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Abstract: The curing process of hair-pin motor stator insulation is critical, as residual stress increases
the risk of partial discharge and shortens a motor’s lifespan. However, studies on the stress-induced
defects during insulation varnish curing remain limited. This research integrates three-dimensional
numerical simulations and experimental analysis to develop a curing model based on unsaturated
polyester imide resin, aiming to explore the mechanisms of residual stress formation and optimization
strategies. A dual fiber Bragg grating (FBG) sensor system is employed for simultaneous temperature
and strain monitoring, while curing kinetics tests confirm the self-catalytic nature of the process and
yield the corresponding kinetic equations. The multi-physics simulation model demonstrates strong
agreement with the experimental data. The results show that optimizing the curing process reduces
the maximum stress from 45.1 MPa to 38.6 MPa, effectively alleviating the stress concentration. These
findings highlight the significant influence of the post-curing temperature phase on residual stress.
The proposed model offers a reliable tool for stress prediction and process optimization in various
insulating materials, providing valuable insights for motor insulation system design.

Keywords: curing residual stress; unsaturated polyester imide resin (UPIR); curing kinetics; finite
element analysis; hairpin motors

1. Introduction

With the rapid development of the automobile industry, the market share of new
energy vehicles has increased markedly [1]. As the core component of new energy vehicles,
the performance of the motor directly determines the overall vehicle performance [2,3].
Due to their high slot fullness and power density, hair-pin motors are widely used in the
manufacturing of new energy vehicles. In the manufacturing process of hair-pin motor sta-
tors, stator drip coating is a key step; its quality directly affects the insulation performance
of the stator. Common motor insulation materials are mostly polymeric resin lacquers, such
as polyester lacquers, epoxy lacquers, and polyurethane lacquers [4,5]. These resins are
thermosetting polymers that, upon curing, form cross-linked structures which are infusible
and insoluble [6]. When selecting insulating varnish materials, both the insulating proper-
ties and the environmental impact, specifically the emission of volatile organic compounds
(VOCs), must be considered [7,8]. VOCs in polyester resins are typically released during
the polymerization or curing process by toxic crosslinking monomers. These monomers act
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as solvents for the base polyester to reduce its viscosity and are reactive during the curing
process [9]. This issue can be avoided by using solvent-free insulating varnishes. Another
critical factor in selecting insulation materials is thermal performance. According to inter-
national standards [7], thermal classification testing specifies the maximum temperature
that the motor can withstand during operation. Unsaturated polyester imide resins, due to
the introduction of imide functional groups, offer higher thermal ratings and improved
insulating properties [10]. Among these, unsaturated polyester imide resin (UPIR) is often
used as the main material for motor stator insulation because of its superior insulating
properties, mechanical strength, and thermal stability. However, during the curing process
of resin composite insulating varnish, due to the dissimilar material properties between
the insulating varnish and the stator copper conductor, residual stresses are generated
at the interface [11–14], resulting in cracks or gaps in the insulating varnish and partial
discharges, which can seriously affect the motor’s lifespan.

Numerous studies have focused on analyzing the curing residual stresses in resin
composites, particularly regarding their composition and other characteristics. However,
relatively few studies have examined the interfacial residual stresses during the curing
process of stator insulating varnish in hair-pin motors. Dewangan et al. employed X-ray
diffraction (XRD) techniques to study the curing of polyester resins under high pressure [15].
The results were validated through three-dimensional numerical simulations, and a method
to increase porosity was proposed. Hao et al. used fiber Bragg grating (FBG) technology to
detect cure residual strains in the E51/W93 epoxy resin system with varying Al2O3 content.
Their primary focus was on examining the effect of Al2O3 content on gel temperature
and gel time, and they proposed a method to simultaneously detect temperature and
curing residual strain using thermocouple temperature compensation combined with an
FBG sensor [16]. Yang et al. designed a device to measure the elastic modulus of epoxy
resin potting materials based on a viscoelastic model; they derived an expression for the
viscoelastic intrinsic properties of epoxy resins [17]. Wang et al. identified the cracking
issues in insulating surfaces caused by curing stresses during the secondary curing of
epoxy resins, and investigated the impact of curing agent content on curing stresses [18].
Qu et al. investigated the curing stresses of modified epoxy resins with varying toughener
contents. They analyzed the material properties of the epoxy resin curing process and
curing residual stresses using differential scanning calorimetry (DSC), Dynamic Mechanical
Analysis (DMA), Fourier-Transform Infrared Spectroscopy (FTIR), and Thermogravimetric
Analysis (TGA). The curing thermal stresses were calculated using the Stoney equation [19].

The above studies primarily focus on the analysis of the residual stresses during the
curing process of resin systems, with a particular emphasis on the effects of the material
composition and curing parameters. These studies utilize techniques such as DSC and
FBG to measure the curing-induced residual strain and stress under various conditions,
highlighting the importance of precise stress measurement and control. By investigating
the curing characteristics of resin materials, they offer valuable insights into the stress
mitigation and crack prevention in insulating materials. This body of work underscores
the critical role of the material properties and curing conditions in influencing the residual
stresses and mechanical integrity, and it has inspired the dual-FBG curing strain experiment
in this study. However, these studies predominantly focus on single-resin systems or simple
geometries, leaving a gap in understanding the residual stresses at complex interfaces, such
as those in motor stators. This gap highlights the necessity of the present research, which
aimed to investigate the interfacial residual stresses during the curing process of insulating
varnish in hair-pin motor stators.

Based on previous studies, the numerical simulation method can be regarded as a
universal approach for stress analysis during the curing process of resin materials. Ye et al.
conducted a multi-physics numerical simulation of L-shaped composite laminates, devel-
oping a model that incorporates the resin’s transient flow compaction to predict the curing
behavior of resin composites [20]. Balaji et al. combined the data from DSC experiments
with neural networks to predict the deformation of resin materials during curing. They
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verified their model’s accuracy through finite element simulations, which demonstrated
greater realism than the conventional curing kinetics models at temperature rise rates below
3 K/min [21]. Wu et al. studied the deformation of polyurethane composites during the
curing when used as battery bezels, focusing on the factors affecting curing deformation;
withholding pressure was identified as the most significant factor [22].

The above studies demonstrate the value of numerical simulation in analyzing the
curing behavior of resin systems. They show that numerical methods are highly effective
for predicting the residual stresses and deformation during curing, improving the accuracy
and efficiency of stress analysis. Additionally, combining simulations with experimental
validation has proven to be a reliable way to understand the curing process under different
conditions and have provided important guidance for this research. Building on these
insights, this study applies numerical simulation to investigate the curing behavior of
insulating varnish in hair-pin motor stators, with a focus on addressing the residual stress
issues at complex geometric interfaces.

The simulation and analysis of the curing residual stresses in resin-insulating varnish,
one of the most commonly used motor-insulating materials, are crucial. Numerical simula-
tion not only reduces the experimental costs but also predicts the curing defects caused
by various factors and assesses their impact on the electrical performance of motors. In
this paper, we focus on the residual stresses, temperature, and strain during the curing
process of stator-insulating varnish for hair-pin motors and explore the characteristics
and mechanisms of the curing residual stresses through a combination of simulation and
experimental verification.

This paper will follow the process outlined in Figure 1.
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This study presents a novel approach to analyze the curing residual stresses at the
conductor–insulator interface of hairpin motors. Research on the curing residual stresses of
unsaturated polyester imide resin insulating varnishes is limited. Additionally, unlike the
traditional methods using thermocouple temperature compensation, this study uniquely



Polymers 2024, 16, 3514 4 of 24

employs encapsulated FBG for temperature monitoring, which leads to more accurate
experimental results. Furthermore, by considering the temperature or curing degree de-
pendence of the material properties, a three-dimensional simulation model is developed.
The model established in this study can be applied to the residual stress analysis during
the curing process of other thermoset resin materials, thus contributing to a better under-
standing of the residual stress generation behavior of resin-based insulating materials in
various fields.

2. FBG In Situ Measurement of Curing Strain
2.1. Materials

The insulating varnish used in this study is a one-component, low-volatility impreg-
nating varnish, Voltatex® 4200 (Axalta Coating Systems Ltd., Philadelphia, PA, USA). The
main component is an unsaturated polyester imide resin, which offers excellent insulat-
ing properties for the motor stator. According to the official performance specifications,
Voltatex® 4200 demonstrates a dielectric strength of 85 kV/mm at 155 ◦C, significantly
higher than that of comparable epoxy resin insulating varnishes, which typically range from
20 to 30 kV/mm [23,24]. Furthermore, the thermal class of unsaturated polyester imide
resin materials is generally higher than that of epoxy resin-based insulating varnishes [4].
Additionally, UPIR has a lower initial viscosity compared to typical epoxy resins, which is
more favorable for the contact between the insulation varnish and the insulated surface
during the motor insulation process.

2.2. Principle of the FBG Sensor

The FBG sensor is a single-mode fiber that detects reflections at specific wavelengths
as light passes through the FBG fiber [25]. The Bragg wavelength expression is presented
in Equation (1):

λB = 2ne f f Λ (1)

where λB is the wavelength reflected by the Bragg grating, ne f f is the effective reflection
coefficient of the fiber, and Λ is the grating period.

FBG is sensitive to external changes, and for FBG sensors affected by both temperature
and strain, λB is linearly correlated with changes in temperature and strain. The Bragg
wavelength shift can be expressed as:

∆λB = kεε + kT∆T (2)

where kε is the coefficient related to strain and the photo-elastic coefficient, and kT is the
coefficient related to the thermal-optic coefficient and thermal expansion coefficient of the
optical fiber.

Due to the characteristics of unsaturated polyester imide resin, in the early stage of
insulating varnish curing, the varnish exists as a viscous liquid. Upon reaching the gel
point, the molecules gradually crosslink, and the resin hardens into a solid. At this stage,
the shrinkage strain caused by curing and the thermal expansion and contraction due to
temperature changes can be transferred to the FBG sensor. The curing strain of the resin
can then be determined by monitoring the change in the wavelength of the FBG.

2.3. Experimental Design

Equation (2) clearly shows that when using FBG to measure the strain influenced
by both temperature and strain, temperature compensation must be applied. In this
experiment, the temperature compensation is provided by a packaged FBG temperature
sensor, which offers more accurate real-time temperature readings. The wavelength changes
due to strain are obtained through the fiber Bragg grating demodulator. The test equipment
is illustrated in Figure 2a.

The FBG sensor used is the OSC-1100 (Xi’an Huance Automation Co., Ltd., Xi’an,
China). The FBG demodulator is the HOSI-1000E (Huaying Instrument Equipment Co., Ltd.,
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Xi’an, China). The oven model is DZF-6020 (Shanghai Yiheng Scientific Instrument Co., Ltd.,
Shanghai, China).

The high slot fullness of the hair-pin motor’s stator is attributed to the geometry of
the flat copper wire and the winding method, which allows the stator slots to be filled.
The stator conductor is made of copper, while the stator core (including the stator slots) is
composed of silicon steel, which offers superior magnetic properties and lower energy loss.
The motor consists of 8 strands of conductors, which can provide higher power.
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In this paper, to simplify the model, only the stresses generated at the interface of the
flat copper wires by the insulating varnish between the three conductors are investigated.
The simplified model is illustrated in Figure 2b.

The slot structure surrounding the copper wire is made of silicon steel and simulates
the stator slots. During the experiment, insulating varnish is filled into the groove. After
ensuring complete immersion, two FBG sensors are inserted on either side of the copper
wire to measure temperature and strain data during the curing process of the insulating
varnish at the same location.

Figure 2c illustrates the curing process of the drop-dip test. First, the stator must be
heated to 80 ◦C, after which the insulating varnish is drop-dipped onto it. The temperature
is then increased from 80 ◦C to 130 ◦C and held for 10 min, during which the curing reaction
takes place. Subsequently, the temperature is raised to 150 ◦C and held for 15 min to cure
the insulating varnish fully and eliminate thermal stress. Finally, the stator is cooled to
room temperature to complete the curing process.

It should be noted that some sources of error may arise during the experiment. First,
since a packaged FBG is used for temperature compensation, it is essential to ensure that
the insulating varnish does not seep into the encapsulation tube. Second, environmental
vibrations or fiber bending may cause signal fluctuations or distortion [26]. Third, mis-
alignment of the optical fiber could result in minor measurement deviations. These factors
were carefully considered during the experimental setup, and measures such as sensor
calibration and environmental stabilization were implemented to minimize their impact.

2.4. Experimental Results and Analysis

As described in Section 2.2, the FBG sensor is affected by both temperature and
strain. When using the FBG sensor to measure the temperature, it is essential to measure
without applying force. Teflon capillary-encapsulated FBGs are used to compensate for
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the temperature effects on strain. Two FBGs are placed symmetrically on the left and right
sides of the flat copper wire for the test. From Equation (2), by knowing the sensitivity
coefficients kε and kT , and the temperature change ∆T of the optical fiber, the true cure
strain ε can be determined according to Equation (3):

ε =
∆λB − kT∆T

kε
(3)

where the sensitivity coefficients kε and kT of the optical fiber are provided by the man-
ufacturer, and the temperature change ∆T is obtained from the FBG sensor used for
temperature compensation.

The stress and temperature test results for the insulating varnish curing process are
illustrated in Figure 3. The initial strain value was set in the FBG demodulator’s PC
software Hippo 3.1.4 when the specimen reached 80 ◦C, and the curing degree curve was
later obtained from the curing kinetics model analysis. The figure shows that there is
no significant change in the strain during the early stage of curing, as the resin remains
in a flow state at this point. Due to preheating to 80 ◦C, the resin’s viscosity decreases
significantly, but cross-linking has not yet occurred. The molecular chains mainly rely on
physical interactions, allowing the internal molecules to move freely.
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When the strain curve decreases significantly, it indicates that the resin has under-
gone considerable volume contraction during curing. Since the primary component of
the material is unsaturated polyester imide resin, the curing process is accompanied by
significant contraction. Even though both thermal strain and chemical contraction occur
simultaneously, chemical contraction predominates, resulting in the observed decrease
in the strain curve. When the strain curve begins to rise, it indicates that the material
has gradually transitioned from a viscous-fluid state to a glassy state. Most cross-linking
reactions within the material have been completed, and the mobility of the molecular chains
is significantly reduced. Due to the further temperature increase, the material undergoes
thermal expansion, causing the strain curve to rise.

During the heat preservation stage and the subsequent warming stage, the temperature
profile does not fully align with the preset temperature profile. One reason for this is that
the resin’s curing reaction is exothermic, and the heat released during curing leads to a local
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temperature increase. Another reason is that the stator slot has a low thermal conductivity,
causing slow heat transfer from the outside, which results in noticeable thermal hysteresis.

In the post-temperature rise stage, the strain and temperature curves are roughly linear
because the curing reaction of the insulating varnish is nearly complete, and the strain is
primarily affected by thermal strain. However, the strain and temperature curves are not
completely linear because the coefficient of thermal expansion (CTE) of the cured resin
exhibits a noticeable nonlinear characteristic with changing temperature. The coefficient
of thermal expansion of the cured resin was measured to be 45.93 × 10−6/K at 25 ◦C,
increasing to 152.55 × 10−6/K at 150 ◦C, as measured by the Netzsch TMA 402F3 (Netzsch-
Gerätebau GmbH, Selb, Germany). Another reason is that the higher crosslink density of the
material hinders molecular chain movement, slowing the release of internal stresses [27,28].

During cooling, when the strain curve of the resin decreases more slowly than the
temperature curve, it indicates that the material is passing through the glass transition
temperature ( Tg). At this point, the material transforms from a rubbery state to a glassy
state, further restricting molecular chain movement and hampering the release of internal
stresses. Thus, a partially nonlinear relationship between the strain curve and the temper-
ature curve is observed during the cooling phase. As discussed in Section 3.1, the glass
transition temperature of this insulating varnish after complete curing is 97 ◦C, which
aligns with the figure.

3. Three-Dimensional Numerical Simulation of the Curing Process

Due to the compact structure of the stator flat-wire winding, measuring the data related
to the curing process of the insulating varnish is challenging, especially as the distance
between the flat wires is only 0.1 mm. This small gap limits the ability of sensors to detect
the curing residual stress directly. Numerical simulation provides an effective solution to
this problem. The simulations in this study were performed using COMSOL Multiphysics.
The simulation of the insulating varnish curing process involves multi-physical field
coupling, including the temperature field, curing degree field, and stress–strain field. The
relevant mathematical model includes a heat conduction model, a curing kinetics model,
and a mechanical model of the material.

The temperature field and the curing field are bi-directionally coupled. By solving the
relationship between the degree of curing and temperature, the calculated temperature and
degree of curing are coupled with the stress–strain field to predict the curing deformation
of the insulating varnish and the interfacial residual stresses. The coupling relationship is
illustrated in Figure 4.
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It should be noted that the distribution of insulating varnish is assumed to be uniform
during the curing of drip varnish on flat-wire windings. Since the insulating varnish
coating is thin and the curing time is short, the resin exhibits almost no mobility during
curing. Therefore, the effect of the flow compaction model can be neglected.

3.1. Curing Kinetics Model
3.1.1. Data Analysis and Model Derivation

The cure rate of insulating varnish reflects the dynamic behavior of the curing process.
There are two approaches to studying this process: a macroscale phenomenological model
and a microscale mechanistic model [29]. The phenomenological model considers only
the overall process of the reaction, and a single rate equation, dα/dt, is used to express
this model. In contrast, the mechanistic model can better predict the curing process and
explain the reaction mechanism. However, due to the complexity of the insulating varnish
curing reaction, the mechanistic model requires more parameters to accurately describe
the curing process, leading to a significant increase in the computational demands and
making it difficult to obtain a highly accurate model. Therefore, in this paper, we adopt the
phenomenological model, expressed as Equation (4) [30–33]:

dα

dt
=

n

∑
i=1

[Ki(T) fi(α)] (4)

where α is the degree of cure, dα/dt is the curing rate, T is the temperature, and Ki(T) and
fi(α) represent the reaction rate equation and the curing reaction equation, respectively.
The reaction rate equation K(T) is parameterized by the Arrhenius formula shown in
Equation (5) [34].

K(T) = A exp
(
− Ea

RT

)
(5)

where T, A, Ea, and R represent the temperature, pre-exponential factor, activation energy,
and the molar gas constant, respectively.

The primary component of the insulating varnish is unsaturated polyester imide resin,
and the degree of curing is commonly used to describe the extent of the resin’s curing
reaction. The degree of curing is a key parameter in simulating the curing process, as it
significantly affects the final performance of the resin material (e.g., mechanical strength,
chemical resistance, and thermal stability). To develop a kinetic model for the resin’s curing
process, the curing behavior was analyzed using differential scanning calorimetry (DSC)
in this study.

Four samples were heated from 25 ◦C to 180 ◦C at heating rates of 5 K/min, 10 K/min,
15 K/min, and 20 K/min using a Netzsch DSC 200F3. The sample mass ranged from 7
to 10 mg, and the nitrogen flow rate was set at 50 mL/min. The heat flow-temperature
curves obtained by DSC are illustrated in Figure 5a. (Note: the heat flow curve obtained
by the device is exothermic downward; it was multiplied by −1 to display the exothermic
peak upward).

The curing onset temperature Ti, peak temperature Tp, termination temperature Tf ,
and total heat of reaction ∆Ht obtained for the curing process of the insulating varnish
samples at different heating rates are presented in Table 1.

It is observed that the exothermic peak of the curing reaction shifts significantly to the
right as the heating rate of the insulating varnish increases. The curing onset temperature
Ti, peak temperature Tp, and termination temperature Tf also increase significantly with
the higher heating rate. Equation (6) can be used to calculate the exothermic quantity ∆H(t)
of the curing reaction. This integral represents the area under the heat flow–time curve and
the baseline from the onset to the end of the curing reaction.

∆H(t) =
∫ t

0
ϕ(t)·dt (6)
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where ϕ(t) is the heat flow function.
The total exothermic heat of curing for the insulating varnish remained relatively consis-

tent across different heating rates, with an average total heat of reaction ∆Ht = 192.625 J·g−1.
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Table 1. Characteristic temperature and total reaction heat at different heating rates.

Heating Rate (K/min) Ti (◦C) Tp (◦C) Tf (◦C) ∆Ht(J·g−1)

5 103.6 112.8 127.8 198.2
10 110.2 121.0 135.8 187.2
15 114.5 127.4 141.3 192.5
20 118.4 132.1 145.8 192.6

The complete curing of the insulating varnish is achieved when the reaction exotherm
∆H(t) equals the total reaction heat ∆Ht. Therefore, the degree of cure α at any given
time can be defined as the ratio between the exothermic heat ∆H(t) and the total reaction
heat ∆Ht from the beginning of the curing reaction to a specific moment, as shown in
Equation (7).

α(t) =
∆H(t)
∆Ht

(7)

Figure 5b presents the relationship between the degree of cure and temperature. It
exhibits a distinct S-shaped curve, where the cure rate increases initially and then decreases,
consistent with the autocatalytic model [35–37].

To further validate the results, the time derivative of the degree of cure was calculated
to obtain the curing rate. Figure 5c illustrates the relationship between the curing rate
dα/dt and the degree of cure α(t).

It is evident that, at various heating rates, the curing rate first increases and subse-
quently decreases as the degree of cure increases. The peak of the curing rate occurs at
approximately a degree of cure of 0.4, further indicating that the curing of this insulating
varnish conforms to the self-catalytic model [38].

The curing process of insulating varnishes is usually influenced by two factors: curing
kinetics control and diffusion control. According to the studies in the literature [39], at
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the beginning of the isothermal cure, the curing rate of the resin is controlled solely by
the curing kinetics, and with an increasing degree of cure, the material becomes partially
glassy, hindering the cross-linking reaction within the resin; thus, the process becomes
diffusion-controlled. According to previous thermal analysis methods [39,40], the first
step involves determining the activation energy of the cure reaction and assessing whether
a single model can describe the curing kinetics by analyzing the relationship between
the activation energy and the degree of cure. Commonly used methods for calculating
the activation energy include the Starink model [41,42], the Kissinger model [42], the
Ozawa model [43,44], with the Starink model considered more accurate compared to other
model-free isotropic methods [45].

By fitting the experimental data with the Starink equation shown in Equation (8), the
activation energy (Ea) of the insulating varnish reaction can be determined.

ln
(

β

T1.92

)
= C − 1.0008

(
Ea
RT

)
(8)

where β represents the rate of ramping, T denotes the reaction temperature, C is a constant,
Ea stands for the reaction activation energy, and R refers to the molar gas constant.

According to the Starink equation, ln
(
β/T1.92) was linearly fitted against 1/T for

different heating rates, with the results presented in Figure 5d.
The obtained slopes of the curves for various degrees of cure and the corresponding

reaction activation energies are shown in Table 2. The R-squared values for different degrees
of cure are all greater than 0.99, indicating a strong fit. The average reaction activation
energy (Ea) is calculated to be 95.96 kJ/mol.

Table 2. Data fitted by the Starink method.

Degree of Cure α Slope Ea (kJ/mol) R-Squared

0.1 −12,080.9 100.3607 0.99956
0.2 −12,050.2 100.1052 0.99912
0.3 −11,364.3 94.40691 0.99532
0.4 −11,590.8 96.28893 0.99952
0.5 −11,152.3 92.64607 0.99761
0.6 −11,324 94.07278 0.99747
0.7 −11,398.3 94.68944 0.99751
0.8 −11,545.9 95.91561 0.99851
0.9 −11,449.3 95.11346 0.99884

The curing process of insulating varnish resin is controlled by two mechanisms:
reaction control and diffusion control. According to the study in [39], when the activation
energy required for the reaction changes significantly with the degree of cure, it indicates
that the reaction is controlled by diffusion. In this case, using a single model to describe the
reaction would lead to errors, and the reaction can only be described using a model that
includes a diffusion term [46–48] (such as the Kamal model [49]). According to previous
thermal analysis methods [40], the activation energy of the curing reaction must first be
determined, and the relationship between the activation energy and degree of cure should
be examined to determine whether a single model can describe the curing kinetics.

The reaction activation energies at different curing degrees are presented in Figure 5e,
and the activation energy (Ea) remains relatively constant once the degree of cure exceeds
0.5. Therefore, it can be concluded that the curing behavior of this insulating varnish is
controlled solely by the reaction kinetics.

There are multiple models for describing the curing kinetics of autocatalytic compos-
ites. Notably, the Prout–Tompkins (PT) model [50–53] incorporates diffusion terms, thereby
providing a more accurate depiction of the cure front propagation under conditions of high
fiber content or complex thermal conduction. This makes the PT model particularly effec-
tive in capturing the autocatalytic characteristics of the reaction. However, the PT model is
associated with high computational complexity. In contrast, the Sestak and Berggren (SB)
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model [54] offers a simplified description of the reaction mechanism, resulting in enhanced
computational efficiency. Consequently, the SB model is well suited for large-scale or
complex structural numerical simulations within specific resin systems and processing
conditions. Therefore, in this paper, we chose to use the SB model to determine the curing
kinetics of insulating varnishes. By combining the temperature-rate-dependent equation
of Sestak and Berggren with the classical autocatalytic reaction model, the fitted curing
kinetics model, represented by Equation (9), was obtained.

dα
dt = Aexp

(
− Ea

RT

)
αm(1 − α)n (9)

where A represents the pre-exponential factor, and m, n are the reaction orders.
The average reaction activation energy (Ea) obtained by the Starink method was

substituted into Equation (5) and fitted using the least squares method to derive the kinetic
parameters presented in Table 3.

Table 3. Kinetic parameters at different heating rates.

Heating Rate β (K/min) lnA m n R-Squared

5 25.6134 0.35678 1.22978 0.99772
10 25.72109 0.44207 1.26424 0.99917
15 25.72341 0.47535 1.24681 0.99984
20 25.70551 0.50076 1.26355 0.99992

Average 25.69085 0.44374 1.251095 0.99916

Ultimately, the kinetic model equation for the curing of this insulating paint can be
expressed as Equation (10):

dα
dt = e25.69085exp

(
− 95955.45

RT

)
α0.44(1 − α)1.25 (10)

To verify the model’s accuracy, the curing rate–temperature curves obtained from the
model at different heating rates were compared with the experimentally obtained curves,
as shown in Figure 5f. The model curves showed a higher degree of consistency with the
experimental curves.

The glass transition temperature (Tg) is one of the most important thermodynamic
parameters in the study of thermosetting resins [31]. When a material exceeds its glass
transition temperature, its physical and chemical properties change significantly. Previous
studies have demonstrated that the glass transition temperature increases as the degree
of cure increases. Therefore, the glass transition temperatures of insulating varnishes at
various degrees of cure were tested using modulated DSC, and DiBenedetto’s equation
was applied to identify these temperatures.

Tg = Tg0 +
λα

1−(1−λ)α

(
Tg∞ − Tg0

)
(11)

where Tg0 represents the glass transition temperature of the uncured state, Tg∞ denotes the
glass transition temperature of the fully cured state, and λ is the fitting parameter.

First, five samples were thermostated at 90 ◦C for different durations and then rapidly
cooled to −40 ◦C. The degree of cure was determined from the exothermic peak of the
irreversible heat flow curve using MDSC. The samples were then heated from −40 ◦C to
200 ◦C at a rate of 3 K/min with a temperature amplitude of 1 K and a period of 60 s. The
glass transition temperature (Tg) of each sample was determined from the post-elevated
reversible heat flow curve, following ASTM E1356 (3 K/min, inflection point method). The
relationship between the glass transition temperature and curing of insulating varnish
determined by Equation (11) is shown in Figure 6.

The equation fitting yields an R2 value of 0.99735, indicating a high degree of fit. The
fitted parameter λ is 0.48, suggesting that the molecular chain segments of the insulating
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varnish possess a certain degree of mobility, resulting in a relatively low sensitivity of the
glass transition temperature to the degree of cure.
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3.1.2. Boundary Setup

In the simulation software, the ODE and Differential-Algebraic Equation (DAE) mod-
ules, in conjunction with the Heat Transfer module, can be used to solve the temperature-
dependent curing kinetics equations by inputting the expression of Equation (1) directly
into the ODE module.

The default equation form of the ODE module is Equation (12):

ea
∂2alpha

∂t2 + da
∂alpha

∂t = f (12)

where ea is the mass coefficient, da is the damping coefficient, and f is the source term
equation. In comparison to Equation (1), ea is set to 0 and da is set to 1, and f is set to
e25.69085exp

(
− 95955.45

RT

)
α0.44(1 − α)1.25.

The initial value of the degree of cure is set to 1 × 10−20, which helps prevent errors in
the solver caused by computing the negative exponent of zero.

3.2. Heat Transfer Model

During the insulation curing process of the hair-pin motor stator, the heating device
provides the thermal energy required for curing the insulating resin. Owing to the differ-
ing thermal conductivities of the flat copper wire and insulating varnish, the varnish is
not heated uniformly. Since the curing process is exothermic, it further exacerbates the
temperature non-uniformity. In addition, the material properties of the insulating varnish
evolve with the degree of cure, and these factors collectively contribute to the generation of
residual stresses and strains during the curing process.

3.2.1. Model Derivation and Parameter Determination

The thermal field during the insulating varnish curing process is essentially a nonlinear
heat transfer problem with an internal heat source. This problem arises from the exothermic
reaction of the unsaturated polyester imide resin curing in the insulating varnish [55]. This
nonlinear heat transfer problem can be characterized by the Fourier heat transfer equation
coupled with the curing exothermic Equation (13).

ρCp
dT
dt = d

dx

(
Kxx

dT
dx

)
+ d

dy

(
Kyy

dT
dy

)
+ d

dz

(
Kzz

dT
dz

)
+ ρ∆Ht

dα
dt (13)



Polymers 2024, 16, 3514 13 of 24

where ρ represents the density, Cp is the specific heat, T is the temperature, ∆Ht is the
total reaction heat, α is the degree of cure, and Kxx, Kyy and Kzz represent the thermal
conductivities in the three directions.

Assuming that the insulating varnish material is isotropic, the thermal conductivities
in all three directions are equal. This equation can be solved through the coupling of the
Heat Transfer module with the Curing Kinetics module.

Thermal conductivity, specific heat capacity, and density are important material prop-
erties of insulating varnish materials. The properties of insulating varnish obtained from
experimental measurements are presented in Table 4.

Table 4. Thermodynamic parameters of insulating varnish.

Material Properties Unit Before Curing Cured

Thermal Conductivity k(α) W/(m·K) 0.21 0.23
Specific Heat Capacity Cp(α) J/(kg·K) 1908 1273

Density ρ(α) kg/m3 1.12 1.169

The material properties of the insulating varnish are linearly related to the degree
of cure, and the relationship between these parameters and the degree of cure can be
expressed by Equation (14) [56].

k(α) = ka(1 − α) + kbα
CP(α) = CPa(1 − α) + CPb
ρ(α) = ρa(1 − α) + ρbα

α (14)

where subscript a represents the parameters before curing, and subscript b represents the
parameters after curing.

3.2.2. Boundary Setup

During the curing process, an external oven heats the insulating varnish, and the heat
transfer between the insulating varnish and the hot air occurs through natural convection,
with the convective heat transfer described by Equation (15).

q0 = h(Text − T) (15)

where q0 is the heat flux, h is the convective heat transfer coefficient, Text is the external
temperature, and T is the temperature of the insulating varnish; Text can be defined as the
heating temperature via a custom function.

During the drop-dip curing process, the insulating varnish directly comes into contact
with the flat copper wires and heats them together, so the heat flux boundaries are all the
boundaries in contact with the outside during the numerical simulation. The convective
heat transfer coefficient h is set to 25 W/

(
m2·K

)
based on an assumption. The heat source

is insulating paint, and the heat source expression is the rightmost term ρ∆Htdα/dt in
Equation (11). And the reference temperature is set to a preset value of 80 ◦C.

3.3. Solid Mechanics Model

During the curing process, the material properties of the insulating varnish change
with the degree of cure and temperature, leading to the generation of internal stresses at
the interface between the flat copper wire and the insulating varnish. The curing process of
the insulating varnish material undergoes a viscous flow state, a highly elastic state, and
a glassy state. Cure shrinkage occurs during the highly elastic stage. During the cooling
stage, the varnish shrinks unevenly due to structural differences, cooling rates, and the
mismatch in the coefficients of thermal expansion of varnish and the stator, resulting in the
formation of internal stresses, thereby affecting the insulation performance.
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3.3.1. Model Derivation and Parameter Determination

The strain during the curing process of insulating varnish is composed of two parts:
one part is the thermal strain induced by heat, and the other part is the shrinkage strain
caused by the curing of the resin material, as represented in Equation (16):

ε = εt + εc (16)

where ε represents the total strain, εt denotes the thermal strain, and εc refers to the cure
shrinkage strain.

Studies have shown that the shrinkage of resin materials during curing occurs during
the glassy state [18,29].

The thermal strain εt is a function of the temperature and the coefficient of thermal
expansion, as expressed in Equation (17):

εt = α(T)
(

T − Tre f

)
(17)

where α(T) represents the coefficient of thermal expansion of the material at temperature T
and Tre f denotes the reference temperature.

The coefficient of thermal expansion of the insulating varnish after curing can be
measured using a linear thermal expansion meter, with the results presented in Figure 7.
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The coefficient of thermal expansion throughout the curing process is given by
Equation (18) [57]:

αCTE(T, α) =


αv

CTE, α < αgel
αr

CTE, α ≥ αgel, T ≥ Tg(α)

α
g
CTE, α ≥ αTg , T < Tg(α)

(18)

where αv
CTE, αr

CTE, and α
g
CTE represent the thermal expansion coefficients for the viscous

state, rubbery state, and glassy state, respectively, αgel denotes the degree of cure at the gel
point, and αTg represents the degree of cure at the glass transition point.

Assuming that the insulating varnish is isotropic, the shrinkage is uniform in all
directions during the curing process. The following equation can describe the chemical
shrinkage strain of the resin:

εc =
3
√

1 + ∆v − 1 (19)

where εc represents the curing strain, and ∆v denotes the volume change rate.
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As shrinkage strain occurs mainly after the gel state; it can be expressed as a function
of the degree of cure and total volume change ∆V, as shown in Equation (20):

∆v =
(

α − αgel

)
∆V (20)

where α represents the current degree of cure and αgel denotes the degree of cure at the
gel point.

Thus, the expression for the chemical shrinkage strain of the insulating varnish can be
derived, as shown in Equation (21) [58].

εc =
3

√
1 +

(
α − αgel

)
∆V − 1 (21)

The linear elastic constitutive model is commonly used to predict the curing deforma-
tion of composite materials. Its general form is given by:

{σ} = [E]({ε} − {ε0}) + {σ0} (22)

where {σ} and {σ0} represent the stress and initial stress to be solved, respectively; [E] is
the stiffness matrix; {ε} and {ε0} are the total strain and initial strain in tensor form.

During the curing process of insulating resin materials, the material properties evolve,
depending on both temperature and curing degree. Consequently, the formula in Equation (22)
cannot fully capture the material behavior during curing. To address this limitation,
the CHILE (Cure Hardening Instantaneous Linear Elastic) model is introduced, which
incorporates the time-dependent characteristics of the elastic modulus to account for the
dynamic changes in the material properties throughout the curing process.

Bogetti et al. proposed the CHILE (α) model, based on the curing degree, which
assumes that the modulus of the resin varies linearly with the curing degree [58]. This
model describes the evolution of the elastic modulus during the curing of composite
materials by considering the material properties at different curing stages. The fundamental
stress–strain relationship in this model is given by Equation (23):

{σ} = [Q(α, T)]{ε} (23)

where [Q(α, T)] is the time-dependent stiffness matrix, which is a function of both tempera-
ture and curing degree.

The Poisson’s ratio ν of the insulating varnish is an important parameter in the stiffness
matrix. To this end, uniaxial tensile tests were conducted on fully cured insulating varnish
samples according to the ASTM D638 standard, and the deformation was measured using
strain gauges. The measured Poisson’s ratio of the fully cured insulating varnish was 0.37.
It has been found that the variation in Poisson’s ratio during curing has a negligible impact
on the residual stress accumulation [59–61]. Therefore, in this study, for the sake of model
simplification, the Poisson’s ratio of the insulating varnish is assumed to be 0.37.

The change in the modulus during the curing process of insulating varnish can be
divided into three stages: In the first stage, the epoxy resin behaves as a fluid with a low
storage modulus. In the second stage, as the curing reaction progresses, the insulating var-
nish transitions from a viscoelastic state to a gel state, and then to a glassy state. The storage
modulus in this stage is a function of the curing degree. In the third stage, after the curing
reaction is complete, when the temperature is below the glass transition temperature, the
resin undergoes minimal deformation under external forces. The storage modulus becomes
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large and remains almost constant. In this study, we used the CHILE (α) model to describe
the modulus of elasticity of the resin during curing, E, as shown in Equation (24) [58,62]:

E =


E0

r , α < αgel(
1 − α−αgel

αgt−αgel

)
E0

r +
α−αgel

αgt−αgel
E∞

r , αgel < α < αgt

E∞
r , α > αgt

(24)

E0
r and E∞

r represent the modulus of elasticity of the resin before and after curing, αgel and
αgt denote the gel point cure and glass point cure of the resin.

Since the viscosity of the insulating varnish is not considered, the storage modulus is
used as a substitute for the elastic modulus and it was determined through DMA using a TA
Q800 instrument. The test was conducted at a frequency of 1 Hz with a three-point bending
setup, and with a heating rate of 3 ◦C/min from 0 ◦C to 200 ◦C, and the resulting storage
modulus and loss factor are shown in Figure 8. The insulating varnish was determined to
have E0

r = 2.7 MPa and E∞
r = 2729 MPa.
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3.3.2. Boundary Setup

Considering only the insulating varnish curing process on a single copper wire during
the stator dripping process, the surface between the copper wire and the insulating varnish
is set as a continuous boundary, with a fixed constraint applied on the other side of the
copper wire. In the simulation software, the solid heat transfer and solid mechanics
nodes can be used to simulate the thermal expansion of the cured insulating varnish.
However, since the total strain ε during curing is the sum of the thermal strain εt due
to thermal expansion and the contraction strain εc due to the curing of the insulating
varnish, it is necessary to add an external strain sub-node under the solid mechanics–linear
elastic material node. Equation (21) is incorporated into this node to simulate the cure
shrinkage strain. In addition, to improve the convergence of the model, the “free rigid body
inhibition” node can be added. This node functions to prevent the solid mechanics module
from generating multiple non-converging solutions, and the deformation results from the
simulation with this node better align with the real deformation results.

3.4. Simulation Setup

The simulation was conducted using COMSOL’s automatic tetrahedral meshing.
Differentiated mesh sizes were applied to the copper conductor, insulating varnish, and
external stator slot regions. To ensure higher resolution at the interface between the
insulating varnish and copper conductor, this region was assigned a maximum element
size of 0.1 mm and a minimum of 0.02 mm, while the external stator slot used a maximum
size of 0.4 mm and a minimum of 0.2 mm. The final mesh contained 2,112,621 elements.
The mesh result is shown in Figure 9.
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The glass transition temperature of the material was determined using the DiBenedetto
equation. The parameters for the equation, including λ, were fitted using glass transition
temperatures obtained at various curing degrees through MDSC experiments. In the
simulation, the glass transition temperature before curing (Tg0), after full curing (Tgu), and
the parameter λ were defined.

To model the material behavior during curing, the elastic modulus and the coefficient
of thermal expansion (CTE) were defined based on the curing state of the insulating
paint. The CTE after curing was modeled as a temperature-dependent function, fitted
to the experimental thermal expansion data using an analytical function in the software.
Additionally, the heat capacity, thermal conductivity, and density were defined as functions
of the degree of cure, consistent with the assumptions outlined in the manuscript.

For the curing shrinkage, the curing strain was defined as a function of the degree
of cure based on Equation (21). This strain was implemented as an external strain in the
solid mechanics module to simulate the effects of curing shrinkage. The curing volumetric
shrinkage was calculated based on the density change before and after curing.

The simulation in this study uses a step-by-step solution approach. The transient
solver in COMSOL is applied to solve the bidirectional coupling of the curing kinetics
model and the heat transfer model. Then, the steady-state solver is used to inherit the
solution from the transient solver to calculate the solid mechanics model.

Given the spatial effects involved in the curing process, a 3D model was employed to
ensure accurate simulation. A 2D model would not capture the asymmetry of the stator
slots or the heat transfer characteristics effectively. The use of a 3D model provides a more
realistic representation of the curing process. While the results are presented in 2D plots,
they clearly show the temperature and stress distribution within the stator slots.

4. Results Discussion

Using the aforementioned physical field setup and the material properties obtained
from experimental data, a Multiphysics-coupled simulation under the same conditions as
the experiment is conducted. The temperature and strain results from both the experiment
and simulation are compared to analyze the stress–strain behavior during the insulating
varnish curing process.

4.1. Simulation Results Validation

The temperature–time curve and strain–time curve of the simulation results were
compared with the experimental values, as shown in Figure 10. The comparison indicates
that the simulation model can generally reflect the strain and temperature conditions of
the actual curing process of the insulating paint. Some data points do not fully match
the experimental data because the strain test curve was obtained through decoupled
calculations, and approximations in the calculation process may have affected some values.
Additionally, some material properties were derived from empirical formulas, which may
not correspond to the actual values during the curing process. These discrepancies can be
addressed through subsequent optimization of the model.
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4.2. Results Analysis

Figure 11 shows the stress distribution of the copper wire cross-section at the end
of curing and after cooling to room temperature. The figure illustrates that the cured
insulating varnish experiences the highest stress at the interface with the copper wire,
reaching 45.1 MPa, with a difference of nearly 40 MPa compared to the minimum stress
within the insulating varnish, indicating a stress concentration phenomenon. This is a key
factor contributing to insulation defects.
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Figures 12 and 13 show the distribution of the curing degree and temperature in
the initial stage, mid-stage, complete curing, and final stage of the insulating varnish
curing process.

In the initial stage of curing, the temperature of the insulating varnish near the copper
wires rises first due to the high thermal conductivity of the copper, allowing the varnish
to reach the external preset temperature more quickly. During the 15–31 min, the varnish
begins curing, with a temperature distribution that is lower at the edges and higher in
the center. By 83 min, when the external preset temperature reaches 150 ◦C and has been
maintained for almost 10 min, the temperature distribution becomes more uniform. At this
point, the varnish is nearly fully cured, and the temperature is close to the preset value. In
the cooling phase after 83 min, the varnish near the copper wire cools faster, similar to the
heating phase.

The curing and crosslinking of the varnish are temperature driven, so the distribution
of the curing degree is similar to that of the temperature. As the temperature increases,
the varnish near the copper wire begins to cure first, with the curing degree following a
stepwise pattern. By 31 min, the curing reaction weakens or disappears, and the curing
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degree is nearly complete. Although the temperature starts to drop after 83 min, the low
thermal conductivity of the varnish causes a noticeable thermal lag during both the heating
and cooling phases. As a result, the temperature and curing degree distributions align more
closely, reaching a steady state and indicating that the curing process is nearing completion.
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The strains in the curing process of insulating varnish primarily consist of the shrink-
age strain generated during curing and the thermal strain caused by temperature changes.
While the material composition influences the shrinkage strain, the thermal strain is affected
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by the material’s thermal expansion coefficient and the temperature difference. This paper
presents a preliminary study of the effect of the cure temperature on the cure stress.

The curing process was modified by adjusting the maximum temperature of the post-
rise phase to 130 ◦C. The resulting stress distribution is shown in Figure 14a. The results
show that when the maximum cure temperature is reduced to 130 ◦C, the maximum stress
value decreases to 38.6 MPa, representing a 14.4% reduction.
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Figure 14b shows the strain curves of the measured points after optimization. Fol-
lowing the reduction in the post-heating stage temperature, the glass transition of the
insulating varnish exhibits hysteresis, and the strains observed during and at the end of
curing are smaller than those before optimization. This indicates that the post-heating stage
temperature has a significant effect on the residual stress.

5. Conclusions

In this study, the curing process of insulating varnish for a hair-pin motor stator was
monitored with respect to temperature and strain using FBG sensors. The curing kinetics
of the insulating varnish material was investigated, and a simulation model of the process
was developed using the finite element method, leading to the following conclusions:

(1) Both strain and temperature influence FBG sensors, and the temperature can be
monitored using packaged FBG sensors. By analyzing the wavelength shift due to tempera-
ture changes, it is possible to decouple the strain variations. Through non-isothermal differ-
ential scanning calorimetry (DSC) experiments, the curing kinetics model of Voltatex® 4200
insulating varnish, primarily composed of unsaturated polyimide resin, was investigated.
The curing reaction of this insulating varnish is characterized as a self-catalyzed reaction
with a relatively large pre-exponential factor, allowing for rapid curing. Additionally, a
comparison was conducted between the curing kinetics model obtained using the Starink
method and the experimental data, which demonstrated a high degree of consistency.

(2) Based on the material properties of the insulating varnish after curing and the DSC
test data, a three-dimensional simulation model of the curing process was established to
analyze the temperature, degree of cure, and stress distribution. Given that the thermal
conductivity of the flat copper wire is significantly higher than that of the resin and the
silicon steel stator slot, there is a pronounced hysteresis phenomenon in heat transfer within
the stator slot during curing. The temperature and degree of cure of the insulating varnish
near the flat copper wire are greater than those near the stator slot.

In terms of the strain field, thermal strain is the primary influencing factor as curing
nears completion, while shrinkage strain predominates during the initial stages of curing.
The temperature and degree of cure of the insulating varnish near the flat copper wire are
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higher than those near the stator slot. Regarding the strain field, the strain in the insulating
varnish during the initial curing phase is primarily shrinkage strain. In contrast, thermal
strain becomes the primary influencing factor as curing approaches completion.

(3) After curing, the maximum stress occurs at the interface between the flat copper
wire and the insulating varnish, with a maximum stress value of 45.1 MPa. There is
a significant phenomenon of stress concentration, which is a major factor contributing
to insulation defects. By modifying the temperature during the post-heating stage and
using the established simulation model for stress prediction, the results indicate that the
temperature of the post-heating stage also affects the residual stress. Specifically, when the
maximum temperature during the post-heating stage is reduced to 130 ◦C, the maximum
residual stress decreases by 14.4%.

However, there are some limitations to the present study that should be considered
for future research:

(1) The relationships between density, constant pressure specific heat, and thermal
conductivity with the degree of cure are based on assumptions, which may limit the
accuracy of the predictions.

(2) The influence of flow consolidation, which could affect the material’s behavior
during curing, was not incorporated into the simulation model.

(3) The simulation model employs a modified linear elastic constitutive model to
represent the material’s behavior, which replaces the viscoelastic model. This simplifi-
cation might not fully capture the time-dependent behavior of the material during the
curing process.

(4) The long-term effects, such as thermal fatigue, were not specifically investigated.
Thermal fatigue can be a critical factor in materials subjected to cyclic thermal loading, as
the mismatched thermal expansion between the copper wire and the insulating varnish
can lead to further stress accumulation and degradation over time. This could affect the
material’s long-term performance and reliability, which warrants further investigation in
future research.
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