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Abstract: An approach to detecting discontinuities in carbon fiber-reinforced polymers, caused by
impact loading followed by compression testing, was developed. An X-ray sensor-based installation
was used, while some algorithms were developed to improve the quality of the obtained low-contrast
radiographic images with negligible signal-to-noise ratios. For epoxy/AF (#1) composite subjected
to a “high-velocity” steel-ball impact with subsequent compression loading, it was not possible
to detect discontinuities since the orientation of the extended zone of interlayer delamination was
perpendicular to the irradiation axis. After drop-weight impacts with subsequent compression
loading of epoxy/CF (#2) and PEEK/CF (#3) composites, the main cracks were formed in their
central parts. This area was reliably detected through the improved radiographic images being more
contrasted compared to that for composite #3, for which the damaged area was similar in shape but
smaller. The phase variation and congruency methods were employed to highlight low-contrast
objects in the radiographic images. The phase variation procedure showed higher efficiency in
detecting small objects, while phase congruency is preferable for highlighting large objects. To
assess the degree of image improvement, several metrics were implemented. In the analysis of
the model images, the most indicative was the PSNR parameter (with a S-N ratio greater than the
unit), confirming an increase in image contrast and a decrease in noise level. The NIQE and PIQE
parameters enabled the correct assessment of image quality even with the S-N ratio being less than
a unit.

Keywords: fiber-reinforced polymer composite; laminate; radiographic inspection; impact damage;
image processing; flaw detection; image quality; signal-to-noise ratio

1. Introduction

“The hardest thing of all is to find a black cat in a dark room, especially if there is no
cat”. Confucius.

The development and implementation of advanced inspection techniques to detect
discontinuities/damage in polymer composites (both particulate and reinforced with long
or continuous fibers) and monitoring their structural integrity are relevant tasks nowadays,
including for those with matrices/binders based on high-performance polymers (HPP) [1,2].
Since fiber-reinforced composites are multi-level organized by their definition [3–5], differ-
ent methods should be applied to detect damage/flaws of various scales [6,7].

For the industrial non-destructive testing (NTD) of carbon fiber-reinforced polymers
(CFRPs), many techniques are deployed, differing in sensitivity, spatial resolution, type,
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orientation, and the dimension of detected discontinuities, permissible sizes of objects
under inspection, as well as accessibility of inspection. As a result, they enable the detection
of certain types of discontinuities, depending on both features of the CFRPs and production
routes for their fabrication [8].

The high structural heterogeneity of CFRPs should be emphasized, which, during
non-destructive testing (NDT) using active methods, causes noticeable scattering, reflection,
and ultimately the attenuation of the probing signal. On the other hand, the dimensions of
flaws and discontinuities, which critically affect both the strength and structural integrity
of CFRPs (with low crack resistance by nature), can be quite small. Finally, one of the
most pressing challenges is barely visible impact damage (BVID), in the detection of which
conventional NDT methods are ineffective in many cases [9,10].

Nevertheless, many aspects of the application of various NDT methods for detecting
flaws in both laboratory samples and structural elements are discussed nowadays. For
U-sonic inspection, as an example, some approaches based on the use of phased antenna
arrays [11] and nonlinear methods of action, which allow for more sensitive detection
of various types of damage [12], are widespread. Acoustic NDT methods are primarily
classified over probing frequency. The guided waves method allows for the monitoring
of the formation of discontinuities in structural elements with dimensions of a single
meter due to a lower attenuation of elastic vibrations (with a characteristic frequency
of hundreds of kHz) than that in U-sonic inspection [13]. Vibration analysis is another
low-frequency method, enabling the detection of delamination in plates, beams, and
laminated composites [14–16]. For NDT of extended parts and structures, acoustic emission
is applied since the fracture of reinforcing fibers gives rise to signals of sufficiently great
amplitudes [17]; however, it is hardly applicable to the detection of individual defects.

Interferometric/shearography methods, which are highly sensitive to the development
of out-of-plane deformations, can be successfully applied to detect impact discontinuities
of various sizes [18,19]. Thermal (infrared) inspection methods are also used if the ther-
mophysical properties of materials and their inclusions/voids differ significantly [20,21].
Recently, some research results have been reported on testing CFRPs through terahertz
inspection, which is suitable for detecting impact damage in thick products [22,23].

For the reason of high spatial resolution, as well as penetration ability, X-ray radiogra-
phy is one of the most effective approaches to monitoring structural integrity and detecting
discontinuities [24], including inverse Compton scattering [25]. In addition, scanning with
angular cone beams [26] enables the obtainment of data close to tomographic results [27].
The use of X-ray computed tomography (CT) [28–30] and µCT [31–34] opens up broad
prospects in terms of identifying and quantitatively characterizing the internal structure,
manufacturing defects, and operational damage in CFRPs. However, these methods are
quite difficult to use for NTD of extended structures, particularly with limited access.

Over the past 25 years, the structural health monitoring (SHM) approach has been
actively developing. It simultaneously implements several NDT methods, including the
above-mentioned ones [35–37]. The combined use of different NDTs fused with the imple-
mentation of the digital twin concept makes SHM possible to provide a more comprehen-
sive strategy for assessing structural integrity, especially in intricate composite materials.
However, this approach does not detect individual discontinuities, but it indicates the onset
of alarm or fault conditions, allowing for timely decisions regarding changes in operating
modes or repairing deteriorated structures. Within the SHM framework, the fiber Bragg
grating effect is implemented [38], lightening optical fibers, increasing their sensitivity, and
eliminating the need for power supply. One of the varieties of this approach is optical
backscatter reflectometry [39].

Considering the above, it becomes obvious that the use of X-ray NDT methods remains
one of the most effective and reliable approaches to monitoring the structural integrity
of CFRPs. However, existing X-ray diagnostic equipment has largely exhausted its ca-
pabilities due to both the low X-ray contrast of investigated objects and the small sizes
of discontinuities capable of critically affecting the safe operation of such products [40].
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The development of a new generation of digital facilities with high spatial and energy
resolution will allow for solving a wider range of industrial tasks.

The interest in developing X-ray sensors for NDT of CFRP is caused by the significant
dependence of the strength properties on the characteristics of interfaces between both
phases and layers. Given that reinforced polymer composites are a continuous set of
interfaces, their fast full-thickness inspection is necessary to ensure the reliable performance
of components and structure elements.

The detection of flaws in products made from such composites under various op-
erating conditions is challenging as well (for example, after hygrothermal/freeze-thaw
exposure [41] or cyclic and/or impact loading [42]). In such cases, the challenge is caused
by the small opening of BVID (from tens of micrometers to fractions of millimeters), as
well as the large cross-sectional sizes (up to units and even tens of millimeters) and lengths
(fractions and units of meters) [43]. For this reason, the use of digital systems based on semi-
conductor X-ray sensors opens up wide prospects for non-destructive testing. Therefore,
the task of developing X-ray diagnostic methods for monitoring the structural integrity
of CFRPs should be solved comprehensively. For both hardware and software solutions,
it is necessary to apply laboratory conditions, which ensure registration high-quality ra-
diographic images (with low noise levels) and their processing (enhancement). At the
same time, CFRP samples with known discontinuities (including BVID) should be used for
investigations [44].

According to the generally accepted codes, NDT devices are calibrated using reference
samples with discontinuities obviously larger than the spatial resolution of the sensors
(as an example, U-sonic inspection, where the dimensions of typical detectable flows are
several millimeters). In contrast, the use of commercially available digital semiconductor
X-ray detectors does not imply spatial resolutions of less than 50 µm. In addition to
optimizing the radiographic inspection parameters (energy, exposure, focal length, and
quantum accumulation mode), which, however, is beyond the scope of this study, the
development of effective algorithms for processing the obtained images is crucial. The
reason is low radiation doses and low signal-to-noise (S-N) ratios, which do not enable the
recording of contrast images for CFRP. Improving the quality of X-ray images by increasing
spatial and energy resolutions at the hardware level often requires large expenditures of
time and resources. This issue can be solved through digital processing of low-contrast
X-ray images, obtained with conventional detectors.

This study aimed to develop an approach to detecting discontinuities in CFRPs,
induced via impacts followed by compression testing, with the use of an X-ray sensor-
based installation and the processing of radiographic images. The paper is structured as
follows: Section 2 briefly describes the installation used to acquire radiographic images.
Section 3 explains approaches to processing low-contrast images with a low S-N ratio.
Section 4 describes the samples used for testing and the results obtained. Preceding the
conclusions, Section 5 contains a brief discussion, as well as suggested shortcomings and
future prospects.

2. Installation for Radiographic Inspection of Low-Contrast Objects

The key up-to-date radiographic installations for scientific, industrial, and medical
applications are based on a two-stage conversion of X-ray quanta (after passing through the
object under study/inspection). In these cases, a scintillator converts the radiation quanta
into ultraviolet or visible spectra, while the secondary quanta are transformed into electric
current pulses with photodetector matrices, charge-coupled devices (CCDs), or thin-film
transistors [45–47]. This double conversion reduces the detective quantum efficiency (DQE),
as well as the S-N ratio and the quality of X-ray images.

Over the last decade, the worldwide scientific community has been actively developing
semiconductor multi-element detectors [48–50]. This process was triggered by the need
to carry out physics experiments at the Large Hadron Collider in the 1990s. Microstrip
and pixel detectors based on ultra-pure single-crystal silicon to record the coordinates of



Polymers 2024, 16, 3262 4 of 33

high-energy charged particles have been developed and manufactured by several Japanese
and American companies. However, silicon is absolutely transparent to synchrotron, X-
ray, and gamma radiation in the quantum energy range above 15 keV. This has spurred
the development of fundamental scientific and technological fields aiming to improve
coordinate detectors based on complex semiconductors with a high atomic number, Z.
For the X-ray energy range above 10 keV, the most promising semiconductor materials
are GaAs and Cd(Zn)Te [51–55]. In terms of both technological characteristics and the
price–performance ratio, GaAs is superior to Cd(Zn)Te since its cost is significantly lower
(by several times), it is more technologically advanced, it has higher property homogeneity,
and it achieves a low defect level [56–59].

Despite the obvious promise of GaAs detectors, a commercial Si-based one was used in
this study for the registration of radiographic images. This choice was driven by its greater
S-N ratio compared to a similar GaAs sensor. The lack of an available GaAs detector with
comparable pixel sizes (above 200 µm) was another reason, in addition to the necessity of
ensuring the comparability of the obtained data with the results of related studies, primarily
in terms of both spatial resolution and the S-N ratio, as well as the task of developing the
software embedded into the installation.

Measurements were carried out using a laboratory setup (Figure 1), the key compo-
nents of which were as follows:
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Figure 1. A scheme of the inspection process using the laboratory radiographic setup.

• An “XRB011” X-ray source (Spellman High Voltage Electronics Corporation, New York,
NY, USA) based on a “1000 Glass” microfocus tube (Oxford Instruments, Abingdon,
UK) with a tungsten anode and an X-ray matrix detector was operated in the quantum
counting mode. The technical specifications of the X-ray source are as follows: a
tunable range for the X-ray tube current of 1 ÷ 700 µA with an adjustment step of
10 µA and a range of accelerating voltage 35 ÷ 80 kV with a step of 5 kV. The average
value of the X-ray focal spot size was 50 µm, and the radiation divergence angle was
40 degrees. The X-ray beam was collimated with a lead collimator to implement a
25 mm-diameter spot size.

• A silicon sensor of 1 mm in thickness was used in the detector. The sensor topology
was a 256 × 256-pixel matrix with a pixel pitch of 55 µm.

• Radiographic inspections were carried out under an accelerating voltage of 35 kV and
a current of 500 µA. The exposure time varied in the range of 60–180 s.

Original radiographic images were subjected to the “Flat-field correction” opera-
tion [60] in order to compensate for the technological spread of the sensitivity of each
sensor pixel, the gain in the corresponding electronics channel, and the noise of the mea-
suring path. For each image, the exposure time was chosen so that the total number of
recorded quanta was about 10,000 per image, corresponding to a relative quantum flow
noise value of 1%.
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3. Processing of Radiographic Images

The key issues solved in improving the quality of the radiographic images included
noise suppression, contrast enhancement, and/or target detection for (low-contrast) object
contours on them. The features of the images were the presence of high-level irregular
and regular noise caused by spatial recording unevenness. While the second challenge
was solved using the “Flat-field correction” procedure, the first challenge was typically
overcome by increasing the radiation power and/or the registration time. However, such a
solution was not always possible for some practical reasons, so a number of highly efficient
digital methods of image processing were implemented.

3.1. Pre-Processing

The pre-processing of radiographic images comprises a wide range of various routines:
denoising, cropping, thresholding, binarization, morphology transformation, histogram
equalization, etc. [61–63]. Their applicability is case-sensitive and depends on the noise
pattern, as well as the efficiency of every particular procedure. Upon a preliminary analysis
of the registered radiographic images, four successive conversions were selected and
carried out:

1. The “Flat-field correction” procedure. It is a digital imaging technique for mitigating
the pixel sensitivity of an image detector and distortions in the X-ray path. It referred
to the process of compensating for the different gains and background currents in the
detector. Once the detector was properly adjusted for the flat field, uniform output
signals were registered without any systematic error due to beam inhomogeneities,
variations in the detector response gain, charge-transfer losses, charge trapping, or
variations in the readout performance [64,65].

2. Dead pixel reassignment (thresholding). During the data recording process, some
image pixels may be lost (zeroed). To mitigate their negative impact on subsequent
processing, they are replaced by the median value of their proximity.

3. Adaptive median or bilateral filtering. This technique is applied to reduce noise
levels and, in particular, eliminate random outliers [66–69]. The efficiency of various
filtration algorithms as a function of noise distribution is reported elsewhere in [70,71];
however, it is beyond of the scope of this paper.

4. Radiographic marker reassignment. Special radiographic markers, typically with a
significantly higher absorption coefficient, are placed on radiographic images for more
accurate localization of the imaging area. These markers interfere with subsequent
image processing and the analysis of the objects under study, and their influence
needs to be reduced. Since the intensity of their image falls within a lower value
range, it is proposed to replace all pixels within this identified range with the average
value from the intensity range of the object being examined.

3.2. Improving the Quality of Radiographic Images

Object contours’ extraction from images can be achieved using various methods. Early
methods were based on the evaluation of image gradients. They included algorithms for
the gradient binarization of images (for example, the Roberts, Prewitt, Sobel, and Canny
operators [72]). A family of algorithms based on stochastic principles and optimization
methods, known as the ant colony system (ACS), has also been developed [73,74]. All of
these methods are quite effective for processing photographs with a high signal-to-noise
ratio, but their application is ineffective for processing radiographic images due to the
presence of intense interference.

Methods with high noise immunity should include not only the direct analysis of the
image pixels’ variability but also noise suppression procedures. A number of algorithms
were developed, which are based on the following property of the 1D Hilbert transform: a
step-function is transformed into a unimodal function. The problem of its extending to the
transformation of 2D grayscale images is widely discussed by many researchers [75–79]. In



Polymers 2024, 16, 3262 6 of 33

this study, the radiographic images were processed using the phase variation method and
congruency method.

3.2.1. The Phase Variation Method

If a grayscale image was represented by a 2D function I(x, y) of spatial variables
x and y, then the following transformation could be taken as an analogue of the 2D
Hilbert transform:

I( fx, fy;φ) =
∞x

−∞

I(x, y)e−j π
2 sign(sin (φ) f x+cos (φ) fy)e−j2π(x fx+y fy)dxdy, (1)

where fx and fy were corresponding spatial frequencies, and φ was a slope angle of the
transformation. This expression could be interpreted as directional filtering in the 2D
frequency domain with the following characteristic (Figure 2):

HG
(

fx, fy; φ
)
= e−j π

2 sign(sin (φ) f x+cos(φ) fy), (2)

or in polar coordinates:

HG(ω, θ; φ) =


j, θ < φ,
0, θ = φ,
−j, θ > φ,

(3)

where ω =
√

f 2
x + f 2

y , θ = tg
(

fy
fx

)
were the frequency polar coordinates. The application

of this filter to image processing enabled the highlighting of the object contours with line
slope angles close to the φ value.
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To obtain an image of the object contour with an arbitrary direction, multiple fil-
tering with different φk = k π

N angles and a summing up the modules of their output
was implemented:

V(x, y) = ∑N−1
k=0

∣∣∣F−1{I
(

fx, fy; φk
)}∣∣∣, (4)

where F−1{. . .} was the inverse 2D Fourier transformation. This expression was called the
phase variation, in an analogy for the phase congruence.

Under intense interference conditions, the filter could be ineffective. So, the obvious
solution to the noise immunity problem was to combine it with known filters to suppress
random interference (for example, with low-pass, Butterworth, Gaussian, elliptical, or
bandpass ones). In this study, the 2D symmetric Gaussian filter was used:

Hσ(ω, θ; σ) = e−
ω2

2σ2 , (5)
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where σ determined the bandwidth of the filter according to the ω polar frequency.
Another technique that improved the efficiency of detecting discontinuous boundary

contours was to limit the filter bandwidth to the θ angle. One of the simplest ways to apply
this limitation was to combine 2D filters with a fan filter (Figure 3):

HΨ(ω, θ; φ, Ψ) =

{
1, φ − Ψ/2 < θ < φ + Ψ/2,
0, otherwise,

, (6)

where φ and Ψ determined the direction and the solution of the fan filter, respectively.
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Considering the above, the improved phase variation function took the following form:

VP(x, y) =
N−1

∑
k=0

∣∣∣F−1
{

I( fx, fy)HG
(

fx, fy; φk
)

Hσ

(
fx, fy; σ

)
HΨ

(
fx, fy; φk +

π

2
,
)}∣∣∣. (7)

In such calculations, a restriction was imposed on the fan filter solution:

π

N
≤ Ψ ≤ 2π

N
. (8)

The phase variation algorithm includes the following steps:

1. The 2D Fourier transform of a radiographic image I
(

fx, fy
)
= F{I(x, y)};

2. Calculation of the Gaussian filter phase response (5) succeeded by multiplication with
a 2D Fourier pattern of the image;

3. The calculation of the Hilbert filter (3), as well as the fan filter (6) phase responses for
the specified angle, φk;

4. The multiplication of phase responses of (3) and (6) with the calculation result obtained
in step 2;

5. The calculation of the modulus of the inverse 2D Fourier transform from the result
obtained in step 4;

6. Repetition of steps 3–5 for k = 0, .., N;
7. The calculation of the sum of results from step 5.

3.2.2. The Phase Congruency Method

The studies [80–82] proposed using a spiral phase filter or wavelet analysis with the
2D logarithmic Gabor functions (Figure 4):

Gs,k(ω, θ) = e
−

ln2( ω
ωk

)

2ln2(σω ) e
− (θ−θk)

2

2σ2
θ , (9)

where ω and θ were the polar coordinates in the frequency domain, ωk and θk determined
the order and the direction of the transformation, and σω and σθ could be interpreted as
effective filter passbands.
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Phase congruency was calculated by enumerating the order and direction of the
Gabor functions and summing the filtering results. For example, the expression of the
phase congruency with an ε noise compensation and a threshold for small T values was
as follows:

PC(x, y) =

⌊
∑M−1

s=0 ∑N−1
k=0

∣∣F−1{I
(

fx, fy
)
Gs,k

(
fx, fy

)}∣∣− T
⌋

∣∣∣∑M−1
s=0 ∑N−1

k=0 F−1
{

I
(

fx, fy
)
Gs,k

(
fx, fy

)}∣∣∣+ ε
, (10)

where ⌊z⌋ represented the positive part function of z. The algorithms, as well as a computer
code for phase congruency, are reported elsewhere in [80].

3.3. Image-Quality Estimates

The following metrics are among the most widespread and frequently used [83–85]:

• Peak signal-to-noise ratio:

PSNR = 10log
[

I2
max

MSE

]
(11)

where Imax denotes the maximum value of image brightness, and MSE indicates a mean
square error of brightness. The better the quality, the higher the PSRN (measured in dB);

• A structural similarity index:

SSIM =

(
RI J

σIσJ

)(
2mImJ

m2
I + m2

J

)(
2σIσJ

σ2
I + σ2

J

)
(12)

where m, σ, and R represent the mean brightness values, variance, and a correlation
coefficient, correspondently. Its value is limited within the range of [0, 1], where zero means
no similarity, while a unit corresponds to the complete identity.

Estimates ((11)–(12)) require a pristine (etalon) image, J. However, there is no pristine
image in the processing of real images, first of all due to the presence of noise.

Recently, some novel “absolute” metrics have been developed. They do not require a
pristine image, while they are based on expert estimates. The following ones were used in
the study:

• The natural image quality evaluator (NIQE) measures the quality of images with arbi-
trary distortion. In doing so, a distance between the NSS (natural scene statistics/NSS)-
based features is calculated from a current image to the features obtained from an
image database used to train the model. The features are modeled as multidimen-
sional Gaussian distributions. Thus, the NIQE is opinion-unaware and does not use
subjective quality scores [86].

• The perception-based image quality evaluator (PIQE). The PIQE algorithm is opinion-
unaware and unsupervised; thus, it does not require a trained model. PIQE measures
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the quality of images with arbitrary distortion being similar to the NIQE. Thus, the
PIQE estimates block-wise distortion and measures the local variance in perceptibly
distorted blocks to estimate the quality score [87]. The values of PIQE in the range of
0 ÷ 20 correspond to excellent image quality, while its values of 81 ÷ 100 are qualified
as bad image quality.

4. Results
4.1. The Methodology for Recording the Experimental Data

To test the laboratory hardware and software installation, three types of layered
composites (laminates) were used. The samples of the three composites had a rectangular
plate shape with dimensions of 100 × 150 mm and, for impact loading, were clamped on a
fixture base with a window of 75 × 125 mm.

Composite #1 was subjected to a point-impact action (with a striker in the form of a
steel ball) flying from a gas gun at a speed of ~90 m/s and an energy of ~49 J. Composite
#2 and composite #3 were tested using an Instron Ceast 9340 drop-weight testing machine
(Instron, Norwood, MA, USA) at a speed of ~3.5 m/s and an energy of 20–43 J. Details of
the sample fabrication and the results of the residual compressive strength evaluation after
the impacts are described below.

4.1.1. Composite #1

The sample was made from two types of prepregs (with aramid fabric or carbon
unidirectional tape) and an epoxy binder. In this sample, a quasi-isotropic layup was
implemented with a 50/50 component ratio, namely ((−45F/90F)2/(45/0/−45/90)2)S.
The aramid prepreg type was “AA285”, with plain weave, a fabric density of 170 g/m2,
and a monolayer thickness of 0.27 mm. The carbon prepreg, type “UTS-150-DT190-36F”,
consisted of unidirectional “AS4D” fibers without a weft thread. There were two layers of
carbon unidirectional tape per single layer of the aramid woven fabric (designated as “F”).
The composite is designated as “epoxy/AF” in the text.

The mechanical properties of monolayers obtained in the experiments are as follows:
aramid fabric prepregs exhibited a tensile strength of 620 MPa, a compression strength of
167 MPa, and an elastic modulus of 44 GPa, while carbon fiber prepregs demonstrated a
tensile strength of 2042 MPa, a compression strength of 1495 MPa, and an elastic modulus
of 138 GPa.

The manufacturing process consisted of the manual layup of prepregs in the required
order, followed by hot pressing at a pressure of 0.7 MPa and a temperature of 100 ◦C for
1 h. To complete all polymerization processes and reduce residual stresses in the composite,
the plates were subsequently placed in a thermal oven at 100 ◦C for 24 h. The blank plates,
measuring 217 × 152 × 3.2 mm3, were then cut using a CNC milling machine equipped
with a polycrystalline diamond tool to obtain the final test plates with dimensions of
100 × 150 × 3.2 mm3.

Composite #1 (epoxy/AF) was subjected to “high-velocity” (~90 m/s) impact. A steel
ball with a diameter of 14.3 mm and a weight of 11.9 g was used as a striker. After impact,
its residual compressive strength was measured. The test results are presented in Table 1.

Table 1. The results of the impact test and the residual compressive strength value for composite #1.

Thickness, mm Striker Velocity
Before Impact, m/s

Striker Kinetic
Energy Before

Impact, J

Impact Energy Per
Millimeter of

Thickness, J/mm

Elasticity
Modulus

(Stiffness), GPa

Compression
Strength After
Impact, MPa

3.2 90.8 49.1 15.3 30.1 67.7

4.1.2. Composite #2

Composite #2 was made with the (45F/90F)5S layup from dry carbon biaxial fabric
“CBX-300”, with a weft yarn and epoxy binder “L/GL2”, designated as “epoxy/CF”. It was
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characterized by a density of 305 g/m2. The monolayer of unidirectional fibers exhibits a
tensile strength of 1455 MPa, a compressive strength of 1296 MPa, and an elastic modulus
of 135 GPa. Testing of the specific properties of the biaxial fabric was not conducted.

The manufacturing process consisted of the manual layup of fabric, followed by the
manual deposition of an epoxy binder and rolling to distribute the adhesive, as well as to
better impregnate the fibers. Then, the stack was placed in a hot press for 1 h at a pressure
of 0.7 MPa and a temperature of 100 ◦C. To complete all polymerization processes and
reduce residual stresses in the composite, the plates were subsequently post-cured in a
thermal oven at 100 ◦C for 24 h. Then, the blanks were cut using a CNC milling machine to
the dimensions of 100 × 150 mm.

Unlike the previous case, low-velocity impact testing was carried out with a drop
weight, followed by compression testing of the damaged sample [88]. The cylindrical
impactor with a hemispherical tip had a weight of 5.4 kg and a diameter of 12.7 mm. The
results of both tests are presented in Table 2.

Table 2. The test results for composite #2 (velocity = 3.5 m/s).

Thickness,
mm

Impact
Energy, J

Impact
Energy Per
Millimeter

of Thickness,
J/mm

Absorbed
Energy, J

Peak Force,
N

Damage
Initiation
Force, N

Damage
Initiation
Energy, J

Compression
Strength

After Impact,
MPa

4.72 63.7 13.5 43.3 15,630.2 4803.1 3.0 175.7

4.1.3. Composite #3

Composite #3 was fabricated with the (90/0/90/0/45/−45/45/−45)2S layup from
“Toray Cetex® TC1200 PEEK” (Toray Advanced Composites, Morgan Hill, CA, USA)
unidirectional carbon fiber preform and a PEEK binder, designated as “PEEK/CF”. It was
tested in the same way as composite #2. The test results are presented in Table 3.

Table 3. The test results for composite #3 (Velocity = 3.34 m/s).

Thickness,
mm

Impact
Energy, J

Impact
Energy Per
Millimeter

of Thickness,
J/mm

Absorbed
Energy, J

Peak Force,
N

Damage
Initiation
Force, N

Damage
Initiation
Energy, J

Compression
Strength

After Impact,
MPa

4.42 29.9 6.8 20.3 10,020.9 7481.1 10.7 290.8

The PEEK/CF prepreg exhibited a tensile strength of 2410 MPa, a compressive strength
of 1300 MPa, and an elastic modulus of 135 GPa. The dry prepregs were manually arranged
in a stack following the required stacking sequence. The hot press was preheated to 300 ◦C,
after which the stack was placed in the press. The temperature was then increased to 380 ◦C
under a pressure of 0.7 MPa and held for 1 h. Following this, the heating was turned off,
and the assembly was cooled to 300 ◦C. Finally, the blank plate was removed from the press
and allowed to cool in air to room temperature.

The performed compression tests were treated as a conventional method for assessing
the reduction in the load-bearing capacity of the CFRPs preliminarily subjected to impact
loading [89].

In the framework of this study, they enabled an increase in the dimensions of macro-
scopic damage in each sample to facilitate their subsequent visualization during radio-
graphic inspection since BVID with the spatial resolution of the sensor applied is practically
impossible to detect even with this method.
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General views of the tested samples are shown in Figure 5 (from the impact side, the
striker contact spots are indicated). In addition, their side views are presented, illustrating
the failure modes after compression testing.

Polymers 2024, 16, x FOR PEER REVIEW 11 of 33 

 

MPa. In the case of composite #2 (epoxy/CF), the impact loading was characterized by a 
maximum adsorbed energy of >43 J, but the failure energy was extremely low (~3 J). After 
compression testing, both longitudinal delamination and transverse cracking were ob-
served (Figure 5c). The residual compressive strength was significantly higher than in 
composite #1, at 175 MPa. On the contrary, the total energy of ~20 J was low for composite 
#3 (PEEK/CF), while its failure energy increased up to 10 J. After compression testing, 
composite #3 was characterized by multiple cracks, which apparently allowed it to absorb 
a noticeable part of the energy introduced via impact, while the residual compressive 
strength of ~290 MPa was the greatest among all the studied samples. 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. The samples for radiographic inspection: (a) A general view in the plane of impact; the
dotted line indicates the contact spots with the striker, while the arrows indicate the office staples
used as indicator marks. Side views of composites #1 (b), #2 (c), and #3 (d).
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Figure 5a shows that composite #1 (epoxy/AF) experienced significant longitudinal
(interlaminar) delamination, corresponding to a low residual compressive strength of
67.7 MPa. In the case of composite #2 (epoxy/CF), the impact loading was characterized
by a maximum adsorbed energy of >43 J, but the failure energy was extremely low (~3 J).
After compression testing, both longitudinal delamination and transverse cracking were
observed (Figure 5c). The residual compressive strength was significantly higher than in
composite #1, at 175 MPa. On the contrary, the total energy of ~20 J was low for composite
#3 (PEEK/CF), while its failure energy increased up to 10 J. After compression testing,
composite #3 was characterized by multiple cracks, which apparently allowed it to absorb
a noticeable part of the energy introduced via impact, while the residual compressive
strength of ~290 MPa was the greatest among all the studied samples.

In Figure 5a, it can be seen that, as a result of the impact on composite #1 (epoxy/CF),
a rounded trace was formed on the surface, comparable in size to the diameter of the ball
(shown in the red circle). Since the sample was subjected to compression testing after
the impact, it was of interest to visualize possible damage in its several areas using the
hardware/software installation. For this purpose, three regions were selected, correspond-
ing to the striker contact spots (Figure 6a, region N2) and located at approximately equal
distances from it (Figure 6a, regions N1 and N3), for which radiographic inspection was
carried out. To facilitate the location goal before the radiographic inspection, office staples
were attached to the sample surface with adhesive tape, as shown using the arrow in
Figure 5a.

Since the images of the side face of the studied samples shown in Figure 5b–d did not
enable an understanding of the distance from the impact spot or from the transverse main
crack at which the delamination/fracture processes developed, an additional radiographic
inspection was conducted. Within its framework, stitched images (montages/series of
adjacent sections) were investigated in all three composites. In these cases, the radiographic
images were recorded with overlapping sections to avoid a possible loss of information.

For composites #2 (epoxy/CF) and #3 (PEEK/CF), similar images are shown in
Figure 6b,c, with an indication of the regions for the radiographic inspection that were
located not only in the center (in fact, the spot of contact with the striker) but also at the
sample edges through the main crack (initiated during compression testing). According
to the results of the visual analysis, they could correspond to areas that had experienced
varying degrees of damage.

Figure 7 presents images illustrating the locations of the investigated regions with
indicator marks in the form of office staples (shown by arrows). Below, optical images of the
composite surface within C1–C5 regions are shown with the corresponding radiographic
data. It was quite difficult to detect any distinguishable “objects” reflecting damage caused
by the impact of the striker (ball) or the drop weight in the unprocessed (raw) radiographic
images. However, certain differences were evident for the studied samples. According to
the authors, the reason was the specificity (difference in character) of the propagation of
X-ray radiation in CFRPs (which have approximately similar radiographic density), but to
the nature of the damage formed in them, associated with both the structure and different
resistance to fracture under compression.

4.2. Composite #1, Separate Fragments

Figure 8 shows optical images and corresponding radiographic data for composite #1
(epoxy/AF), recorded at an accelerating voltage of 35 kV. The distance between the sample
and the sensor was varied (39, 160, and 240 mm), changing the magnification (namely the
sizes of the analyzed regions). Therefore, all three magnified radiographic images were
used to detect discontinuities and in their qualitative and quantitative analysis.
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Figure 6. The regions of radiographic inspection of composites #1 (a), #2 (b), and #3 (c).

According to Figure 8, the radiographic images did not reveal any noticeable visual
difference between region N2 (Figure 8e–h), where the impact took place, and regions N1
and N3, located far from it (Figures 8a–d and 8i–l, respectively). The reason could be the
low spatial resolution of the sensor (about 50 µm) relative to the characteristic size of the
damage. In addition, as shown in Figure 5b, after compression testing, the sample was
characterized by pronounced delamination, so no differences in the radiographic data for
regions N1–N3 could be observed. For effective radiographic inspection, defects should be
oriented parallel to the X-ray beam, while in this case, the delamination was perpendicular
to the axis of irradiation. Finally, one of the key challenges of the introscopy of low-contrast
objects is the high level of noise/interference in the radiographic images. Since it was
impossible to influence the first three factors within this study, the authors used algorithms
described in Section 3 to solve the problem of improving radiographic data. Note that low
residual compressive strength of 67.7 MPa was characteristic of composite #1.
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Figure 7. The regions of recording the radiographic images (montages) for composites #1 (a), #2 (b),
and #3 (c); the arrows show office staples used as indicator marks.
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Figure 8. The optical images of regions N1–N3 (a,e,i) and the corresponding radiographic data for
composite #1; the distances between the sample and the sensor are 39 mm (b,f,j), 160 mm (c,g,k), and
240 mm (d,h,l).
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Figure 9 presents the results of processing all the radiographic images, shown in
Figure 8, in the phase-variation format. When calculating the phase variation using expres-
sion (7), the processing parameters used were N = 15, Ψ = π

15 , and σ = 16. With increasing
“magnification”, the degree of detail of the objects in the images was enhanced. According
to the authors, this phenomenon was associated not only with the possible presence of
damage but also with the structure of the layered CFRPs containing two different prepregs.
Figure 10 shows the magnified images as “mixtures of the original images and their phase
variations”. The use of both image processing methods increased their contrast via the
detection of contours that reflected discontinuities formed during compression testing
(Figure 5a).Polymers 2024, 16, x FOR PEER REVIEW 16 of 33 
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Figure 9. The phase variations of the radiographic images shown in Figure 8a–c; the distances
between the sample and the sensor are 39 mm (a,d,g), 160 mm (b,e,h), and 240 mm (c,f,i).

In a preliminary discussion, the peculiarities of the analyzed radiographic data should
be emphasized. In particular, the image quality is influenced by both discontinuities
and the internal (including initial) structure of CFRPs. This is also due to the fact that
the radiographic images are formed when X-rays passed through the entire thickness of
the samples, while possible delamination may develop only locally. For this reason, the
objects (identified in the images as contours) are not necessarily a result of damage develop-
ment/presence. However, the detected “objects” (especially at higher magnifications) could
result from fracture during compression testing since the sample structures were formed to
be as homogeneous as possible during their fabrication. It is important to note that this
assumption requires more detailed studies, including the implementation of alternative
NDT methods, such as µCT.
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Figure 10. The phase variations of the processed radiographic images shown in Figure 8a–c; the
distances between the sample and the sensor are 39 mm (a,d,g), 160 mm (b,e,h), and 240 mm (c,f,i).

The study was interested not only in visualizing the features of the internal structure
but also in evaluating the efficiency of the proposed image processing methods, comparing
the data for the investigated CFRPs. For this purpose, several metrics traditionally used in
image-quality assessment tasks were employed. In particular, we calculated the values of
the peak S-N ratio (PSNR) and the structure similarity index (SSIM) [85]. Table 4 provides
a summary of the PSNR and SSIM values for the processed radiographic images (in fact,
compared to the original ones, shown in Figure 8). The PSNR metrics were more informative
since their values decreased with an increase in the number of visually observed contours
(which can be interpreted as the number of objects in the images).

Table 4. The MSE/PSNR/SSIM values for the processed radiographic images for composite #1.

Statistics Region
L, mm

39 160 240

PSRN
N1 32.7377 32.6135 16.2886
N2 16.6318 13.6818 14.0694
N3 20.6828 21.6504 10.6309

SSIM
N1 0.9871 0.9922 0.7665
N2 0.8175 0.6802 0.6244
N3 0.8993 0.8678 0.5423

NIQE
N1 12.0365 12.0697 12.0860
N2 12.9296 12.0985 12.4374
N3 12.7888 12.2750 12.2109
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Table 4. Cont.

Statistics Region
L, mm

39 160 240

PIQE
N1 50.2905 50.2666 54.4745
N2 54.9133 56.4914 56.0223
N3 51.9405 57.1815 56.0704

4.3. Composite #2, Separate Fragments

Figure 11a,e,i shows optical images and corresponding radiographic data for com-
posite #2 (epoxy/CF). In this case, during the compression test, the main crack propa-
gated across the entire sample, so its presence was characteristic of all regions, N1–N3
(Figure 11a,e,i). According to Figure 5c, the main crack propagation was accompanied by
both delamination and microcracking. Thus, the “objects” visible in Figure 11 may also
have been caused by this damage type (Figure 5c). Note that the residual compressive
strength of composite #2 was 175 MPa.
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mensions of discontinuities, which were visualized quite clearly after the image pro-
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somewhat as “magnification” increased. Most likely, this was caused by the fact that the 
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Figure 11. The optical images of regions N1–N3 (a,e,i) and the corresponding radiographic data for
composite #2; the distances between the sample and the sensor are 39 mm (b,f,j), 160 mm (c,g,k), and
240 mm (d,h,l).

Since the damage types were similar for all three regions, N1–N3, the authors only
reported the data for region N2, corresponding to the impact spot. Figure 12 shows the
image processing results (Figure 11f–h) in the phase-variation format (Figure 11a–c) and
as “mixtures of the original images and their phase variations” (Figure 11d–f). Unlike
composite #1 (epoxy/AF), the degree of detail of the “objects” rather decreased with
an increase in “magnification”. According to the authors, the reason was the change
in dimensions of discontinuities, which were visualized quite clearly after the image
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processing procedure. This fact was also evidenced by the results of the quality metrics
calculation for the images presented in Table 5. It can be seen that the metrics were enhanced
somewhat as “magnification” increased. Most likely, this was caused by the fact that the
number of “objects” (actually contours) decreased in the radiographic images, leading to
reduced noise.
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side face (Figure 5d), it was formed as a large number of localized microcracks. The acrylic 
paint layers peeled off from rather large areas (Figure 13), so the pattern of such disconti-
nuities was similar to that in the digital image correlation method, indirectly reflecting 
pronounced damage. At the fractured area, the sample “swelled” to a significantly greater 
thickness compared to that for composite #2. As a result, the radiographic images were 
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Figure 12. The results of processing of the radiographic images shown in Figure 11 as the phase
variation ones (a–c), as well as the mixtures of the original images and the phase variations (d–f). The
distances between the sample and the sensor are 39 mm (a,d), 160 mm (b,e), and 240 mm (c,f).

Table 5. The MSE/PSNR/SSIM values for the processed images for composite #2, region N2.

Statistics
L, mm

39 160 240

PSNR 14.4486 16.6805 17.5288
SSIM 0.7846 0.8291 0.9118
NIQE 9.8329 10.8618 11.3997
PIQE 47.9991 47.9058 46.1047

4.4. Composite #3, Separate Fragments

In composite #3 (PEEK/CF), the main crack during the compression test also propa-
gated across the entire sample (Figure 5a). According to the visual assessment along the
side face (Figure 5d), it was formed as a large number of localized microcracks. The acrylic
paint layers peeled off from rather large areas (Figure 13), so the pattern of such discon-
tinuities was similar to that in the digital image correlation method, indirectly reflecting
pronounced damage. At the fractured area, the sample “swelled” to a significantly greater
thickness compared to that for composite #2. As a result, the radiographic images were
noticeably different for regions N1–N3 through the main crack path (Figure 13).

The radiographic images were also processed only for region N2 through an analogy
with the previous subsection; the results are shown in Figure 14. Compared with composite
#2 (Figure 12), the images for all three “magnifications” appear similar, although the main
crack is less clearly visible (probably due to the small sizes of its components compared to
the spatial resolution of the sensor of 50 µm). Nevertheless, the objects (contours) observed
in Figure 14 can be classified as discontinuities. Note that the residual compressive strength
of composite #3 was equal to ~290 MPa.
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Figure 14. The results of processing the radiographic images, shown in Figure 13, as the phase var-
iation images (a–c), as well as mixtures of both original images and phase variations (d–f); the dis-
tances between the sample and the sensor are 39 mm (a,d), 160 mm (b,e), and 240 mm (c,f). 

Table 6 presents the calculated quality metrics of the processed radiographic images 
for composite #3 (PEEK/CF). For all three, both PSNR and SSIM parameters were charac-
terized by close values of 15.4–19.7 and 0.78–0.84, respectively (they were 14.5–17.5 and 
0.78–0.91, respectively, for composite #2). Thus, these ranges were comparable for the 
samples reinforced with carbon fibers and containing the main cracks formed under com-
pression. At the same time, they differed for composite #1 (epoxy/AF) with the smaller 
discontinuities (its PSNR and SSIM values were 13.6–16.6 and 0.62–0.81, respectively). So, 
the phase variation pattern was mainly determined by the internal structure of composite 
#1 due to the smaller number of discontinuities and their sizes. For the more damaged 
composites #2 and #3, the “objects” (contours) in the processed radiographic images were 
specifically associated with their damage. 
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Figure 13. The optical images of regions N1–N3 (a,e,i) and the corresponding radiographic data for
composite #3; the distances between the sample and the sensor are 39 mm (b,f,j), 160 mm (c,g,k), and
240 mm (d,h,l).
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Figure 14. The results of processing the radiographic images, shown in Figure 13, as the phase
variation images (a–c), as well as mixtures of both original images and phase variations (d–f); the
distances between the sample and the sensor are 39 mm (a,d), 160 mm (b,e), and 240 mm (c,f).

Table 6 presents the calculated quality metrics of the processed radiographic images for
composite #3 (PEEK/CF). For all three, both PSNR and SSIM parameters were characterized
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by close values of 15.4–19.7 and 0.78–0.84, respectively (they were 14.5–17.5 and 0.78–0.91,
respectively, for composite #2). Thus, these ranges were comparable for the samples
reinforced with carbon fibers and containing the main cracks formed under compression. At
the same time, they differed for composite #1 (epoxy/AF) with the smaller discontinuities
(its PSNR and SSIM values were 13.6–16.6 and 0.62–0.81, respectively). So, the phase
variation pattern was mainly determined by the internal structure of composite #1 due to
the smaller number of discontinuities and their sizes. For the more damaged composites
#2 and #3, the “objects” (contours) in the processed radiographic images were specifically
associated with their damage.

Table 6. The MSE/PSNR/SSIM values for the processed images for composite #3, region N2.

Statistics
L, mm

39 160 240

PSNR 15.4689 19.7381 17.1512
SSIM 0.7828 0.8049 0.8476
NIQE 11.4462 11.8984 12.2921
PIQE 52.4639 48.5027 45.9538

It should be noted that PSNR and SSIM metrics are typically used to compare optical
images characterized by Gaussian noise in most cases. At the same time, the intensity and
temporal distribution of quanta are described using the Poisson distributions, a special
case of which is the Gaussian one. Respectively, for the analysis of the noise structure
in the radiographic images, the results of their spectral analysis are presented in the
Discussion section.

4.5. Composites #1–3, Montages of Fragments at Different Distances from the Impact Spots

As noted above, some montages of several stitched images were also recorded for
composites #1–3. The recording scheme is shown in Figure 7a–c with the separate optical
images and the corresponding radiographic data. In those cases, it was not possible to
identify any “objects” due to the low contrasts. So, these radiographic data were processed
according to the algorithms described in Section 3; the obtained results are shown in
Figures 15–17.

For composite #1 (epoxy/AF), where the damage is considered quasi-homogeneous
interlayer delamination (Figure 5b), no discernible differences were detected in the pre-
processed image at the impact spot and beyond (Figure 15a). For composites #2 (epoxy/CF)
and #3 (PEEK/CF) with the main cracks formed during compression, both damage zones
(crack propagation paths) were visible in similar images. However, its contrast was greater
for composite #2 (Figure 16a) than that for composite #3 (Figure 17a).

A processing effect should be noted in the form of an increased concentration of
contours along the left vertical edge of the images shown in Figure 15b,c. This should be
interpreted as an artifact, rather than a consequence of the presence of discontinuities or
the specificity of the internal composite structure. In addition, the phase congruency image
(Figure 15d), as well as the sum of the phase congruency and the pre-processed image
(Figure 15e), revealed the presence of needle-like “objects” (contours), indistinguishable in
Figure 5b,c. The authors believe that these are not indicative of real discontinuities. This
effect will be discussed in more detail in the corresponding section (Discussion).
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gruency image (d), and the sum of the phase congruency and the pre-processed image (e). 

Figure 17 shows the processed radiographic images for composite #3 (PEEK/CF). As 
in the previous case, the main crack was successfully visualized. Figure 17b,c (the phase 
variations) presents some horizontal areas oriented parallel to it, which could be discon-
tinuities caused by the impact loading of the sample (they were consistent with Figure 

Figure 15. The processed radiographic images for composite #1: the preprocessed image (a), the phase
variation (b), the sum of the phase variation and the pre-processed image (c), the phase congruency
image (d), and the sum of the phase congruency and the pre-processed image (e).
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Figure 16. The processed radiographic images for composite #2: the pre-processed image (a), the
phase variation (b), the sum of the phase variation and the pre-processed image (c), the phase
congruency image (d), and the sum of the phase congruency and the pre-processed image (e).
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Figure 17. The processed radiographic images for composite #3: the pre-processed image (a), the
phase variation (b), the sum of the phase variation and the pre-processed image (c), the phase
congruency image (d), and the sum of the phase congruency and the pre-processed image (e).

The most obvious results of the image processing were obtained for composite #2
(Figure 16). First of all, it was possible to visualize the main crack. However, away from the
main crack, no visible signs of discontinuities were detected in the phase-variation images
(Figure 16b,c). This is generally consistent with the data presented in Figure 5c (the optical
image of the side face of the sample), where the length of the maximum damaged area
barely exceeded 10 mm. On the other hand, in the phase-congruency images (Figure 16d,e),
similar to Figure 15d,e, a number of “objects” in the form of contours were detected, which,
as the authors believe, reflected the specifics of the internal structure of composite #2
(epoxy/CF) but not discontinuities resulting from the growth of the main crack. Thus, the
phase congruency method should be considered preferable for identifying large objects in
radiographic images (with a low spatial frequency).

Figure 17 shows the processed radiographic images for composite #3 (PEEK/CF).
As in the previous case, the main crack was successfully visualized. Figure 17b,c (the
phase variations) presents some horizontal areas oriented parallel to it, which could be
discontinuities caused by the impact loading of the sample (they were consistent with
Figure 5d). In the phase congruency images (Figure 17d,e), which were more sensitive
to “objects” from the low spatial frequency region, these areas were indistinguishable.
However, Figure 17e most clearly visualizes both the main crack path and a vertically
oriented object (which can be interpreted as a microcrack).

By analogy with the approach used above for quantitative assessment of the quality
of the improved radiographic images, Table 7 shows the PSNR, SSIM, NIQE, and PIQE
values for the phase variation montages (Figures 15b, 16b and 17b), the phase congru-
ency (Figures 15d, 16d and 17d), and NIQE and PIQE values for the improved images
(Figures 15a, 16a and 17a). For comparison, the same data are repeated for the single im-
ages at the impact spots, taken from Tables 4–6. For the montages, the PSNR values
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decreased relative to those for the single images of composites #1 (epoxy/AF) and #3
(PEEK/CF) due to the smaller numbers of “objects” (contours), contributing the most to
the value of this parameter. Conversely, for the same reason, the PSNR value significantly
increased for composite #2 (up to 26.9 relative to 14.4).

Table 7. The PSNR/SSIM/NIQE/PIQE values for the improved images, composites #1–3.

Method PSNR/PSNR SSIM/SSIM NIQE PIQE

ROW (composite #1) 11.406 58.340

Phase variation 13.998/16.631
(Table 4)

0.812/0.818
(Table 4) 9.847 50.699

Phase congruence 23.364 0.962 10.805 57.096

ROW (composite #2) 10.980 55.381

Phase variation 26.933/14.449
(Table 5)

0.946/0.785
(Table 5) 8.137 37.192

Phase congruence 33.077 0.983 9.560 46.025

ROW (composite #3) 10.192 53.619

Phase variation 11.798/15.468
(Table 6)

0.754/0.782
(Table 6) 8.595 40.810

Phase congruence 20.993 0.945 9.210 51.369

A less pronounced but generally similar trend was observed for the SSIM parameters,
which remained virtually unchanged for composites #1 and #3 (0.81/0.82 and 0.75/0.78,
respectively) but increased for composite #2 (0.94/0.78). NIQE and PIQE values exhib-
ited the same trend, much like the relative metrics SSIM and NIQE. However, they are
comparable with values for the non-processed images. Thus, the PSNR parameter should
be considered more informative in terms of assessing the degree of improvement in the
quality of radiographic images.

5. Discussion

One of the key challenges of this study was the impossibility (within the scope of the
stated goal) of verifying the reliability of the radiographic data for low-contrast CFRPs
with small-scale discontinuities and a sensor spatial resolution of ~50 µm (the exceptions
were the general side views of the samples shown in Figure 5b–d). Depending on the
applied algorithms, various “objects” (contours) in the processed radiographic images may
be artifacts.

5.1. Spectrum Analysis

The approach used by the authors for a quantitative assessment of the processed
images was borrowed from conventional methods of comparing the quality of optical
images, where the main noise source (interference) is the noise from the CCD (charge-
couple device) or CMOS (complementary metal oxide semiconductor) sensors, typically
characterized by Gaussian distributions. In this study, the processed images were formed
by accumulating (counting) quanta, while the condition for completing the recording
process was reaching their number of 10,000. From the standpoint of understanding both
the image contents and the effects of their processing, identifying the nature of this noise is
important, which can be achieved via a 2D spectral analysis.

Figure 18a shows a radiographic image of fragment C1 (Figure 7c) and its 2D Fourier
spectrum obtained using the “Mathlab” software package version R2023b. The spectrum
energy was noticeably blurred across the entire range of spatial frequencies (Figure 18b).
For the processed image (a mixture of the original image and its phase variation shown in
Figure 18c), the presence of a clearly distinguishable area of discontinuities manifests in the
2D Fourier spectrum as a concentration of energy in the low-frequency range (Figure 18d).
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decibels, while the frequency scale is in relative units (normalized to half the Nyquist frequency).

If the analyzed image does not contain a clearly visible damaged area, such as in
Figure 19a (fragment C5 in Figure 7c), the 2D Fourier spectrum on the raw radiographic
image (Figure 19b), characterized by a low S-N ratio, is similar to that shown in Figure 18b.
The 2D Fourier spectrum of the processed image (a mixture of the original image and its
phase variation shown in Figure 19c) reflects details of the internal composite structure (but
not discontinuities in it since, according to the authors, they are absent or minimal). The
2D Fourier spectrum also indicates a concentration of energy in the low-frequency range
(Figure 19c).

Thus, regardless of the nature of detected objects, the image processing, performed by
adding the phase-variation pattern after their pre-processing, enables the elimination of a no-
ticeable portion of the high-frequency noise, making the images clearer and more contrasting.

5.2. The Noise Immunity Study

To better understand the results of processing the radiographic images described
above, the noise immunity of the phase congruency and the phase-variation algorithms
were investigated on a model image of a circle contour. Images of the circle (Figure 20a)
and an image of Gaussian white noise were synthesized using the “Mathlab” software
package version R2023b. A weighted sum of both the circle and noise images with different
ρ signal-to-noise ratios (Figure 20b) was the input parameter of the processing algorithms.
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Figure 20. The model (a) and processed (b) images of the circle; noise at ρ = 1.

For all images with noise, the phase congruency (M = 63, N = 6, σω = 16, σθ =1.7), the
phase variation, and the improved phase variation (N = 15, Ψ = π

15 , σ = 16) were calculated.
An example of the results is shown in Figure 21.

Consistent with the conclusions noted above, it is evident that the phase-variation
function highlights high-frequency elements (Figure 21b), while phase congruency reflects
low-frequency objects (contours, Figure 21c). It should be noted that the bright needle-
like areas in Figure 22c are, to some extent, similar to those in Figures 15e, 16e and 17e.
Consequently, this may indicate that their origin is the high noise level of the original
radiographic images. This phenomenon, however, does not diminish the effectiveness of
the applied approach to image processing in highlighting low-spatial-frequency objects.
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Figure 22. The results of the study of the algorithms for detecting contours for noise immunity by
calculating various metrics: PSNR (a), SSIM (b), NIQE (c) and PIQE (d).

The obtained model images were used to calculate the PSNR and SSIM relative
statistics (full-reference quality metrics), as well as the absolute statistics (no-reference
quality metrics), in particular, the natural image quality evaluator (NIQE) and perception-
based image quality evaluator (PIQE) [88,89]. Initially, the metrics were assessed according
to the ratio of the phase variation and congruency functions to the model image of the
contour. Then, the basis was the ratio of the sum of the processed images and their PC and
VP functions.

As expected, almost all PSNR values tended toward a constant level of 34 dB (Figure 22a).
An exception was the contour image with the applied variation function, the PSNR value
of which decreased with an increasing the S-N ratio (enhanced in the dB scale). This result
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requires a separate study, as it most likely indicates the ambiguity of the PSNR metrics applied
to the investigated images.

Typically, the SSIM values, as statistics of the similarity of two images, are interpreted
as “similar” when close to one and “different” when close to zero. In the studied cases,
the SSIM values must be interpreted differently: closeness to one means the images are
unchanged, while tending to zero means a significant change. Therefore, the processed
images are characterized by higher SSIM values with increasing noise levels, i.e., they
possess negligible changes (Figure 22b). The comparison of the edge and phase function
images turns out to be practically indistinguishable for the SSIM metrics and close to zero
for the entire range of the S-N ratios.

The absolute metrics NIQE and PIQE both assess image quality without a comparison
with the standard, and they are more preferable for research on real radiographic data. Their
analysis showed an adequate and explainable result (Figure 22c–d): with an increase in the
S-N ratio, all these absolute metrics decreased, reflecting an improvement in image quality.
However, if the analysis of the sum of the images processed using the phase functions
showed better quality after the phase-variation function was applied for both metrics,
then both metrics, NIQE and PIQE, revealed reverse preferences when contour images
(functions) were analyzed. The advantages of the PIQE metrics include the proximity of
the quality assessment values of both contour and processed images, which makes it the
most preferable among those applied.

It should be noted that the radiographic registration mode implemented in this study
provides an acceptable level of spatial resolution and penetration ability. Consequently, it
can be used in systems for inspecting products of significant length. The obtained results
enable an expectation of a successful solution to this class of problems, while automated
digital X-ray radiography is expected to remain among the most efficient and reliable NDT
means for the inspection of components made from CFRP.

Before coming to conclusions, the following limitations, as well as prospects, of the
study are to be postulated.

The residual strength is a “standard” measure of the bearing capacity of a composite
plate after an impact test. It is a function of multiple parameters, including constituents of
a composite, adsorbed impact energy, a type and parameters of impact tests, damaging and
cracking pattern, etc. Thus, there should be a certain correlation between residual strength
and the dimension of the main crack, but it is not a linear or direct correspondence. This
issue was not discussed in the paper; however, the authors will focus on this topic in the
forthcoming research.

When processing the model images simulating the radiographic images, the applied
algorithms highlighted non-existent objects at the low S-N ratios. For this reason, it is
necessary to develop new approaches to data interpretation that are capable of assessing
the realism of the identified discontinuities.

The utilized approach to radiographic image improvement is not unique. The set of
image-processing algorithms used can be extended, depending on the pattern of noising
or distortion. But the use of phase congruency and phase variation instead of popular
algorithms for edge detection is a real novelty. It was illustrated in the successful example
of detecting low-contrast objects when the signal-to-noise ratio was below unit.

The authors associate further research prospects with the use of GaAs sensors, testing
the installation for detecting other types of discontinuities and structural inhomogeneities
in CFRPs (laminates), and selecting rational radiographic recording modes that provide
images with higher S-N ratios. Of great practical relevance is testing the developed hard-
ware/software tool with real components and real damage. Thus, the sensitivity of the
developed method will be assessed with a variation in materials, geometry, irradiation
doses, the type and dimension of damage, etc.
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6. Conclusions

An improvement in the radiographic images of the CFRPs after subsequent impact
and compression loading was achieved using the developed algorithms. The following
conclusions were drawn.

1. For composite #1 (epoxy/AF) subjected to the “high-velocity” steel-ball impact with
subsequent compression loading, it was not possible to detect discontinuities and/or
the main crack. The reason was the orientation of the extended zone of interlayer
delamination being perpendicular to the irradiation axis, while discontinuities caused
by the impact could not be visualized due to their negligible dimensions. After the
drop-weight impacts and subsequent compression loading of composites #2 and #3
(epoxy/CF and PEEK/CF, respectively), the main cracks were formed in their central
parts. For composite #2, the damage was less localized and represented in a set of
both longitudinal delamination and transverse microcracks. This area was reliably
detected in the processed radiographic images; moreover, it achieved the highest
contrast compared to that for composite #3, which was similar but lower. These slight
dimensional discontinuities were difficult to reveal in the processed radiographic
images, which were characterized by a lower contrast as compared to composite #2.

2. The analysis of the combined radiographic images (montages) has shown that the
“objects” (contours) detected at a distance from the main crack are mainly associated
with the specifics of the internal composite structure, rather than with damage formed
during compression testing. The reasons are the interaction of X-ray radiation with the
material and artifacts caused by a low S-N ratio. Another challenge is the orientation
of discontinuities perpendicular to the X-ray beam axis, in addition to their small size
and low contrast in the CFRP samples. The potential way to solve the problem might
be a variation in the X-ray irradiation angle.

3. Phase-variation and phase-congruency methods were employed to highlight low-
contrast objects in radiographic images. In real images of the aforementioned com-
posites, the phase-variation procedure showed its efficiency in detecting small objects
(with a high spatial frequency), while the phase-congruency method is preferable for
highlighting large objects (with a low spatial frequency).

4. To assess the efficiency of the implemented image processing methods, full- (PSNR
and SSIM) and no-reference (NIQE and PIQE) quality metrics were used. In the
analysis of the model images, the SSIM metric exhibited low sensitivity to changes,
while the PSNR parameter was the most indicative (with an S-N ratio greater than
one unit), confirming an increase in the image contrast and a decrease in the noise
level. In contrast to the PSNR metric, the NIQE and PIQE parameters enable the
correct assessment of image quality even with an S-N ratio of less than a unit. For the
processed radiographic images, the low noise levels were clearly demonstrated in the
2D Fourier spectra, which showed a shift in the main energy component towards the
low-spatial frequency domain.
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