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Abstract: The complex mechanical properties of high-damping rubber (HDR), a commonly used
seismic isolation material in buildings and bridges, present a significant challenge in civil engineering.
In a previous study, the authors proposed an HDR constitutive model that combines a Gated Recurrent
Unit (GRU) and an attention mechanism, offering novel insights into the mechanical properties of
HDR. The constitutive model was simplified first to facilitate the deployment of the proposed
constitutive model within the finite element analysis environment. Then, the simplified constitutive
model was converted into a uniaxial material format suitable for use within the open system for
earthquake engineering simulation (OpenSees). In OpenSees, the uniaxial material was named
HDRGA material, and the code for the HDRGA material header and source files was written. Finally,
an HDR surrogate constitutive model was developed in OpenSees. To validate the precision of
the HDRGA material in characterizing the mechanical attributes of HDR, a two-node model and a
single-pier model were devised, and their accuracy was verified through a comparative analysis of
test results and nonlinear time history calculation results, respectively. The results demonstrate that
the developed HDRGA material is capable of performing well under earthquakes.

Keywords: high-damping rubber; machine learning; OpenSees; surrogate constitutive model; finite
element analysis

1. Introduction

The rapid improvement of computer processing capabilities has facilitated substantial
advancements in the domain of finite element simulation, enabling the analysis of intricate
structures with greater precision and efficiency. Nevertheless, the advancement of high-
fidelity and accurate simulations remains constrained by the limitations of computational
resources and efficiency. The advantage of machine learning technology lies in its capacity
to address the issue of scale in numerical solutions. Theoretically, a structure with millions
of degrees of freedom can be regarded as a black box, capable of resolving issues that
cannot be addressed in real-time due to the constraints of computer performance. The
surrogate model based on machine learning algorithms is capable of not only providing the
same computational results as finite element algorithms but also significantly improving
computational efficiency and reducing computational costs.

In recent years, machine learning has emerged as a prominent research topic in a range
of academic disciplines. Nguyen [1] et al. proposed an efficient method based on subset
simulation and a surrogate model to study the reliability of building structures under
earthquakes. Moustafa [2] et al. utilized Long Short-Term Memory (LSTM) techniques to
simulate nonlinear numerical substructures. Guo [3] et al. and Yan [4] et al. put forth a
seismic intensity index identifying and evaluation method based on a generalized linear
regression model and a Gaussian process regression, respectively. Jia [5] et al. put forth a
rapid assessment method for bridge seismic damage based on a random forest algorithm
and an artificial neural network. Hwang [6] et al. and Kiani [7] et al. put forth a machine
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learning-based methodology for the prediction of seismic response. Alwanas [8] et al.
employed an extreme learning machine model to predict the bearing capacity and failure
mode of concrete in beam—column joints. Lei [9] et al. developed a Bayesian-optimized
interpretable ensemble learning surrogate model to predict and interpret the essential
seismic requirements of urban highway bridges. Wang [10] et al. employed machine
learning algorithms to reliably estimate the bearing deformation and column offset ratio
response of bridges.

To accurately and effectively simulate the hysteresis behavior of materials and compo-
nents, numerous scholars have conducted extensive research based on machine learning.

Regarding the hysteresis behavior of seismic isolation devices, Zhang [11] et al. con-
ducted static cyclic tests on laminated rubber bearings, taking into account the initial
stiffness, friction coefficient, cross-sectional area, height, loading speed, vertical load, and
aging time of the bearings. A novel constitutive model for bearings was devised through
the application of artificial neural network technology. An artificial neural network-based
bridge earthquake demand model was developed and implemented for the expeditious
evaluation of bridge damage. The findings demonstrate that the artificial neural network
earthquake demand model is capable of accurately fitting the complex functional relation-
ship between a multitude of factors and bridge seismic response, thereby facilitating a rapid
assessment of bridge seismic damage. Nasab [12,13] et al. developed a kriging model to
address the issue of traditional modeling methods being unable to accurately simulate the
mechanical properties of viscoelastic dampers that vary with different loading conditions,
including input frequency, amplitude, and temperature. The model was utilized for the
fragility analysis of structures reinforced with viscoelastic dampers. The findings demon-
strate that the model exhibits high accuracy in forecasting experimental outcomes and is
capable of effectively simulating the seismic performance of viscoelastic dampers with
uncertain parameters. Mekaoui [14,15] et al. put forth a hybrid seismic analysis method
for calculating the fully nonlinear response of building structures, which they validated
using deep learning. The objective is to predict the nonlinear hysteresis response of seismic
isolation devices with deformation and velocity-related characteristics. The results demon-
strate that the integration of mechanics-based and data-driven methodologies through a
hybrid analysis approach represents an effective methodology for simulating the response
of buildings.

Regarding the hysteresis behavior of structural components and materials, Ni [16]
et al. employed an enhanced bidirectional LSTM and bidirectional Gated Recurrent Unit
(GRU) to assess the hysteresis behavior of HRB600 reinforced concrete columns subjected
to repeated loading. Their analytical capabilities were then compared with those of finite
element analysis. The findings demonstrate that the selected methodology is effective in
simulating hysteresis curves. However, the GRU approach demonstrates the most precise
predictive capability, as evidenced by the highest R?> and lowest MAE, MSE, and RMSE
values. Xu [17] et al. put forth a deep learning-based predictive simulation framework
that offers precise and expedient hysteresis models for structural analysis. The analysis
of the improved steel support model and the Bouc—Wen hysteresis model demonstrates
that the model is both highly accurate and computationally efficient. Gu [18] et al. put
forth a sensitivity-guided LSTM neural network methodology for the precise and expe-
dient extraction of structural behavior features and the prediction of pivotal parameters
associated with explicit hysteresis models. The findings demonstrate that this approach
can accurately predict structural behavior, is more effective than manual construction, and
exhibits superior generalization ability compared to classical data-driven hysteresis models.
Xu [19] et al. constructed a deep neural network model comprising four hidden layers
and one hundred units per layer to predict the complete residual stress—strain response
of ultra-high performance concrete materials after exposure to high temperatures. The
findings demonstrate that the stress—strain curve predicted by the deep neural network
model exhibits a high degree of consistency with the UHPC test curve. The above studies
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show that the existing research has not yet integrated machine learning-based hysteresis
behavior studies with finite element calculations.

High-damping rubber (HDR) bearings have been extensively utilized in the seismic
design of building and bridge engineering. The mechanical properties of HDR are pri-
marily influenced by temperature and loading cases. In the field of constitutive model
research for HDR, several scholars have established constitutive models based on different
theoretical frameworks.

Although hyperelastic constitutive models have been studied for nearly eighty years,
choosing a model that accurately describes the mechanical response of rubber remains a
challenge. He [20] et al. developed a fitting algorithm to quantitatively evaluate the ability
of each strain energy function to reproduce experimental data of unfilled and highly filled
rubber nanocomposites by reviewing eighty-five isotropic strain energy functions based on
phenomenological theory and micromechanical network theory proposed from the 1940s
to 2019. Xiang [21] et al. reviewed the constitutive models of physics-based soft materi-
als to explain hyperelasticity, viscoelasticity, and damage phenomena. The quantitative
comparison of hyperelastic models guides the selection of appropriate constitutive models.

Arruda [22] et al. proposed a constitutive model for the deformation of rubber mate-
rials based on the eight-chain representation of the underlying macromolecular network
structure of rubber and the non-Gaussian behavior of individual chains in the proposed
network. The model successfully represented the responses of these materials in uniaxial
tension, biaxial tension, uniaxial compression, plane strain compression, and pure shear.
Ogden [23] et al. believed that the common practice of writing strain energy as a function
of two independent strain invariants often complicates the related mathematical analysis.
Therefore, by fully utilizing the inherent simplicity of rubber’s isotropic elasticity, a strain
energy function was constructed. This function (i) provides a sufficient representation
of the mechanical response of rubbery solids, and (ii) is simple enough for mathematical
analysis. Han [24] et al. studied the complete constitutive relationship of hyperelastic
materials within the theoretical framework of continuum mechanics, starting from the
strain energy function. The research results indicate that based on experimental curves of
the full deformation range under multiple deformation modes, the complete constitutive
relationship of hyperelastic materials can be obtained, which has guiding significance for
theoretical research and engineering applications of complex practical problems such as
the fracture of hyperelastic materials. Wei [25] et al. conducted multi-step relaxation tests
and cyclic shear tests under different compression forces and loading rates to investigate
the effects of loading rates and compression forces on the mechanical behavior of HDR
bearing. An HDR-bearing rate-dependent constitutive model considering the influence of
compressive force was proposed, and its effect on structural seismic response was stud-
ied. Wei [26] et al. proposed a new elastic incompressible isotropic constitutive model
for rubber-like materials. This model is an isotropic incompressible model defined based
on the first and second principal stretches and is applicable to describe the elasticity of
rubber-like materials in general deformation states. Wang [27] et al. proposed a multi-axial
compressible strain energy function and directly and explicitly simulated the stress—strain
hysteresis loop generated by the Mullins effect in rubber-like materials during loading and
unloading cycles. Reese [28] et al. proposed a finite deformation viscoelastic model that
employs nonlinear evolution laws and compared it with other models. Ghosh [29] et al.
provided two potential frameworks for the constitutive modeling of dielectric elastomers,
considering deformation-enhanced shear thinning due to viscosity dissipation.

It shows that the majority of existing studies have concentrated on monotonic loading
test data under tension or compression. The findings of this study indicate that the strain
history of HDR has a significant impact on its mechanical properties. It is a challenging
task to establish a constitutive model that can accurately simulate the influence of various
main factors on HDR. Furthermore, a comprehensive consideration of the Mullins effect
represents a significant challenge. Accordingly, in the authors’ previous research [30], an
HDR constitutive model combining a GRU and an attention mechanism was proposed.
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In this study, we initially present the HDR constitutive model, which combines a GRU
and an attention mechanism. We then proceed to further simplify this constitutive model.
Subsequently, the simplified constitutive model is transformed into a new open system for
earthquake engineering simulation (OpenSees) uniaxial material HDRGA through format
conversion. This enables the accurate description of the force-displacement relationship of
HDR bearings when they are incorporated into finite element calculations.

2. Materials and Methods
2.1. Test Specimen and Cases

In engineering applications, HDR bearing is primarily responsible for bearing the
vertical force transmitted by the upper structure and the horizontal force under earthquakes.
Accordingly, this study employed multi-case compression shear testing on HDR specimens.

The HDR specimen is composed of two steel plates measuring 250 mm x 250 mm
x 20 mm, with a single HDR layer measuring 250 mm x 250 mm x 5 mm sandwiched
between them. The steel plates and HDR layer are bonded together through vulcanization,
as illustrated in Figure 1. For temperature control, the high and low temperature alternating
environment test chamber is used. The 100 t electro-hydraulic servo actuator is used as
the horizontal loading equipment, while the 200 t vertical actuator is used as the vertical
loading equipment. The cases for HDR specimens are shown in Table 1. Among them, the
training cases include five temperatures and five strain rates. The testing cases include
four temperatures and one strain rate. Each test case undergoes two types of strain am-
plitude loading processes: amplitude-increasing cyclic loading and amplitude-decreasing
cyclic loading.

Table 1. The cases for the HDR specimen.

Case Temperature/K Strain Rate/s—1 Strain Amplitude/%

253.15 0.2
253.15 0.4
253.15 0.8
253.15 1.6
253.15 3.2
268.15 0.2
268.15 0.4
268.15 0.8
268.15 1.6
268.15 3.2
283.15 0.2
283.15 0.4

Training case 283.15 0.8 40 — 80 — 120 — 160
283.15 1.6 — 200
283.15 3.2 and
298.15 0.2 200 — 160 — 120 —
298.15 0.4 80 — 40
298.15 0.8
298.15 1.6
298.15 3.2
313.15 0.2
313.15 0.4
313.15 0.8
313.15 1.6
313.15 3.2
260.65 24
275.65 24

Testing case 290.65 24

305.65 24
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Figure 1. The HDR specimen.
2.2. LSTM and GRU

HDR has complex nonlinear constitutive relationships. However, explicit formulas are
typically constrained by limited parameters, and constitutive models established through
explicit formulas ultimately suffer from inaccurate descriptions. The constitutive model of
HDR exhibits evident time-series characteristics, necessitating comprehensive investigation
through techniques capable of integrating previous information, which has a profound
impact on the current state.

A recurrent neural network (RNN) is a special type of large model neural network
that is particularly suitable for processing and predicting temporal dependencies and
temporal information in sequential data. Unlike traditional feedforward neural networks,
an RNN has connected nodes between hidden layers, allowing them to store and transmit
information from previous time steps to the current time step. An RNN generally takes
sequence data as input and effectively captures the relationship features between sequences
through the internal structure design of the network. It is usually output in the form
of sequences. The recurrent mechanism of an RNN enables the results generated in the
previous time step of the model’s hidden layer to be used as part of the input for the current
time step (the input for the current time step includes not only the normal input but also
the output of the previous hidden layer), which affects the output of the current time step.
However, an RNN has not been able to address the issue of long-term dependencies [31].

The LSTM [32] is a special type of RNN. LSTM aims to solve the problem of gradient
vanishing or exploding encountered by traditional RNNs when processing long sequence
data. Compared to standard RNNs, LSTM introduces more complex structures to maintain
and update internal states. The GRU is a simplified adaptive approach derived from
the LSTM. It has been demonstrated to achieve performance comparable to that of the
LSTM [33].

The components of the LSTM [34] are shown in Figure 2. The yellow box represents
the learning neural network layer comprising the o network layer and the tanh network
layer. The activation functions associated with these layers are the Sigmoid and tanh
functions, represented by Equations (1) and (2), respectively. The pink circle signifies the
point-by-point operation, denoting vector multiplication as “®” and vector addition as
“@”. Each line carries an entire vector from the output of one node to the inputs of others.
The merging of lines indicates the concatenation of information, while the bifurcated line
signifies the copy of the information, which is subsequently passed to the corresponding
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location. These components form the input gate, forget gate, and output gate, with the
respective calculation equations outlined in Equations (3)—(8).

1

Sigmoid(x) = e s 1)

X ,—x
tanh(x) = ix—i—% 2)
fi = Sigmoid(wf i1, xe] + bf) 3)
iy = Sigmoid (W; - [h4_1, x¢] + b;) 4)
Ct = tanh(Wc - [h_1, x:] + bc) 5)
Cr=fi x Coo1+ir x G (6)
o = Sigmoid (W, - [h;—1, x¢] + bo) (7)
hy = o x tanh(Cy) (8)

where f;, i;, and o; are the activation values of the forget gate, input gate, and output gate,
respectively; C; and C; are the candidate memory unit state and updated memory unit
state, respectively; h; is the final hidden state output; Wf, Wi, Wc, and W, are the weight
matrix, respectively; bf, b;, bc, and b, are the bias term, respectively; h;_; and x; are the
hidden state of the previous time step and the input of the current time step, respectively;
C¢_1 is updated memory unit state of the previous time step.

h

I t gat
Cr1 / ~P= %—f\i eOutput gate R C
[

A

ht

(1 o — > <<

Neural ) ‘
network Pointwise  Vector c - .
layer operation transfer —oncatenate opy

Figure 2. The LSTM structure.

Building upon the LSTM architecture, the GRU simplifies the gating mechanism by
condensing the input gate, forget gate, and output gate of LSTM into a reset gate and
an update gate. The structure of GRU [34] is illustrated in Figure 3. Each component
is identical to its LSTM counterpart, and the corresponding calculation equations are
presented as Equations (9)—(12). In comparison to LSTM, GRU exhibits a reduction in the
number of parameters, making it more manageable for training and tuning while also
enhancing computational efficiency.

z¢ = Sigmoid (W - [hy—1, x¢]) ©)
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r¢ = Sigmoid(W; - [h;_1, x¢]) (10)
ht = tanh(W . [Tt X ht_l,xt]) (11)
hy = (l — Zt) X hi_1+ 2z X Et (12)

where z; and r; are the activation values of the update gate and reset gate, respectively; hy
is the candidate memory unit state; /; is the final hidden state output; W,, W,, and W are
the weight matrix, respectively; h;_; and x; are the hidden state of the previous time step
and the input of the current time step, respectively.

hi
- / Update ga@ flt
Reset gate %
[/
g Tt
| o] | o tanhl
\ | |
[ J

Xt

Figure 3. The GRU structure.

2.3. GRU + Attention Model Simplification

The attention mechanism is a commonly used technique in deep learning that plays
a crucial role in effectively using input information by applying different weights based
on specific requirements [35]. By incorporating the attention mechanism into the GRU
model, it becomes possible to fully explore the distinctive characteristics of data and use
the most significant components within the time series data for modeling purposes. This
integration enhances the model performance by emphasizing relevant information. By
incorporating the attention mechanism, the GRU model becomes capable of selectively
attending to critical features, improving its ability to capture complex characteristics and
enhance prediction accuracy.

Details regarding the specific model structure and prediction performance can be
found in reference [30].

The primary objective of model simplification is to streamline the processing of data
with a length that is less than the sliding window length. The multi-layer perceptron (MLP)
is one of the most basic neural network models, with a relatively simple structure that is
easy to understand and implement. It also has good scalability and universality and can
be applied to various tasks such as classification and regression. In reference [30], an MLP
is employed for training and prediction concerning this particular subset of the data. The
MLP structure comprises three hidden layers, each comprising 16 units, as illustrated in
Figure 4.

While the aforementioned method can also yield satisfactory prediction outcomes,
it is necessary to employ an MLP to generate data of an equivalent length to the sliding
window before utilizing the GRU + attention model for prediction. From an examination
of the overall model structure and prediction process, it can be seen that the method is
somewhat cumbersome.
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Figure 4. The MLP structure.

Accordingly, in the present study, the MLP component will be eliminated, and the
prediction issue when the data length is insufficient for the sliding window length will
be addressed by appending “0” to the test data. The specific approach is to insert an
equal number of “0”s as the sliding window length at the beginning of each training case
data, thereby enabling the GRU + attention model to be trained on a sequence comprising
solely “0”s.

2.4. OpenSees Uniaxial Material Development

OpenSees is an open-source software framework [36] that is primarily utilized for the
simulation and analysis of earthquake engineering and structural systems. The software
includes a comprehensive material library, offering a variety of material models to address
diverse engineering requirements. The models encompass a range of behaviors, from
simple elastic behavior to complex nonlinear and damage behavior, and are suitable for a
variety of structural simulations. Additionally, OpenSees enables users to develop their
material models tailored to specific requirements, offering considerable flexibility.

The existing uniaxial material used to describe the constitutive relationship of HDR in
OpenSees is KikuchiAikenHDR material. However, this material is unable to account for
the influence of external factors on the constitutive relationship of HDR or to incorporate
the Mullins effect of HDR.

2.4.1. KikuchiAikenHDR Material

The KikuchiAikenHDR material in OpenSees uniaxial material is used to simulate the
nonlinear hysteresis behavior of HDR, and its material command is as follows:

uniaxialMaterial KikuchiAikenHDR $matTag $tp $ar $hr

where $matTng is the material number, $tp is the HDR type, $ar is the HDR area, and $hr is
the total HDR thickness.

From the material command, it can be seen that the KikuchiAikenHDR material can
only be used for simulating the hysteresis behavior of HDR simplification. It is not capable
of considering the effects of temperature, loading rate, and other factors, nor can it describe
the Mullins effect of HDR.

To address the shortcomings of the KikuchiAikenHDR material and to capitalize on the
benefits of the simplified GRU + attention model, an HDR OpenSees surrogate constitutive
model was developed. The surrogate constitutive model was named HDRGA material.
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2.4.2. HDRGA Material

The HDRGA material has been developed based on the latest version of the OpenSees
open-source code, version 3.6.0. As OpenSees is primarily developed in the C++ lan-
guage, machine learning models trained in Python 3.9 cannot be directly applied within
OpenSees. Accordingly, the initial step is to train the GRU + attention model, simplified
as detailed in Section 2.3, in Python to generate a “model.h5” file. This is then converted
to a “model. pb” file, and, finally, C++ code is written within the OpenSees. The specific
development process is illustrated in Figure 5. The final result is OpenSees.exe, which can
be directly executed for structural calculations or to replace the file with the same name in
OpenSeespy with OpenSees.pyd. Subsequently, structural calculations can be performed
through Python calls.

GRU-+attention model
training based on model.h5
TensorFlow framework

Convert h5 format to pb
format

model.pb

Uniaxial material C++ code

- HDRGA.h HDRGA.cpp
writing

OpenSees source code

com OpenSees.exe/OpenSees.pyd

Figure 5. The HDRGA material development process.
In OpenSees, the command for accessing the HDRGA material is as follows:
uniaxialMaterial HDRGA $matTag $nnid $Stemp

where $matTag is the material number, $nnid is the neural network number, and $temp is
the ambient temperature.
Next, the accuracy of the HDRGA material will be verified.

3. Results and Discussion
3.1. Test Results Verification

To verify the accuracy of the description of the HDR mechanical properties provided
by the HDRGA material, a two-node model was constructed in OpenSees. Node 1 was
designated as a fixed node, while node 2 was configured to release one degree of freedom
in a single direction, as illustrated in Figure 6. The two nodes are connected by a two-
node link element, which is assigned the HDRGA material type, as illustrated in Figure 7.
Subsequently, the time history of shear displacement corresponding to the specified test
cases is applied to node 2 through displacement loading to verify whether the shear force
generated by the HDRGA material is in alignment with the test results.
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Node 2
O

AW
@

&7

O
Node 1

Figure 6. The two-node model.

Ub2,q2

Ub,1,41

=/
Figure 7. The two-node link element [36]. Where x, y are the local coordinate axes of the element,

i, j are the nodes at both ends of the element, and uy, ;, q; are the displacement and force in the
corresponding direction of the element, respectively.

The accuracy of the HDRGA material was demonstrated by taking the temperature
of 260.65 K amplitude-increasing loading and 305.65 K amplitude-decreasing loading as
examples in the testing cases. The specific comparison results are shown in Figure 8. As
illustrated in Figure 8, the shear force results calculated through OpenSees are found to
be essentially consistent with the test results. Furthermore, the GRU+attention model is
demonstrated to be capable of accurately describing the shear force-displacement relation-
ship under both amplitude-increasing loading and amplitude-decreasing loading. This
demonstrated the feasibility of introducing the GRU + attention model into OpenSees.
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Figure 8. The verification results. (a) Shear force time history of amplitude-increasing loading
at a temperature of 260.65 K; (b) shear force-displacement relationship of amplitude-increasing
loading at a temperature of 260.65 K; (c) shear force time history of amplitude-decreasing loading at a
temperature of 305.65 K; (d) shear force—displacement relationship of amplitude-decreasing loading
at a temperature of 305.65 K.

3.2. Nonlinear Time History Verification

To ascertain whether the HDRGA material is capable of functioning correctly in the
event of an earthquake, a single-pier model was constructed and simulated using an
elastic beam column element. The lumped mass at the top of the pier is connected by
a two-node link element, which is assigned the HDRGA material type, as illustrated in
Figure 9. The lumped mass is 518.4 t, the pier body has an equal cross-section with a
cross-sectional area of 17.05 m?, a pier height of 5 m, an elastic modulus of 3.15 x 10'° Pa, a
cross-sectional moment of inertia of 11.27 m*#, and the mass per unit length of the pier body
is 40.75 t/m. In this structure, the HDRGA material corresponds to an HDR bearing area of
720 mm x 720 mm, a total HDR thickness of 140 mm, and a temperature of 313.15 K. An
artificial seismic wave was generated using SeismoSignal software 2024, as illustrated in
Figure 10. The peak acceleration of the seismic wave is 5.74 m/s?, with a duration of 20 s.

The hysteresis curve of the HDRGA material under seismic wave action was calculated
through nonlinear time history analysis (NTHA), as illustrated by the black dashed line
in Figure 11. To ascertain the extent to which the constitutive behavior of the HDRGA
material accurately reflects the results of the NTHA, the shear displacement of the HDRGA
material obtained from the NTHA was applied to node 2 in Figure 6. The corresponding
hysteresis curve was calculated and is shown by the red solid line in Figure 11. As
illustrated in Figure 11, the hysteresis curve calculated through NTHA is in complete
alignment with the hysteresis curve validated by the two-node model. This demonstrates
that the HDRGA material is fully capable of meeting the structural calculation requirements
under earthquakes.
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4. Conclusions

An OpenSees surrogate constitutive model for HDR based on machine learning was
developed by simplifying the GRU + attention constitutive model and deploying it to
OpenSees. The following conclusions were drawn:

(1) The constitutive relationship of HDR materials has complex nonlinear characteris-
tics, and existing HDR constitutive models make it difficult to fully describe the influence
of multiple factors on their stress—strain relationship. The GRU + attention approach can
effectively solve the problems in existing HDR constitutive models.

(2) The development of a material surrogate constitutive model has the potential
to markedly reduce the consumption of computational resources, considerably enhance
computational efficiency, and reduce computational costs while ensuring the expeditious
and precise simulation of material constitutive relationships.

(3) The development of HDRGA material provides a novel approach for expediently
comprehending materials with complex properties and implementing them in finite ele-
ment calculations.
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