
membranes were developed, in which a thin non-porous polymer layer was applied to var-
ious porous polymer substrates. The type of polymer substrate, its porosity, and its nature
can significantly influence the transport properties of the supported membrane [63–66].
Therefore, in this study, the influence of three porous substrates on the properties of the
supported membranes was studied. A commercial porous membrane based on fluoroplas-
tic F-42L applied to a non-woven support of thermally bonded polyester fibers (MFFC) and
PVDF-based membranes prepared by using the phase inversion method on a glass (PVDF)
and a polyester support (PVDF-s) were used as porous substrates for the development of
supported PEBA membranes. Figure 5 shows the transport properties of the PEBA mem-
branes supported on various substrates (MFFC, PVDF, and PVDF-s) during the separation
of a water/isopropanol mixture (5 wt.% isopropanol).

It was found that the development of supported PEBA-based membranes led to an
increase in permeation flux (20 times for the PEBA-0/MFFC membrane, 15 times for the
PEBA-0/PVDF, and 34 times for the PEBA-0/PVFD-s membrane) while maintaining high
isopropanol content in the permeate compared to the pristine dense PEBA-0 membrane
(Figure 1). Based on the data obtained (Figure 5), it is clear that the supported PEBA-
0/PVDF-s membrane has optimal transport characteristics (permeation flux of 405 g/(m2h),
11 wt.% isopropanol content in the permeate), which is also confirmed by the calculated data
on the separation factor (2.3%), PSI (546 g/(m2h)), and isopropanol permeance (12,808 GPU).
The highest transport characteristics of the PEBA-0/PVDF-s membrane are associated with
the formation of the smallest selective layer (confirmed by SEM). It is also worth noting
that the parameters of the PEBA-0/PVDF-s membrane were higher compared to the PEBA-
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0/PVDF membrane. The use of a non-woven support prevents shrinkage of the PVDF
substrate, resulting in a more porous and regular structure that has less effect on the mass
transfer of components through the supported membrane [67]. Meanwhile, the formation
of a porous membrane (in this case, a PVDF substrate) without a support results in smaller
pores due to polymer shrinkage [67].
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Figure 5. The (a) permeation flux, the isopropanol content in the permeate, (b) the components’
permeance, and (c) the separation factor and PSI for the unmodified supported membranes for
pervaporation separation of a water (95%)/iPrOH (5%) mixture.

Thus, the porous PVFD-s substrate (prepared with a non-woven support) was chosen
as optimal for creating supported membranes via deposition of a dense PEBA-based
layer modified with 5 wt.% Ho-1,3,5-H3btc (PEBA-5/PVDF-s membrane). The transport
properties of this developed membrane were also investigated by pervaporation separation
of a water/isopropanol mixture (5 wt.% iPrOH) (Figure 6). For comparison, Figure 6 also
shows data for the unmodified PEBA-0/PVDF-s membrane.

It was found that the introduction of Ho-1,3,5-H3btc led to a slight decrease in perme-
ation flux from 405 (for PEBA-0/PVDF-s membrane) to 381 g/(m2h) (for PEBA-5/PVDF-s
membrane), which could be due to an increase in the thickness of the modified selective
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PEBA/Ho-1,3,5-H3btc (5%) layer (confirmed by SEM). Previously, an increase in the thick-
ness of the selective layer of the membranes was also observed when MOFs were introduced
into the polymer matrix [68,69]. Also, the introduction of Ho-1,3,5-H3btc into the supported
membrane led to an increase in the isopropanol content in the permeate, the isopropanol
permeance, and the PSI values due to its hydrophobic nature and porous structure, leading
to membrane surface roughness (confirmed by AFM data) and hydrophobization [50],
which also increased swelling in isopropanol (confirmed by swelling degree, Table 3).
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Figure 6. The values of (a) permeation flux, isopropanol content in the permeate, (b) the components’
permeance, and (c) the separation factor and PSI for the supported PEBA-0/PVDF-s and PEBA-
5/PVDF-s membranes for pervaporation separation of a water (95%)/iPrOH (5%) mixture.

Also, PEBA-based membranes are most often used for phenol removal. So, the sup-
ported PEBA-0/PVDF-s and PEBA-5/PVDF-s membranes were studied in the separation
of water/phenol mixtures with a phenol content of 0.1 and 1 wt.% at 22 and 50 ◦C. The
obtained transport characteristics are presented in Figure 7.

It was found that when Ho-1,3,5-H3btc was introduced into the PEBA matrix, the
phenol content in the permeate increased, while the permeation flux slightly decreased, as
in the case of pervaporation separation of the water/isopropanol mixture (Figure 6). The
decrease in permeation flux can also be associated with an increase in the thickness of the
selective layer of the modified membrane. The increase in selectivity toward phenol may
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also be due to surface hydrophobization of the Ho-1,3,5-H3btc-modified membrane [50],
leading to increased sorption of the more hydrophobic component (phenol) on the mem-
brane surface and its swelling. Previous studies [21,22] have also observed an increase in
the water contact angle upon the introduction of MOFs, leading to an increase in selectivity
toward phenol. With an increase in the phenol content in the feed from 0.1 to 1 wt.%, an
increase in permeation flux was observed for both PEBA-0/PVDF-s and PEBA-5/PVDF-s
membranes, as for pervaporation both at 22 and 50 ◦C. Increasing the temperature from
22 to 50 ◦C led to an increase in the permeation flux, maintaining selectivity. This effect may
be due to the fact that with the temperature rise, the mobility of polymer chains increases,
causing an increase in free volume between polymer chains, which results in improved
component transfer through membranes. The same effect of temperature on permeation
flux was previously noted for membranes based on polyimide synthesized from different
dianhydrides during pervaporation of an ethanol–water mixture [70,71].
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3.2.2. Structure and Physicochemical Properties of Supported PEBA and
PEBA/Ho-1,3,5-H3btc Membranes

The use of substrates of different materials for the development of supported PEBA
membranes may result in the formation of a selective layer with various thicknesses, struc-
tures and roughness. Although it is generally accepted that the substrate or support (such
as a non-woven polyester support) does not affect the mass transfer of components across
the supported membrane during pervaporation, it may lead to the formation of the selec-
tive polymer layer with different structural properties and transport characteristics [63–66].
Therefore, the characterization of supported membranes is important to explain the per-
formance of the obtained PEBA-based membranes. The inner and surface structure of the
developed supported PEBA-based and PEBA-5/PVDF-s membranes was studied by SEM.
Cross-section and surface micrographs are presented in Figure 8.

It was found that the use of different substrates resulted in the formation of a selec-
tive layer of different thicknesses. Thus, when using the commercial porous membrane
MFFC, the selective layer based on PEBA with a thickness of ~250 nm was formed on the
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surface of the porous substrate. The use of the porous PVDF-based membranes prepared
on different supports (glass (PVDF) or polyester support (PVDF-s)) resulted in the forma-
tion of PEBA-based selective layers of different thicknesses for the supported membranes:
~520 nm for PEBA-0/PVDF and ~150 nm for PEBA-0/PVDF-s membranes. Thus, the
PEBA-0/PVDF membrane with the greatest thickness of the selective layer among the un-
modified supported membranes had the lowest values of permeation flux (Figure 5). SEM
micrographs of the surface show a similar surface structure of the unmodified supported
membranes (Figure 8a–c). The introduction of Ho-MOF led to an increase in the thickness
of the selective layer to ~970 nm, which resulted in a slightly decreased permeation flux
(Figures 5–7) of the modified supported PEBA-5/PVDF-s membrane compared to the
PEBA-0/PVDF-s membrane.

The surface roughness of the developed supported unmodified PEBA and PEBA-5/PVDF-
s membranes was studied by AFM. AFM images with a scanning size of 30 × 30 µm are
shown in Figure 9. Based on AFM data, the average roughness (Ra) of the supported
membrane surface was calculated and is also presented in Figure 9.

Polymers 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

as a non-woven polyester support) does not affect the mass transfer of components across 
the supported membrane during pervaporation, it may lead to the formation of the selec-
tive polymer layer with different structural properties and transport characteristics [63–
66]. Therefore, the characterization of supported membranes is important to explain the 
performance of the obtained PEBA-based membranes. The inner and surface structure of 
the developed supported PEBA-based and PEBA-5/PVDF-s membranes was studied by 
SEM. Cross-section and surface micrographs are presented in Figure 8. 

 Cross-section Surface 

(a) 

 

 

(b) 

 

 

200 nm 

1 μm 

200 nm 

1 μm 

Figure 8. Cont.



Polymers 2024, 16, 3245 16 of 22
Polymers 2024, 16, x FOR PEER REVIEW 16 of 22 
 

 

(c) 

 

 

(d) 

 

 

Figure 8. SEM micrographs of supported membranes: (a) PEBA-0/MFFC, (b) PEBA-0/PVDF, (c) 
PEBA-0/PVDF-s, and (d) PEBA-5/PVDF-s. 

It was found that the use of different substrates resulted in the formation of a selective 
layer of different thicknesses. Thus, when using the commercial porous membrane MFFС, 
the selective layer based on PEBA with a thickness of ~250 nm was formed on the surface 
of the porous substrate. The use of the porous PVDF-based membranes prepared on dif-
ferent supports (glass (PVDF) or polyester support (PVDF-s)) resulted in the formation of 
PEBA-based selective layers of different thicknesses for the supported membranes: ~520 
nm for PEBA-0/PVDF and ~150 nm for PEBA-0/PVDF-s membranes. Thus, the PEBA-
0/PVDF membrane with the greatest thickness of the selective layer among the unmodi-
fied supported membranes had the lowest values of permeation flux (Figure 5). SEM mi-
crographs of the surface show a similar surface structure of the unmodified supported 
membranes (Figure 8 a–c). The introduction of Ho-MOF led to an increase in the thickness 
of the selective layer to ~970 nm, which resulted in a slightly decreased permeation flux 
(Figures 5–7) of the modified supported PEBA-5/PVDF-s membrane compared to the 
PEBA-0/PVDF-s membrane. 

The surface roughness of the developed supported unmodified PEBA and PEBA-
5/PVDF-s membranes was studied by AFM. AFM images with a scanning size of 30 × 30 
µm are shown in Figure 9. Based on AFM data, the average roughness (Ra) of the sup-
ported membrane surface was calculated and is also presented in Figure 9. 

200 nm 

1 μm 

200 nm 

1 μm 

Figure 8. SEM micrographs of supported membranes: (a) PEBA-0/MFFC, (b) PEBA-0/PVDF,
(c) PEBA-0/PVDF-s, and (d) PEBA-5/PVDF-s.

According to the data in Figure 9, it is evident that the deposition of the thin PEBA
and PEBA/Ho-1,3,5-H3btc (5%) layers on porous substrates results in a significant increase
in surface roughness compared to dense membranes (Figure 4). It may explained by
the effect of using substrates to create a thin, dense selective layer that follows their
irregularities [72]. An increase in surface roughness, when a thin selective layer was
applied onto a porous substrate, was also observed in [73]. The surface parameter of
the PEBA-5/PVDF-s membrane is significantly higher compared to the other supported
membranes due to the presence of the Ho-1,3,5-H3btc modifier in the thin selective layer,
leading to an increase in the sorption of isopropanol and phenol on the modified membrane
surface and a rise in selectivity.

3.3. Comparison of Performance with PEBA-Based Membranes

The transport properties of the developed supported membranes PEBA-0/PVDF-s
and PEBA-5/PVDF-s were compared with the literature data on PEBA-based membranes
applied for the separation of water/phenol mixtures by pervaporation under comparable
conditions to those in the present study. The comparison is presented in Table 3.
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The data presented in Table 3 demonstrate that the supported PEBA-0/PVDF-s and
PEBA-5/PVDF-s membranes have good transport properties, for pervaporation of the
water/phenol mixture with both 0.1 and 1 wt.% of phenol in the feed. The higher per-
meation flux of some membranes reported in the literature can be caused by elevated
temperature. Based on the obtained results, it can be concluded that the developed sup-
ported PEBA-0/PVDF-s and PEBA-5/PVDF-s membranes are promising for industrial
applications of pervaporation.
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Table 3. The comparison of the transport properties of the PEBA-based membranes for the separation
of water/phenol mixtures by pervaporation.

Membranes T, ◦C Phenol Content in the Feed, wt.% Permeation Flux, g/(m2h) Separation Factor References

PEBA-5/PVDF-s 50 0.1 1040 5.0 This study
PEBA-0/PVDF-s 50 0.1 1140 3.0 This study

PEBA + polyurethane (1:1) 35 0.1 84.1 9.7 [74]
ZIF-71P/PEBA-21 50 0.1 911.1 18.96

[46]ZIF-71K/PEBA-21 50 0.1 965.49 17.74
40%Co-UMOFNs-PEBA/PVDF 70 0.1 420 45.49 [20]

PEBA + MAF-6 (7 wt.%) 80 0.1 3520 25.9 [22]
S-ZIF-8/PEBA/ZIF-8-8 80 0.2 198 114 [75]

PEBA/HZIF-8-10 80 0.2 247.7 80.89 [18]

PEBA-5/PVDF-s 50 1 1218 5.4 This study
PEBA-0/PVDF-s 50 1 1269 3.1 This study

S-ZIF-8/PEBA/ZIF-8-8 70 0.8 215.85 109.3 [75]
PEBA-2533 70 0.6–0.8 1100 23 [76]

PEBA-2533/ZIF-8 (10%) 70 0.8 1310 53 [77]

4. Conclusions

In the present study, advanced pervaporation mixed-matrix membranes based on
PEBA modified with an Ho-1,3,5-H3btc MOF were developed for the separation of wa-
ter/isopropanol and water/phenol mixtures.

The introduction of Ho-1,3,5-H3btc from 1 to 7 wt.% in the dense PEBA membrane
led to the increase in permeation flux and the isopropanol content in the permeate for
pervaporation separation of a water (95%)/iPrOH (5%) mixture. It was associated with
a rise in the membrane’s inner and surface structural roughness (confirmed by SEM and
AFM) and surface hydrophobization (confirmed by swelling degree data) due to the
introduction of hydrophobic highly porous needle-shaped Ho-1,3,5-H3btc. The dense
PEBA-5 membrane (with 5 wt.% Ho-1,3,5-H3btc) had optimal pervaporation performance:
a 3-times greater permeation flux compared to the PEBA-0 membrane, and the highest
isopropanol permeance, separation factor, and PSI values among all membranes.

To increase the permeability of dense membranes and to study the influence of porous
substrate selection, supported membranes from the pristine PEBA layer deposited on
various porous substrates (commercial MFFC, developed PVDF without a non-woven
support and PVDF-s with a non-woven support) were developed. These supported mem-
branes demonstrated a more than 15-times higher permeation flux, while maintaining
high isopropanol content in the permeate, compared to the dense PEBA-0 membrane. The
porous PVFD-s substrate (prepared with a non-woven support) was chosen as optimal for
further modification of its PEBA-based layer with 5 wt.% Ho-1,3,5-H3btc due to the highest
performance of the supported membrane prepared on it.

The developed supported PEBA/Ho-1,3,5-H3btc (5%)/PVFD-s membrane demon-
strated a 32-times improved permeation flux and a 10% higher isopropanol content in the
permeate compared to the dense PEBA membrane. Also, its performance was evaluated for
the separation of water/phenol mixtures (0.1 and 1 wt.% phenol) at 22 and 50 ◦C, where it
demonstrated improved properties compared to the unmodified supported membrane and
its potential for the extraction of phenol.
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