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Abstract: Determining the properties of composite materials (knowing the properties of the compo-
nent phases) is a primary objective in the design phase. Numerous methods have been developed to
determine the elastic constants of a composite material. All these methods are laborious and require
significant computing time. It is possible to make experimental measurements, but these too are
expensive and time-consuming. In order to have a quick estimate of the value of the engineering
constants of a new composite material (in our study a polymeric matrix reinforced with carbon fibers),
this paper proposes a quick method for determining the homogenized material constants, using the
finite element method (FEM). For this, the eigenfrequencies of a beam specimen manufactured by the
studied composite material will be computed using FEM. The model will consider both phases of the
composite, with the geometry and real size. The mechanical properties of the constituent’s material
phases are known. With the help of this model, the torsional, longitudinal and transverse vibrations
of the beam are studied. Based on the eigenvalues obtained by this calculation, it now is possible to
quickly estimate the values of homogenized material constants required in the design. An example
for a fiber-reinforced polymer composite material is provided in the paper.

Keywords: composite; fiber-reinforced; vibration; FEM analysis; material constants

1. Introduction

Currently, numerous methods are used to determine the elastic constants for a polymer
composite material and there is rich literature in the field. Most of the methods are
based on a theoretical model that involves knowledge of the stress and strain fields for
arbitrary material loading. Other methods study particular cases of loading, but in the
end, only upper and lower limits are obtained for the elastic constants of the material. This
second class of method can lead to errors [1]. For example, in the cited paper, the case
of an orthotropic composite and a transversely isotropic one is considered. Usually, such
estimates, which consider particular cases of loading, are quite imprecise on certain ranges
of component concentration [2-5]. Micromechanical models are mainly used to solve such
problems. Some examples can be found in [6,7]. The obtained results agree very well with
the research performed in [8]. For fiber-reinforced composites, a category of materials
widely used in practice in the last decade, numerous studies have been carried out to
determine these homogenized constants [9-16]. Different aspects related to solving the
problem are presented in [17-19]. Other important methods are the experimental methods,
but it is very clear that these are expensive and time-consuming.

In some studies, a representative volume element (RVE) is used to determine the
homogenized elastic coefficients. The material is made up of a lot of such representative
volume elements. At the microstructure level, composite materials have individual topolo-
gies and geometries, characterized by a wide variety. These properties will ultimately
determine the behavior of the material as a whole. Based on the analysis of a single RVE or
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a group of RVEs, a method is proposed that allows for the consideration of the material
as isotropic or transversally isotropic or orthotropic material, depending on the concrete
situation (defined by the individual geometry and topology). Different microstructural
patterns must obviously be considered for each type of composite material; for example,
a composite material with short fibers is analyzed in [20]. The FEM, successfully used to
calculate the mechanical properties of composite materials using static models, can also
be used in another approach to the problem, namely to determine these properties using
dynamic models by analyzing the vibrations of the studied systems. The advantage of
the method is that it allows for the analysis of a very wide class of materials, with very
different topologies and geometries. Thus, materials with very different properties can be
analyzed with this method. Experimental verifications proved the validity of using the
FEM [20]. The method proves to be an extremely useful tool for studying the mechanical
properties of composites [21].

It is possible to use the FEM to study the influence of temperature or other factors,
such as moisture absorption, on the mechanical behavior of composite materials. For
unidirectional graphite fiber-reinforced composites, an analysis is presented in [22]. A
similar model is used in [23,24] to calculate the elastic constants, and their dependence on
the constituent phases of the composite is analyzed. In these papers, the authors deal with
the determination of the elastic constants for a composite with transverse isotropic behavior.
Young’s modulus is generally frequency-dependent. In [25], using system identification
techniques, the method of obtaining these values experimentally, with maximum precision,
is presented. Some examples are presented for brass, copper, plexiglass and PVC.

Hose pipes are usually made of rubber with metal braids. They have many applica-
tions, and knowledge of the mechanical properties is an important desideratum for the
designer. Because the manufacturing method is complex, it is difficult to estimate, by calcu-
lation, these properties. An additional check was performed by performing a calculation
with finite elements. The determination of Young’s modulus and damping ratios for fiber-
metal laminated cantilever beams is presented in [26]. To verify that the results are correct,
a theoretical model was also studied, obtaining a good agreement with the experimental
results. To determine the properties of some materials when insufficient data are available,
such as the determination of the mechanical properties of some wood species, a finite
element analysis is proposed in [27]. Wood is an orthotropic material, so it is necessary to
know the Young’s modulus in two directions, as well as the shear modulus and Poisson’s
ratios. Finite element analysis with values of these quantities were attempted until the
experimentally obtained results matched the natural frequencies of the structure calculated
by using the FEM. Once these elastic constants are determined, more complex calculations
can now be made for structures made with these materials. Evaluating the properties of
complex materials, such as wood, is difficult to achieve using classic techniques. That is
why the determination of the natural frequencies and the natural vibration modes can
become valuable tools for the analysis of such unconventional materials [28]. Transverse
and torsional vibration measurements to determine the interlaminar shear modulus for
cardboard are presented in [29]. Timoshenko’s vibration theory was used together with the
FEM to verify the results.

In general, to determine the mechanical properties of new, non-conventional materials,
for which there is not enough data, experimental vibration measurements are used, from
which the natural frequencies are obtained, which help us determine different engineering
constants [30-35].

In particular, due to their use in a wide range of applications, cylindrical fiber-
reinforced polymer composites have been intensively used. As a result, they have been
studied intensively. In what follows, we present a series of studies with more interesting
applied results, from the rich and specialized literature. Among the many materials that
have been reinforced with fibers is concrete, which has an extraordinary use in practice. The
base material is reinforced with cylindrical iron fibers. And in this case, the FEM proved to
be an extremely useful method to predict the properties of the manufactured material.
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Thus, for a practical application, the stress and strain fields were obtained, which were
then used in the classical theory of homogenization to calculate the two elastic constants
necessary to define the behavior of the homogenized material. The values of the engineering
constants were obtained in good agreement with the values that were determined using
other calculation methods. Applications of natural fiber-reinforced composite materials
have become extremely popular in modern industry, especially because such materials
can be recycled more easily. Natural fibers have a viscoelastic behavior, and, as a result,
studying them is more complicated, involving methods that take into account the time
parameter, which leads to numerous calculations [36]. But natural fibers have superior
specific properties, exceptional ecological characteristics and a low price. The mentioned
paper uses a classic homogenization procedure and proposes an analytical model for the
study of such materials. The obtained results are verified by experimental measurements,
which prove to be in excellent agreement between them (applying the proposed model)
and the experimental results.

A method developed for the study of polymer composites, with viscoelastic behavior,
reinforced with glass or carbon fibers, is developed in [37]. The behavior of this material
is determined by the properties of the matrix and is viscoelastic. So, the time factor also
appears in the development of the method because in this case, the flow of the studied
material at higher temperatures must also be taken into account. The results obtained in
the paper based on the proposed model are then verified experimentally. Other studies in
the field, close to the object of the current paper, are presented in [38,39].

The novelty of the work consists in the use of the FEM instead of experimental
measurements to determine the natural frequencies of a straight beam, fixed at both ends.
The beam is made of a polymeric composite reinforced with carbon fibers. Based on the
classical theory of the beam, knowing the eigenfrequencies thus determined, the values of
some of the engineering constants of the homogenized material are determined.

In the paper, using classical models for the analysis of the vibrations of a classical
beam, made of a composite material, the FEM was used to determine some of the elastic
constants of the material. The method has an advantage over experimental methods, being
cheaper and easier to apply. Also, the time required for modeling and obtaining the results
is reduced. The method is applied to a composite reinforced with unidirectional cylindrical
carbon fibers. This method is useful because it can be applied to a large class of composite
materials to obtain the elastic characteristics of the composite material. A cylindrical fiber-
reinforced composite is analyzed in the study, but the method can be easily extended to
other types of composites with a more complicated topology and geometry. At the same
time, materials composed of more than two phases can be considered.

2. Materials and Methods

In the following, the main results from the classical theory of straight beam, clamped at
both ends, regarding torsional, longitudinal and transverse vibrations are briefly presented.
The relationships obtained allowed for the obtainment of some of the elastic constants
of the studied materials. Using the FEM, it is possible to obtain the eigenfrequency for
the beam and by inspecting the representation of the eigenmodes of vibration, provided
by the software used, it is possible to identify the modes due to the torsional vibration,
axial vibration, and transverse vibration. In each case, using the relations known from
the classic beam analysis, some of the elastic constants of the homogenized material can
be determined. Figure 1 shows the beam discretized into finite elements and clamped
at the ends. Using this model, performed with Altair 2020, it is possible to obtain the
eigenfrequencies of the beam made by a homogenized material. For the case of a polymeric
material, the calculations are made and the results are presented in the Section 3.
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Figure 1. The clamped beam.

(a) Torsional vibration. The free torsional vibrations of a beam are given by the differential
equation, written at the distance x from the left end of the beam and in the moment [40—48]:

a e g
ox2 o2’

where G is shear modulus, (interesting in our study), I, is the inertia moment of the area, |
is the unitary mass moment of inertia, and ¢ the rotation angle of the current area. For a
homogeneous, continuous beam, we have | = pI, and Equation (1) becomes:
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Applying the classic theory concerning the torsional vibration of a beam, it obtains the
eigenfrequencies of the homogenized beam:

pn:2nvn:$1/%;n:1,2,3, ...... 3)

So, if an eigenvalue is known, the shear modulus can be determined for the material
of the beam:

212 212
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From Equation (4), the result is that between different eigenfrequencies there are
the relations: v s v
n

== =—"=...... =—,;n=123,...... 5
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which can be used to verify how good the obtained results are. So, with the FEM, more
values are obtained for the eigenfrequencies, which give us more values for G. In this case,
an average can be made for all these values to obtain a precise value for G.

(b) Longitudinal vibration. The differential equations that describe the longitudinal
vibration are:

0%u o%u
= 8_2 _ ®)
ox E ot

Following the same operations as in case a), the eigenfrequencies are given by the

relation:
pn:2nvn=$\/§;n:1,2,3, ...... @)
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So, if an eigenvalue is known, the axial Young’s modulus can be determined for the
material of the beam:
AT S

E= g2 w2 n=123,...... (8)

Relation (5) also remains valid for the longitudinal vibration.

(c) Transverse vibration. If we consider the transverse vibrations of the beam, the differ-
ential equation that describes these vibrations is:

4 2
dv  pAdY (9)
ox* ' E,I, ot?
With the notation: A
202 _ (10)

PE—

The eigenfrequencies are given using the relation:

pn = 27Uy = a3 | izjz ;n=1,23,...... (11)

where «;, are (When both ends are clamped) the solutions of the transcendental equation:

coshal cosal =1. (12)

The first ten solutions = al of the transcendent equation cosh f cos § = 1 are:
4.7300; 7.8532; 10.9956; 14.1371; 17.2787; 20.4203; 23.5619; 26.7035; 29.8451; 32.9867 and
will be used in the further considerations. The constant «, will be:

= ? (13)

So, if an eigenvalue is known, the transversal Young’s modulus can be determined
with the relation:

2 A 4 2 214 A
g PipA _AmvilpA o (14)
lxnIZ IBHIZ

Using the presented results, three of the five elastic constants of an epoxy matrix
reinforced with cylindrical fibers can be determined if the eigenfrequencies of the beam are
calculated with the FEM.

3. Results

In the paper, a finite element analysis was performed of a straight beam, made of a
composite made of a polymeric matrix reinforced with carbon fibers. The beam’s eigen-
frequencies were determined. By studying the eigenmodes of movement, the eigenmodes
due to transverse, longitudinal and torsional vibrations were identified. Based on the
previously presented classic models that link the elastic constants to their eigenfrequencies,
some of the elastic constants of the homogenized material were determined. The proposed
method facilitates the calculation of these engineering constants, for which there are very
laborious and time-consuming analytical determination methods [49].

Within the studied example, the eigenfrequencies and the eigenmodes were deter-
mined. Among these eigenmodes of movement, it was found that two describe the longitu-
dinal vibrations of the beam, eight describe the torsional vibrations and ten describe the
transverse vibrations. Three types of vibrations were analyzed. Based on the numerical
results obtained with the FEM and taking into account the exact formulas known for the
vibrations of the straight beam, the longitudinal Young’s modulus and the transverse and
shear moduli were determined [50-53]. The beam is discretized using three-dimensional
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hexahedral finite elements with eight nodes. Each node involved 3 degrees of freedom
(DOFs), which are displacements in the X, Y and Z directions (considered in the global
coordinate system). Thus, the behavior of an element is defined by 24 DOFs. The details of
the formulation can be found from reference [51].

If the obtained results are analyzed and the eigenmodes are represented, the modes for
torsional, longitudinal and transverse vibrations can be easily identified. We analyzed them
in the following way to determine the elastic constants: In Figure 2, the FEM considered
is presented. It is considered a simplified model with four carbon fibers, cylindrical and
parallel incorporated in a polymeric epoxy matrix. The dimensions of the specimen are
presented in Figure 2. The Young’s modulus for the carbon fiber is 86.960 GPa and for
the matrix is 4.140 GPa. The density of the materials is 1850 kg/m? for the matrix and
2000 kg/m?3 for the carbon fiber. The Poisson ratio is 0.22 and 0.34for the matrix and carbon.
These data were used for the model presented in Figure 2, where the torsional, longitudinal
and transverse vibrations of this basic beam are analyzed. If we analyze the eigenmodes
of vibration, these three modes of vibration can be identified. The symmetry of the bar
allows an easy analysis of such a bar. Obviously, in more complicated cases, this is no
longer possible. But precisely this simplicity was used in the work in order to quickly
obtain estimates of some mechanical constants.

a=0.5mm

E [MPa]

<.
e
Name Matrice_MAT Name Fiber_MAT
D 1 ID 2
Color O Color @
Include [Master Model] Include [Master Model]
Defined 4 Defined 4
Card Image MAT1 Card Image MAT1
User Comments Hide In Menu/Export User Comments Hide In Menu/Export
E 41400 E 86,960.0
G G
NU 0.22 NU 0.34
RHO 1850 kg/m? RHO 2,000 kg/m?®

Figure 2. The composite material.

It is easy to observe that the eigenmodes 3, 5, 8, 11, 13, 15, 18 and 20 describe the tor-
sional vibrations of the beam. Table 1 shows the torsional eigenfrequencies v, (p, = 27v;)
and the corresponding eigenmodes. Based on Equation (4) previously introduced, the shear
modulus can be calculated. It results:

C_ 41/% 12p )
o on2m?

n=123...... (15)
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So, knowing the eigenfrequency, the number of the eigenmode with this frequency
and the length and the density of the homogenized material, it is possible to obtain the
shear modulus. If the density of the fiber is pf, the density of the matrix is p;, the ratio of
the fiber is vy, the ratio of the matrix is v, = 1 — v¢ and the density of the homogenized
material is:

P =VFPf + VmpPm- (16)

Table 1. Eigenfrequencies of the torsional vibration.

_MiPp
Mode No. Eigenfrequency v, [Hz] Representation Transverse She?éll\)/ltidulus G="im
a
3 82,288.62 % 5.2129
o
i I
»
5 164,757.2 ,// 5.2243
e
i
" |
e
e ,
8 247,584.1 " >~ 5.2432
=
|l
i
il
Average shear modulus (GPa) 5.226834

Modes 9 and 13 can be identified between the eigenmodes as being the eigenmodes
that describe the longitudinal vibrations of the beam. Table 2 shows these eigenmodes and
the longitudinal eigenfrequencies of vibration. Considering the classic theory of beams
and based on Equation (8) offered by this theory, the longitudinal Young’s modulus can be
determined. So, if the eigenfrequency vy, the length [ of the specimen, the density of the
homogenized material and the p si number of the eigenmode 7 are known, the longitudinal
Young’s modulus is obtained:

E,=—2F . n=123.... (17)
Vis

The modes 1, 2, 4, 6, 7, 10, 12, 14, 17 and 19 considered in our analysis are the
eigenmodes that define the transverse vibrations of the beam. Table 3 shows the torsional
eigenpulses and the corresponding eigenmodes. Using the solutions of Equation (14)
previously obtained, it is possible to obtain the transverse Young’s modulus E:

A2 pA AP 1pA

E 7 - 4 7 7
‘ Wil B4,

...... (18)

In Equation (18), A represents the area of the studied specimen and I, represents the
moment of inertia of this area and S is the solution of Equation (12). Table 3 shows some of
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the transverse eigenfrequencies and the corresponding eigenmodes. Using the solutions of
Equation (14) previously obtained, it is possible to obtain the transverse Young’s modulus
E,. We considered the first three eigenfrequencies for the study. The value obtained after
the calculus is 35.2963 GPa.

Table 2. The eigenfrequencies of the longitudinal vibration.

Longitudinal Young's
Mode No. Eigenfrequency [Hz] Representation Modulus EL=4V5 Pp.,

n2m2 ’
EL [GP&]

9 250,458.3 48.2915

Lo

7
16 500,238.9 ’ ’ 48.1609
»

v fx

Average longitudinal Young’s modulus E (GPa) 48.2262

Table 3. The eigenfrequencies of the transverse vibration.

Representation x=uyl EZ:W [GPa]

Eigenfrequency
[Hz]

1 22,159.00 ’ 4.730040744862704 35.7752

Mode No.

2 55,787.45 ’ ' 7.8532046240958376 34.5044

4 116,467.3 ’ " 10.995607838001671 35.6093

wox

Average transversal modulus (GPa) 35.2963




Polymers 2024, 16, 354

9of 12

4. Discussion

The engineering constants of a polymer composite material, reinforced with cylindrical
fibers, can be determined by analytical methods, which are generally very laborious and
which assume, for the more precise methods, the determination of the field of stresses and
deformations in the composite material. Experimental methods can also be used, which
can give very good results but obviously involve high costs and lots of time. In the present
work, using the classical beam theories to determine the natural frequencies and then the
FEM and then comparing them with the simple formulas used in the classical theory, some
of the material constants can be determined. The procedure has the advantage of simplicity
and the possibility to obtain fast and accurate estimates in the design process. Considering
a large number of eigenfrequencies can improve the estimation accuracy [40—42].

The method presented in the paper is correct if we assume a straight beam. Errors that
may occur may be due to the FEM in particular, but at this point, the method is sufficiently
accurate to meet engineering needs.

The problem of determining material constants for different composites and especially
for polymer composites reinforced with cylindrical fibers distributed in parallel has been
a subject intensively studied over time by researchers, due to the multiple applications
of composites. Several analytical models have been proposed to solve the problem. The
theory of homogenization involves the determination of the stress and strain fields. Also,
the micromechanical model ultimately leads to the same problem of determining stress and
strain. Methods have also been proposed that consider particular loading situations. In
this case, however, upper or lower bounds were obtained for the elastic constants, which
are sometimes far from the real values [7-13]. In the paper, the vibration behavior of the re-
sulting material was studied, with the values obtained after the calculation being able to be
related to the values of some of the important constants of the material such as axial tensile
modulus, transverse tensile modulus, axial shear modulus, transverse shear modulus, axial
Poisson ‘s ratio, transverse Poisson’s ratio or bulk modulus (depending on the resulting
material, homogeneous and isotropic, transversely isotropic and orthotropic) [42].

Obviously, more complex situations involving thermal effects, humidity, etc., can
be studied, which can no longer be neglected. In this case, the classical beam models
that also take these effects into account must be considered. Obviously, in these cases,
additional parameters may appear that must be taken into account in the calculations. For
each of these special cases, the appropriate model must be considered and the appropriate
calculations conducted.

5. Conclusions

The calculation method presented gives us a rapid estimate of the value of the en-
gineering constants using the FEM to determine the eigenfrequencies of a simple beam
specimen, clamped at both ends, made by a polymeric material reinforced with cylindrical
carbon fibers. The material constants of the constituent phases of the studied composite
are known. Using classical beam theory, some of the homogenized material constants
are computed. This method is very simple and easy to apply. At the same time, the time
required to use the procedure is short. These estimates are affected by the approximations
that are made in classical models of the beam and by the errors that occur when using the
FEM. The procedure offers a relatively simple and fast method of estimating the elastic
constants of the composite material as a whole and can represent a very good solution in
the design phase of a composite. For the polymer composites reinforced with carbon fibers,
studied in the paper, the results obtained are similar to results previously obtained by other
methods and verified experimentally, presented in the Introduction [40-42].

A more complex situation can be considered when it is necessary to take into account
humidity, temperature or other factors. The proposed method is also effective in these
cases. The use of the FEM is the same, and the difference occurs when considering the
vibration of beams taking into account other influences, which depend on a parameter. For
all new models, the FEM must be adapted so that it is possible to determine the elastic
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constant under these circumstances. The study of these new models may be the objectives of
future studies.

Author Contributions: Conceptualization, C.I.,, M.L.S. and S.V.; methodology, S.V.; software, C.I;
validation, C.I., M.L.S. and S.V.; formal analysis, S.V.; investigation, S.V.; resources C.I., M.L.S. and
S.V.; data curation, C.I, M.L.S. and S.V.; writing—original draft preparation, S.V.; writing—review
and editing, S.V.; visualization, C.I., M.L.S. and S.V.; supervision, C.I., M.L.S. and S.V.; project
administration, S.V.; funding acquisition, S.V. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was funded by Transilvania University of Brasov (cf. HBS 1543/2020).
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Brinson, H.E; Morris, D.H.; Yeow, Y.I. A New Method for the Accelerated Characterization of Composite Materials. Proceeding
of the Sixth International Conference on Experimental Stress Analysis, Munich, Germany, 18-22 September 1978.

2. Xu,J; Wang, H.; Yang, X,; Han, L.; Zhou, C. Application of TTSP to non-linear deformation in composite propellant. Emerg. Mater.
Res. 2018, 7, 19-24. [CrossRef]

3. Nakano, T. Applicability condition of time—temperature superposition principle (TTSP) to a multi-phase system. Mech. Time-
Depend. Mater. 2012, 17, 439-447. [CrossRef]

4. Achereiner, F; Engelsing, K.; Bastian, M. Accelerated Measurement of the Long-Term Creep Behaviour of Plastics. Superconductiv-
ity 2017, 247, 389-402.

5. Schaffer, B.G.; Adams, D.F. Nonlinear Viscoelastic Behavior of a Composite Material Using a Finite Element Micromechanical Analysis;
Dept. Report UWME-DR-001-101-1, Dep. of Mech. Eng.; University of Wyoming: Laramie, WY, USA, 1980.

6.  Schapery, R. Nonlinear viscoelastic solids. Int. J. Solids Struct. 2000, 37, 359-366. [CrossRef]

7.  Violette, M.G.; Schapery, R. Time-Dependent Compressive Strength of Unidirectional Viscoelastic Composite Materials. Mech.
Time-Depend. Mater. 2002, 6, 133-145. [CrossRef]

8.  Hashin, Z.; Rosen, B.W. The Elastic Moduli of Fiber-Reinforced Materials. J. Appl. Mech. 1964, 31, 223-232. [CrossRef]

9.  Hinterhoelzl, R.; Schapery, R. FEM Implementation of a Three-Dimensional Viscoelastic Constitutive Model for Particulate
Composites with Damage Growth. Mech. Time-Depend. Mater. 2004, 8, 65-94. [CrossRef]

10. Mohan, R.; Adams, D.F. Nonlinear creep-recovery response of a polymer matrix and its composites. Exp. Mech. 1985, 25, 262-271.
[CrossRef]

11.  Findley, W.N.; Adams, C.H.; Worley, W.]. The Effect of Temperature on the Creep of Two Laminated Plastics as Interpreted
by the Hyperbolic Sine Law and Activation Energy Theory. In Proceedings of the American Society for Testing and Materials,
Conshohocken, PA, USA, 1 January 1948; Volume 48, pp. 1217-1239.

12.  Findley, W.N.; Peterson, D.B. Prediction of Long-Time Creep with Ten-Year Creep Data on Four Plastics Laminates. In Proceedings
of the American Society for Testing and Materials, Sixty-First (61th) Annual Meeting, Boston, MA, USA, 26-27 June 1958; Volume
58.

13. Dillard, D.A,; Brinson, H.F. A Nonlinear Viscoelastic Characterization of Graphite Epoxy Composites. In Proceedings of the 1982
Joint Conference on Experimental Mechanics, Oahu, HI, USA, 23-28 May 1982.

14. Charentenary, F.X.; Zaidi, M.A. Creep Behavior of Carbon-Epoxy (+/—450)2s Laminates. In Progess in Sciences and Composites;
ICCM-1V; Hayashi, K., Umekawa, S., Eds.; The Japan Society for Composite Materials: Tokyo, Japan, 1982.

15.  Walrath, D.E. Viscoelastic response of a unidirectional composite containing two viscoelastic constituents. Exp. Mech. 1991, 31,
111-117. [CrossRef]

16. Hashin, Z. On Elastic Behavior of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry. J. Mech. Phys. Solids 1965,
13,119-134. [CrossRef]

17.  Bowles, D.E.; Griffin, O.H., Jr. Micromecjanics Analysis of Space Simulated Thermal Stresses in Composites. Part I: Theory and
Unidirectional Laminates. . Reinf. Plast. Compos. 1991, 10, 504-521.

18.  Zhao, Y.H.; Weng, G ]. Effective Elastic Moduli of Ribbon-Reinforced Composites. J. Appl. Mech. 1990, 57, 158-167. [CrossRef]

19. Hill, R. Theory of Mechanical Properties of Fiber-Strengthened Materials: I, II, III. |. Mech. Phys. Solids 1964, 12, 189-218.

20. Katouzian, M.; Vlase, S. Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method. Polymers 2021,
13, 867. [CrossRef]

21. Hill, R. Continuum Micro-Mechanics of Elastoplastic Polycrystals. J. Mech. Phys. Solids 1965, 13, 89-101. [CrossRef]


https://doi.org/10.1680/jemmr.16.00069
https://doi.org/10.1007/s11043-012-9195-8
https://doi.org/10.1016/S0020-7683(99)00099-2
https://doi.org/10.1023/A:1015015023911
https://doi.org/10.1115/1.3629590
https://doi.org/10.1023/B:MTDM.0000027683.06097.76
https://doi.org/10.1007/BF02325096
https://doi.org/10.1007/BF02327561
https://doi.org/10.1016/0022-5096(65)90015-3
https://doi.org/10.1115/1.2888297
https://doi.org/10.3390/polym13060867
https://doi.org/10.1016/0022-5096(65)90023-2

Polymers 2024, 16, 354 11 0f 12

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

Weng, YM.; Wang, G.J. The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Compoisites. J. Appl. Mech. 1992,
59, 510-518. [CrossRef]

Mori, T.; Tanaka, K. Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metal.
1973, 21, 571-574. [CrossRef]

Pasricha, A.; Van Duster, P.; Tuttle, M.E.; Emery, A.F. The Nonlinear Viscoelastic/Viscoplastic Behavior of IM6/5260
Graphite/Bismaleimide. In Proceedings of the VII International Congress on Experimental Mechanics, Las Vegas, NV, USA, 8-11
June 1992.

Pintelon, R.; Guillaume, P.; Vanlanduit, S.; De Belder, K.; Rolain, Y. Identification of Young’s modulus from broadband modal
analysis experiments. Mech. Syst. Signal Process. 2004, 18, 699-726. [CrossRef]

Liu, J.J.; Liaw, B. Vibration and impulse responses of fiber-metal laminated beams. In Proceedings of the 20th IMAC Conference
on Structural Dynamics, Los Angeles, CA, USA, 4-7 February 2002; Volume 4753, pp. 1411-1416.

Hwang, Y.F; Suzuki, H. A finite-element analysis on the free vibration of Japanese drum wood barrels under material property
uncertainty. Acoust. Sci. Technol. 2016, 37, 115-122. [CrossRef]

Kouroussis, G.; Ben Fekih, L.; Descamps, T. Assessment of timber element mechanical properties using experimental modal
analysis. Constr. Build. Masterials 2017, 134, 254-261. [CrossRef]

Yoshihara, H.; Yoshinobu, M.; Maruta, M. Interlaminar shear modulus of cardboard obtained by torsional and flexural vibration
tests. Nord. Pulp Pap. Res. ]. 2023, n38, 399-411. [CrossRef]

Digilov, R.M. Flexural vibration test of a cantilever beam with a force sensor: Fast determination of Young’s modulus. Eur. J. Phys.
2008, 29, 589-597. [CrossRef]

Swider, P.; Abidine, Y.; Assemat, P. Could Effective Mechanical Properties of Soft Tissues and Biomaterials at Mesoscale Be
Obtained by Modal Analysis? Exp. Mech. 2023, 63, 1055-1065. [CrossRef]

Yoshihara, H. Measurement of the Young’s and Shear Modulus of in-Plane Quasi-Isotropic Medium-Density Fiberboard by
Flexural Vibration. Bioresources 2011, 6, 4871-4885. [CrossRef]

Hao, L.N.; Gao, ].C.; Lin, H. A Novel Determination Method of IPMC Young’s Modulus Based on Cantilever Resonance Theory.
Appl. Mech. Mater. 2011, 66, 747-752. [CrossRef]

Lupea, I. The Modulus of Elasticity Estimation by using FEA and a Frequency Response Function. Acta Tech. Napoc. Ser. Appl.
Math. Mech. Eng. 2014, 57, 493-496.

Li, Y;; Li, Y.Q. Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element
simulation. Constr. Build. Mater. 2019, 200, 301-309. [CrossRef]

Nguyen, A.V.; Nguyen, T.C. Homogenization of Viscoelastic Composite Reinforced Woven Flax Fibers. In Proceedings of the 11th
Joint Canada-Japan Workshop on Composites/1st Joint Canada-Japan-Vietnam Workshop on Composites, Design, Manifacturing
and Applications of Composites, Ho Chi Minh, Vietnam, 8-10 August 2016; pp. 187-192.

Matsuda, T.; Ohno, N. Predicting the elastic-viscoplastic and creep behaviour of polymer matrix composites using the homoge-
nization theory. In Creep and Fatigue in Polymer Matrix Composites; Woodhead Publishing: Thorston, UK, 2011; pp. 113-148.
Tian, W.L.; Qi, L.H.; Jing, Z. Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect
of fiber orientation. Compos. Struct. 2016, 152, 408—417. [CrossRef]

Zhu, T.L.; Wang, Z. Research and application prospect of short carbon fiber reinforced ceramic composites. J. Eur. Ceram. Soc.
2023, 43, 6699-6717. [CrossRef]

Katouzian, M.; Vlase, S.; Marin, M.; Scutaru, M.L. Modeling Study of the Creep Behavior of Carbon-Fiber-Reinforced Composites:
A Review. Polymers 2023, 15, 194. [CrossRef]

Katouzian, M.; Vlase, S.; Scutaru, M.L. Finite Element Method-Based Simulation Creep Behavior of Viscoelastic Carbon-Fiber
Composite. Polymers 2021, 13, 1017. [CrossRef]

Scutaru, M.L.; Teodorescu-Draghicescu, H.; Vlase, S.; Marin, M. Advanced HDPE with increased stiffness used for water supply
networks. J. Optoelectron. Adv. Mater. 2015, 17, 484-488.

Rades, M. Mechanical Vibration, II, Structural Dynamics Modeling; Printech Publishing House: Bangalore, India, 2010.

Negrean, I.; Crisan, A.V,; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95.
[CrossRef]

Vlase, S.; Teodorescu-Draghicescu, H.; Motoc, D.L.; Scutaru, M.L.; Serbina, L.; Calin, M.R. Behavior of multiphase fiber-reinforced
polymers under short time cyclic loading. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 419-423.

Vlase, S.; Marin, M.; Ochsner, A. Considerations of the transverse vibration of a mechanical system with two identical bars. Proc.
Inst. Mech. Engineers. Partl L-]. Mater. Des. Appl. 2019, 233, 1318-1323. [CrossRef]

Teodorescu-Draghicescu, H.; Scutaru, M.L.; Rosu, D.; Calin, M.R.; Grigore, P. New Advanced Sandwich Composite with twill
weave carbon and EPS. J. Optoelectron. Adv. Mater. 2013, 15, 199-203.

Mollaei, S.; Babaei, M.; Asemi, K. Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical
panel. Arch. Appl. Mech. 2023, 93, 427-435. [CrossRef]

Teodorescu-Draghicescu, H.; Vlase, S.; Scutaru, L.; Serbina, L.; Calin, M.R. Hysteresis effect in a three-phase polymer matrix
composite subjected to static cyclic loadings. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 273-277.

Bratu, P; Dobrescu, C.; Nitu, M.C. Dynamic Response Control of Linear Viscoelastic Materials as Resonant Composite Rheological
Models. Rom. J. Acoust. Vib. 2023, 20, 73-77.


https://doi.org/10.1115/1.2893753
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1016/S0888-3270(03)00045-1
https://doi.org/10.1250/ast.37.115
https://doi.org/10.1016/j.conbuildmat.2016.12.081
https://doi.org/10.1515/npprj-2023-0022
https://doi.org/10.1088/0143-0807/29/3/018
https://doi.org/10.1007/s11340-023-00974-7
https://doi.org/10.15376/biores.6.4.4871-4885
https://doi.org/10.4028/www.scientific.net/AMM.66-68.747
https://doi.org/10.1016/j.conbuildmat.2018.12.134
https://doi.org/10.1016/j.compstruct.2016.05.046
https://doi.org/10.1016/j.jeurceramsoc.2023.07.007
https://doi.org/10.3390/polym15010194
https://doi.org/10.3390/polym13071017
https://doi.org/10.3390/sym12010095
https://doi.org/10.1177/1464420717745109
https://doi.org/10.1007/s00419-022-02132-2

Polymers 2024, 16, 354 12 of 12

51. Fish, J.; Belytschko, T. A First Course in Finite Element; John Wiley & Sons, Ltd.: Chichester, UK; Hoboken, NJ, USA, 2007; pp.
151-186, 215-240.

52. Bratu, P; Nitu, M.C.; Tonciu, O. Effect of Vibration Transmission in the Case of the Vibratory Roller Compactor. Rheological Models.
Rom. |. Acoust. Vib. 2023, 20, 67-72.

53. Behera, A.; Rajak, D.K.; Pruncu, C.I. Current global scenario of Sputter deposited NiTi smartsystems. Rheol. Models 2020, 9,
14582-14598.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

