Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Syntheses of the EC Derivative Possessing Pentyl Ether Groups (EC-Pe)
2.3. Fabrication Procedure of Lyotropic CLC Cells
2.4. Optical Measurements of Lyotropic CLC Cells
2.5. Rheological Measurements of the Lyotropic CLCs of EC Derivatives
3. Results and Discussion
3.1. Characterization of EC-Pe
3.2. Synthesis of Etherified EC Derivatives
3.3. Molecular Weight Dependence of EC-Pe on the Reflection Property of Its Lyotropic CLC
3.4. Reflection Properties of Lyotropic CLC of EC3-Pe in MAA or AA
3.5. Reflection Peak Wavelength of EC3-Pe in MAA Dependence on DSPe
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Mathematical Derivation of Equation (2)
References
- Charlet, G.; Gray, D.G. Chiroptical Filters from Aqueous (Hydroxypropyl) Cellulose Liquid Crystals. J. Appl. Polym. Sci. 1989, 37, 2517–2527. [Google Scholar] [CrossRef]
- Revol, J.F.; Bradford, H.; Giasson, J.; Marchessault, R.H.; Gray, D.G. Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension. Int. J. Biol. Macromol. 1992, 14, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Ebers, L.S.; Laborie, M.P. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. ACS Appl. Bio Mater. 2020, 3, 6897–6907. [Google Scholar] [CrossRef]
- Adams, D.; Ounaies, Z.; Basak, A. Printability Assessment of Ethyl Cellulose Biopolymer Using Direct Ink Writing. JOM 2021, 73, 3761–3770. [Google Scholar] [CrossRef]
- Murtaza, G. Ethylcellulose Microparticles: A Review. Acta Pol. Pharm.-Drug Res. 2012, 69, 11–22. [Google Scholar]
- Arca, H.C.; Mosquera-Giraldo, L.I.; Bi, V.; Xu, D.; Taylor, L.S.; Edgar, K.J. Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules 2018, 19, 2351–2376. [Google Scholar] [CrossRef]
- Tsuji, R.; Tanaka, K.; Oishi, K.; Shioki, T.; Satone, H.; Ito, S. Role and Function of Polymer Binder Thickeners in Carbon Pastes for Multiporous-Layered-Electrode Perovskite Solar Cells. Chem. Mater. 2023, 35, 8574–8589. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, X.T.; Wang, X.L.; Wang, Y.Z. Preparation and Properties of a Novel Biodegradable Ethyl Cellulose Grafting Copolymer with Poly(p-dioxanone) Side-Chains. Carbohydr. Polym. 2010, 80, 350–359. [Google Scholar] [CrossRef]
- Tseng, S.L.; Laivins, G.V.; Gray, D.G. Propanoate Ester of (2-Hydroxypropyl)cellulose: A Thermotropic Cholesteric Polymer that Reflects Visible Light at Ambient Temperatures. Macromolecules 1982, 15, 1262–1264. [Google Scholar] [CrossRef]
- Zugenmaier, P.; Haurand, P. Structural and Rheological Investigations on the Lyotropic, Liquid-crystalline System: o-Ethylcellulose-Acetic Acid-Dichloroacetic Acid. Carbohydr. Res. 1987, 160, 369–380. [Google Scholar] [CrossRef]
- Guo, J.X.; Gray, D.G. Chiroptical Behavior of (Acetyl)(ethyl)cellulose Liquid Crystalline Solutions in Chloroform. Macromolecules 1989, 22, 2086–2090. [Google Scholar] [CrossRef]
- Almeida, A.P.C.; Canejo, J.P.; Fernandes, S.N.; Echeverria, C.; Almeida, P.L.; Godinho, M.H. Cellulose-Based Biomimetics and their Applications. Adv. Mater. 2018, 30, 1703655. [Google Scholar] [CrossRef] [PubMed]
- Werbowyj, R.S.; Gray, D.G. Liquid Crystalline Structure in Aqueous Hydroxypropyl Cellulose Solutions. Mol. Cryst. Liq. Cryst. 1976, 34, 97–103. [Google Scholar] [CrossRef]
- Werbowyj, R.S.; Gray, D.G. Ordered Phase Formation in Concentrated Hydroxypropylcellulose Solutions. Macromolecules 1980, 13, 69–73. [Google Scholar] [CrossRef]
- Werbowyj, R.S.; Gray, D.G. Optical Properties of (Hydroxypropyl)cellulose Liquid Crystals. Cholesteric Pitch and Polymer Concentration. Macromolecules 1984, 17, 1512–1520. [Google Scholar] [CrossRef]
- Guo, J.X.; Gray, D.G. Preparation and Liquid-Crystalline Properties of (Acetyl)(ethyl)cellulose. Macromolecules 1989, 22, 2082–2086. [Google Scholar] [CrossRef]
- Nishio, Y.; Fujiki, Y. Liquid-Crystalline Characteristics of Cellulose Derivatives: Binary and Ternary Mixtures of Ethyl Cellulose, Hydroxypropyl Cellulose, and Acrylic Acid. J. Macromol. Sci. Part B 1991, 30, 357–384. [Google Scholar] [CrossRef]
- Guo, J.-X.; Gray, D.G. Effect of Degree of Acetylation and Solvent on the Chiroptical Properties of Lyotropic (Acetyl)(ethyl)cellulose Solutions. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 2529–2537. [Google Scholar] [CrossRef]
- Seddon, J.M. Structural Studies of Liquid Crystals by X-ray Diffraction. Handb. Liq. Cryst. Set. 1998, 1, 635–679. [Google Scholar]
- Shimamoto, S.; Uraki, Y.; Sano, Y. Optical Properties and Photopolymerization of Liquid Crystalline (Acetyl)(ethyl)cellulose/Acrylic Acid System. Cellulose 2000, 7, 347–358. [Google Scholar] [CrossRef]
- De Vries, H. Rotatory Power and Other Optical Properties of Certain Liquid Crystals. Acta Crystallogr. 1951, 4, 219–226. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y.; Shang, L. Cholesteric Cellulose Liquid Crystals with Multifunctional Structural Colors. Adv. Funct. Mater. 2022, 32, 2107242. [Google Scholar] [CrossRef]
- Moriyama, M.; Song, S.; Matsuda, H.; Tamaoki, N. Effects of Doped Dialkylazobenzenes on Helical Pitch of Cholesteric Liquid Crystal with Medium Molecular Weight: Utilisation for Full-Colour Image Recording. J. Mater. Chem. 2001, 11, 1003–1010. [Google Scholar] [CrossRef]
- Manabe, T.; Sonoyama, K.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Toward Practical Application of Cholesteric Liquid Crystals to Tunable Lasers. J. Mater. Chem. 2008, 18, 3040–3043. [Google Scholar] [CrossRef]
- Yamagishi, T.A.; Guittard, F.; Godinho, M.H.; Martins, A.F.; Cambon, A.; Sixou, P. Comparison of Thermal and Cholesteric Mesophase Properties among the Three Kind of Hydroxypropylcellulose (HPC) Derivatives. Polym. Bull. 1994, 32, 47–54. [Google Scholar] [CrossRef]
- Tseng, S.L.; Valente, A.; Gray, D.G. Cholesteric Liquid Crystalline Phases Based on (Acetoxypropyl)cellulose. Macromolecules 1981, 14, 715–719. [Google Scholar] [CrossRef]
- Kosho, H.; Hiramatsu, S.; Nishi, T.; Tanaka, Y.; Kawauchi, S.; Watanabe, J. Thermotropic Cholesteric Liquid Crystals in Ester Derivatives of Hydroxypropylcellulose. High Perform. Polym. 1999, 11, 41–48. [Google Scholar] [CrossRef]
- Hou, H.; Reuning, A.; Wendorff, J.H.; Greiner, A. Tuning of the Pitch Height of Thermotropic Cellulose Esters. Macromol. Chem. Phys. 2000, 201, 2050–2054. [Google Scholar] [CrossRef]
- Baba, Y.; Saito, S.; Iwata, N.; Furumi, S. Synthesis and Optical Properties of Completely Etherified Hydroxypropyl Cellulose Derivatives. J. Photopolym. Sci. Technol. 2021, 34, 549–554. [Google Scholar] [CrossRef]
- Matsumoto, K.; Ogiwara, Y.; Iwata, N.; Furumi, S. Rheological Properties of Cholesteric Liquid Crystal with Visible Reflection from an Etherified Hydroxypropyl Cellulose Derivative. Polymers 2022, 14, 2059. [Google Scholar] [CrossRef]
- Nishio, Y.; Nada, T.; Hirata, T.; Fujita, S.; Sugimura, K.; Kamitakahara, H. Handedness Inversion in Chiral Nematic (Ethyl)cellulose Solutions: Effects of Substituents and Temperature. Macromolecules 2021, 54, 6014–6027. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Iwata, N.; Furumi, S. Viscoelastic Properties of Cholesteric Liquid Crystals from Hydroxypropyl Cellulose Derivatives. J. Photopolym. Sci. Technol. 2021, 34, 537–542. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Iwata, N.; Furumi, S. Dominant Factors Affecting Rheological Properties of Cellulose Derivatives Forming Thermotropic Cholesteric Liquid Crystals with Visible Reflection. Int. J. Mol. Sci. 2023, 24, 4269. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, T.; Uenuma, S.; Furumi, S. Thermotropic Properties of Cholesteric Liquid Crystal from Hydroxypropyl Cellulose Mixed Esters. Kobunshi Ronbunshu 2015, 72, 737–745. [Google Scholar] [CrossRef]
Sample Code | Solvent | NaOH Concentration (g/mL) | Viscosity of Pristine EC (mPa·s) | DSPe a |
---|---|---|---|---|
EC1-Pe0.15 | NMP | 0.03 | 90–110 | 0.15 |
EC1-Pe0.34 | DMAc | 0.03 | 90–110 | 0.34 |
EC1-Pe0.36 | DMAc | 0.05 | 90–110 | 0.36 |
EC1-Pe0.50 | DMAc | 0.10 | 90–110 | 0.50 |
EC2-Pe0.50 | DMAc | 0.10 | 45–55 | 0.50 |
EC3-Pe0.50 | DMAc | 0.10 | 9–11 | 0.50 |
EC3-Pe0.12 | DMAc | 0.02 | 9–11 | 0.12 |
EC3-Pe0.29 | DMAc | 0.03 | 9–11 | 0.29 |
Sample Code | Mn × 10−5 | Mw × 10−6 | Mw/Mn |
---|---|---|---|
EC1 | 6.74 | 4.29 | 6.36 |
EC2 | 5.02 | 2.43 | 4.84 |
EC3 | 2.58 | 0.762 | 2.95 |
EC1-Pe0.15 | 4.88 | 2.51 | 5.15 |
EC1-Pe0.34 | 4.92 | 2.74 | 5.58 |
EC1-Pe0.36 | 4.54 | 2.08 | 4.59 |
EC1-Pe0.50 | 5.02 | 2.28 | 4.53 |
EC2-Pe0.50 | 4.28 | 1.57 | 3.68 |
EC3-Pe0.50 | 2.61 | 0.770 | 2.95 |
EC3-Pe0.12 | 2.15 | 0.742 | 3.45 |
EC3-Pe0.29 | 2.16 | 0.666 | 3.09 |
Sample | DSPe | Solvent | Polymer Conc. (wt%) a | λ30 °C (nm) b | λend (nm) c | λshift/10 °C (nm) d | dchange e |
---|---|---|---|---|---|---|---|
1 | 0.12 | MAA | 54 | 480 | 402 | 25 | 0.92 |
2 | 0.12 | MAA | 52 | 533 | 434 | 33 | 0.97 |
3 | 0.12 | MAA | 50 | 663 | 543 | 60 | 0.90 |
4 | 0.29 | MAA | 60 | 455 | 415 | 7 | 0.96 |
5 | 0.29 | MAA | 58 | 520 | 418 | 16 | 0.96 |
6 | 0.29 | MAA | 56 | 705 | 497 | 35 | 0.93 |
7 | 0.50 | MAA | 69 | 426 | 436 | 1 | 1.00 |
8 | 0.50 | MAA | 67 | 524 | 495 | 4 | 1.05 |
9 | 0.50 | MAA | 63 | 639 | 545 | 12 | 0.94 |
10 | 0.12 | AA | 69 | 440 | 428 | – § | – § |
11 | 0.12 | AA | 56 | 526 | 455 | – § | – § |
12 | 0.12 | AA | 53 | 771 | 486 | – § | – § |
13 | 0.29 | AA | 65 | 429 | 415 | – § | – § |
14 | 0.29 | AA | 62 | 500 | 410 | – § | – § |
15 | 0.29 | AA | 60 | 656 | 417 | – § | – § |
16 | 0.50 | AA | 65 | – * | – * | – § | – § |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, K.; Iwata, N.; Furumi, S. Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid. Polymers 2024, 16, 401. https://doi.org/10.3390/polym16030401
Matsumoto K, Iwata N, Furumi S. Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid. Polymers. 2024; 16(3):401. https://doi.org/10.3390/polym16030401
Chicago/Turabian StyleMatsumoto, Kazuma, Naoto Iwata, and Seiichi Furumi. 2024. "Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid" Polymers 16, no. 3: 401. https://doi.org/10.3390/polym16030401
APA StyleMatsumoto, K., Iwata, N., & Furumi, S. (2024). Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid. Polymers, 16(3), 401. https://doi.org/10.3390/polym16030401