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Abstract: In this study, our focus was on developing and investigating rubber recipes that are suitable
for devulcanized ground tire rubber (dGTR). Devulcanized rubber has a powdery or sticky uncured
rubber-like appearance depending on the extent of main-chain degradation that occurs with selective
crosslinking scission. Still, it has a significantly shorter scorch time than a new rubber compound.
Therefore, our primary goal was to slow down the vulcanization process of dGTR and improve its
mechanical properties via recipe development. We formulated several recipes (sulfur-, peroxide-, and
phenolic resin-based) and studied the vulcanization process and the main properties of the revulcanized
rubber sheets. We observed that the vulcanization process could be altered with different vulcanization
methods: using peroxide and vulcanizing resin extended the process significantly. Peroxide vulcanization
also provided enhanced elongation compared to sulfuric systems. With a balance of properties in mind,
we selected a semi-efficient sulfur-based recipe and studied the characteristics of natural rubber/dGTR
mixtures with the help of plasticizer oils. We successfully replaced a notable portion of natural rubber
with dGTR, maintaining its properties without much compromise.

Keywords: ground tire rubber; GTR; rubber compound; vulcanization properties; rubber recycling;
devulcanization; soybean oil; circular economy

1. Introduction

The recycling of elastomers proves to be one of the most critical problems related to
recycling [1]. This difficulty is due to the structure of elastomers: their high elasticity is
provided by crosslinks between their molecule chains. These crosslinks, however, make
them hard to recycle as they hinder reversible melting. It makes them impossible to recycle,
unlike thermoplastic polymers, which are characterized by reversible meltability. The
most pressing issue with elastomer recycling is recycling tire rubber. Tire rubbers are
composite materials consisting of metallic and textile reinforcements and different types
of rubber. First, the elastomeric part must be ground, making ground tire rubber (GTR).
This GTR is easy to handle, and it can be used to toughen different kinds of polymers, for
example, thermoplastics [2–5], thermosets [6,7], and rubbers as well [8–11]. The problem
with this kind of use is that the compatibility of GTR with the desired matrix is usually
poor, hindering high performance.

These solutions, while viable, cannot be considered optimal as they cannot handle
the increasing mass of rubber waste. A more optimal way of recycling is devulcanization
and reclamation, both of which aim to break up the crosslinked structure of rubbers,
thus enabling primary recycling [12]. Devulcanization achieves this goal by selective
crosslink scission; reclamation is accompanied by chain scission [13]. There are several
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ways of devulcanization; the most widespread methods are thermomechanical [14–16],
thermochemical [17,18] and microwave devulcanization [19,20].

The most valid solution is thermomechanical devulcanization because it is continuous,
highly productive, and does not involve harmful chemical agents [15]. Thermomechanical
devulcanization is carried out mainly in a twin-screw extruder, where combining heat
and shear produces enough energy to break crosslinks between chains [21]. Heat and
shear can be altered easily in the extruder as their screws are modular and thus easy
to configure. Thermomechanical devulcanization can be aided with chemical additives
that help break crosslinks. Supercritical carbon dioxide (scCO2) is considered a green
devulcanizing additive and is gaining attention in the rubber industry. The main effect of
scCO2 is that it swells the GTR and amplifies the scission of crosslinks [22,23].

The degree of devulcanization can be rated by soluble content and crosslink density.
Horikx’s analysis establishes a mathematical relationship between the sol fraction and the
decrease in crosslink density, and it can be used to characterize devulcanization [14,24,25].

The main obstacle for devulcanizates is that if they are revulcanized, their properties
are inferior to those of primary rubbers. Researchers have also found that the accelerator
residue remaining in the dGTR after devulcanization significantly reduces the scorch time
of the compounds during revulcanization [26]. This fast revulcanization is also emphasized
by residual carbon black because of the oxygen, nitrogen, and sulfur on its surface [27].
Fast revulcanization might also result from devulcanization itself, as reduced crosslinking
density increases polymeric chain mobility, leading to more effective collisions among
molecules and a more rapid revulcanization reaction [28].

The idea of a circular economy is present in all parts of the rubber industry: beyond
the spread of recycled rubber, bio-based plasticizers are recognized for their excellent
properties and renewable nature [29]. The source of these plasticizers can be either recycled
plastic or rubber via pyrolysis [30,31], or vegetable oil, like palm oil, soybean oil, castor
oil, sunflower oil, and linseed oil. Vegetable oils are the most common types of bio-based
plasticizers; they are characterized by unsaturated fatty acids, and they are used to improve
the flowability of rubber compounds [30,31]. They are also used in other industries, mainly
for synthesizing new polymers [32,33]. Soybean oil (SBO) is highly promising in this area
since it is inexpensive and its properties can be tailored [34,35]. They are mainly used
in silica-based rubber compounds and have been found to improve the compatibility of
the phases through their unsaturated bonds [36]. A similar effect has also been found in
carbon-black-based compounds [37].

Our goal in this study was to investigate different vulcanization recipes on dGTR
to enhance mechanical properties and decelerate the revulcanization. We also aimed to
examine the effect of replacing half of the virgin natural rubber in the recipe with dGTR.
We also studied the possibility of replacing synthetic oils with soybean oil from renewable
sources. The novelty of our work comes from the utilization of renewable soybean oil in
recycled rubber compounds and its comparison with regular mineral oil, which has not
been studied in depth before.

2. Materials and Methods
2.1. Materials

Devulcanized ground tire rubber (dGTR) was kindly provided by Tyromer Inc.
(Waterloo, ON, Canada). Ground tire rubber, made from truck tires with a particle size
under 1 mm, is thermomechanically devulcanized in an extruder with the help of scCO2.
The company also provided the original GTR they used during the process. We used a
general-purpose natural rubber (NR), SMR CV 60 (Akrochem Corp; Akron, OH, USA;
Mooney viscosity (ML, 1 + 4, 100 ◦C): 55–65). We used different additives in the rubber
compounds listed in Table 1. The recipes can be found in Section 2.2.
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Table 1. Types, producers, trademarks, and functions of raw materials used in the rubber compounds.

Material Manufacturer Trademark Function

ZnO
zinc oxide

Werco Metal
(Zlatna, Romania) -

Activator
stearic acid Oleon

(Ertvelde, Belgium) Radiacid 0154

CBS
N-cyclohexyl-2-benzothiazolesulfenamide

Rhein Chemie
(Mannheim, Germany Rhenogran CBS-80 Accelerator

TMTD
tetramethylthiuram disulfide

Lanxess
(Mannheim, Germany) Rhenogran TMTD-70 Accelerator

sulfur Ningbo Actmix Polymer
(Ningbo, Zhejiang, China) ACTMIX S-80 Curing agent

DCP
dicumyl peroxide

Norac
(Azusa, CA, USA) Norox DCP-40BK Curing agent

DIPP
di-(2-tert.-butyl-peroxyisopropyl)-benzene

Nouryon Pergan GmbH
(Bocholt, Germany) Peroxan BIB-40 EV-G Curing agent

BDMA
1,4-butanediol dimethacrylate

Lanxess
(Mannheim, Germany) Rhenofit BDMA/S Coagent

HMMM
hexa(methoxymethyl)melamine ether

Rhein Chemie
(Mannheim, Germany) Cohedur A 250 Curing agent

resorcinol Rhein Chemie
(Mannheim, Germany) Cohedur RS Curing agent

resorcinol Rhein Chemie
(Mannheim, Germany)

Rhenogran
Resorcin-80 Curing agent

silica Lanxess
(Mannheim, Germany) Vulkasil C Catalyst

aromatic oil Klaus Dahleke KG
(Hamburg, Germany) Tudalen 4353 Processing oil

soybean oil Vandamme Hungary Ltd.
(Komárom, Hungary)

Degummed non
GMO Processing oil

N550 carbon black Omsk Carbon Group
(Omsk, Russia) - Filler

2.2. Preparation of dGTR-Based Rubber Compounds

We prepared the rubber compounds using a Brabender Lab-Station internal mixer
(Brabender GmbH & Co. KG (Duisburg, Germany)) equipped with a W 350 E chamber
(free volume 370 cm3). The temperature was set to 50 ◦C, and the batches were mixed at
40 rpm. The exact recipes and their contents can be found in Table 2. We examined three
types of curatives: sulfuric, peroxidic, and phenolic ones. We formulated nine different
recipes combining different accelerators and co-activators. This way, we were able to study
the effects of a conventional (Sulfur3), an efficient (Sulfur5) and a semi-efficient (Sulfur2)
system. We also changed the amount of dGTR in different recipes. Tire rubber contains a
considerable amount of carbon black, fillers (~30%) and other additives (~10%) other than
rubber, which remain in the dGTR after devulcanization. Therefore, we added 167 phr of
dGTR to the recipes to ensure that the rubber part is approximately 100 phr. The amount
of activators stayed the same during the experiment, as we aimed to examine the effect of
the accelerators and crosslinking agents. We selected the quantities used according to our
previous experience and the manufacturers’ recommendations.
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Table 2. The recipes of the rubber compounds.

Amount of Ingredients
(phr)

Sulfur1 Sulfur2 Sulfur3 Sulfur4 Sulfur5 Perox1 Perox2 Resin1 Resin2

dGTR 100 167 167 167 167 167 167 167 167
ZnO 5 5 5 5 5 - - - -

stearic acid 2 2 2 2 2 - - - -
CBS 1.5 1.5 1.5 3 1 - - - -

TMTD - - - - 1 - - - -
sulfur 1.5 1.5 3 - 1 - - - -
DCP - - - - - 2 - - -
DIPP - - - - - - 2 - -

BDMA - - - - - 0.5 0.5 - -
Cohedur A 250 - - - - - - - 4.6 4.8

Cohedur RS - - - - - - - 3.4 -
Rhenogran
Resorcin-80 - - - - - - - - 3

Vulkasil C - - - - - - - 15 15.8

We also prepared compounds with NR and two different processing oils: soybean oil
and aromatic oil (Table 3). We investigated the impact of replacing a substantial portion
(50%) of natural rubber with dGTR within a rubber compound. We formulated these
recipes based on the results of the first round of experiments with the addition of carbon
black and two types of processing oils. The selected sulfuric recipe from the first round
was altered (mainly the amount and rate of accelerators) to facilitate slower curing and a
stronger resulting crosslink network.

Table 3. The recipes of the rubber compounds containing NR and oil.

Amount of Ingredients
(phr)

dGTRmix NR NR/dGTRmix dGTRsoybean NRsoybean NR/dGTRsoybean dGTRaromatic NRaromatic NR/dGTRaromatic

dGTR 167 - - 167 - - 167 - -
NR CV60 - 100 100 - 100 100 - 100 100
dGTRmix - - 100 - - - - - -

dGTRsoybean - - - - - 100 - - -
dGTRaromatic - - - - - - - - 100

Soybean
oil - - - 10 10 10 - - -

Aromatic
oil - - - - - - 10 10 10

ZnO 5 5 5 5 5 5 5 5 5
Stearic

acid 2 2 2 2 2 2 2 2 2
Carbon
black - 50 50 - 50 50 - 50 50
CBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

TMTD 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Sulfur 1 1 1 1 1 1 1 1 1

Based on our previous research [19], we used the so-called two-step mixing. This
means that in the first step, we added vulcanizing agents to the dGTR, and in the second
step, we added the premixes (dGTRmix, dGTRsoybean, and dGTRaromatic) to the NR-based
rubber compounds.

We prepared 2 mm thick rubber sheets of the compounds with a Teach-Line Platen
Press 200E hot press (Dr. Collin GmbH (München, Germany)) at 180 ◦C and 200 bar. The
pressing time was determined according to the vulcanization times (t90) of each compound.
We used standardized dyes to punch the specimens from these sheets.

2.3. Characterization Methods

We used thermogravimetric analysis (TGA) to characterize the composition and ther-
mal behavior of GTR and dGTR. We carried out the experiment on 10 mg samples using
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a TGA Q500 machine (TA Instruments Ltd., New Castle, DE, USA). The analysis was
performed from room temperature to 800 ◦C with a heating rate of 10 ◦C/min in a nitrogen
atmosphere, with a gas flow of 60 mL/min.

We characterized the dGTR using Horikx’s analysis [14]. Horikx’s analysis is a method
that establishes a relationship between the soluble content and the decrease in crosslink density
after devulcanization. The soluble fraction of the dGTR samples was determined by Soxhlet
extraction in toluene, and the decrease in crosslink density was determined with swelling.

We studied the curing properties of the rubber compounds with a MonTech D-RPA 3000
(MonTech (Buchen, Germany)) rubber process analyzer. We characterized the vulcanization
at 180 ◦C (1.67 Hz and 1◦ amplitude) for 30 min and calculated the main parameters of the
vulcanization process. Scorch time (t10) was calculated as the time to reach 10% cure and
vulcanization time (t90) was calculated as the time to reach 90% cure. The cure rate index (CRI)
was calculated with Equation (1).

CRI =
100

t90 − t10
(1)

We also determined the difference between the maximum (S′max) and minimum (S′min) of
the torque curve, which can be used to infer the change in the crosslink density of the sample.

The crosslink density of the samples was determined using the equilibrium swelling
test method. The samples were soaked in toluene for 72 h at room temperature. After that,
the samples were removed from the solvent, dried with paper towels, and the swollen
mass was measured. The samples were then dried at 80 ◦C for 12 h and their mass was
measured again.

We calculated the crosslink density using the Flory–Rehner Equation (2).

νe =
−[ln(1 − Vr ] + Vr + χ·V2

r

]
[Vs·

(
V

1
3
r − Vr

2

)
]

(2)

where νe is crosslink density (mol/cm3), Vs is the molar volume of the solvent (for toluene:
106.27 cm3/mol), χ is the Flory–Huggins interaction parameter (0.391), and Vr is the volume
fraction of rubber in the swollen network. Vr can be calculated using the Ellis–Welding
Equation (3).

Vr =

mr
ρr

mr
ρr

+ ms
ρs

(3)

where mr is the weight of the dry sample (g), ms is the weight of the solvent absorbed by
the sample (g), ρr is the density of the rubber sample (g/cm3), and ρs is the density of the
solvent (for toluene: 0.867 g/cm3) [38,39].

We also determined the swelling index (%) of the samples using Equation (4).

Swelling index =
msr − mr

mr
(4)

where msr is the weight of the swollen sample (g).
The density of the samples was determined according to the ASTM D 297-93 standard [40]

(hydrostatic method) with a Sartorius Quintix 125D semi-micro balance with a resolution
of 0.01 mg. The test medium was distilled water with a temperature of 20.8 ◦C and a
corresponding density of 0.998 g/cm3.

The viscoelastic properties of the rubber compounds were analyzed using a MonTech
D-RPA 3000 (MonTech (Buchen, Germany)) rubber process analyzer by oscillating shear.
A frequency sweep was performed on the specimens at 30 ◦C between 0.1 and 100 Hz (at
least 5 measurements at each level). The amplitude was chosen previously according to an
amplitude sweep at 10 Hz at 30 ◦C from 0.01◦ to 1.5◦. We determined the border of linear
viscoelasticity based on 30 measuring points at every amplitude and chose an adequate
amplitude for the frequency sweep.
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We performed tensile (according to ISO 37 [41], Type 2 dumbbell specimens) and tear
tests (according to ISO 34 [42], Method B, angle test pieces) on standardized specimens
to measure the basic mechanical properties of the rubber compounds. A Zwick Z005
(Zwick GmbH (Ulm, Germany)) universal testing machine equipped with a 5 kN load cell
was used with a crosshead speed of 500 mm/min for both tests.

We measured the hardness of the samples according to the ISO 48-4 [43] Shore A
method with a Zwick H04.3150.000 type hardness tester (Zwick GmbH, Ulm, Germany).
Indentation time was 3 s, and the load was 8.05 N.

3. Results
3.1. Characterization of dGTR

The TGA curves of GTR and dGTR (Figure 1) show that the thermal properties did
not change considerably during devulcanization. However, it is apparent from the DTG
curves that some changes occurred in the molecular structure, as the peaks differ slightly
from the curve representing GTR. This change can be attributed to changes in crosslink
density and chain scission.
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Figure 1. TGA and DTG curves of GTR and dGTR.

We determined the composition of the GTR using its TGA curve and the decomposition
temperature of the component. We assumed that the GTR contains roughly ~5% additives,
~45% natural rubber, ~17% synthetic rubber, and ~33% carbon black and other inorganic
fillers. This composition agrees with a typical recipe for truck tire tread rubbers.

We analyzed the dGTR using Horikx’s analysis and found that the decrease in crosslink
density was moderate (~60%). However, the sol fraction was relatively high (~30%). This
proves the main effect was rather random chain scission than selective crosslink scission.
Random chain scission reduced molecular weight and, in turn, provided the dGTR with a
more malleable nature.

3.2. The Effect of Different Vulcanization Systems
3.2.1. Cure Characteristics

We characterized the vulcanization of the rubber compounds prepared with different
recipes (Figure 2, Table 4). The compound containing 100 phr dGTR (Sulfur1) had a higher
maximum torque and a faster vulcanization time than the ones with 167 phr dGTR. This is
due to the increase in accelerators compared to other recipes. Sulfur1 contained less rubber
than other recipes, resulting in higher crosslink density, which yielded higher torques and
faster vulcanization.
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Table 4. Vulcanization characteristics of the rubber compounds.

Compound S′
min

(dNm)
S′

max
(dNm)

S′
max − S′

min
(dNm)

t10
(min)

t90
(min)

CRI
(min−1)

Neat dGTR 5.12 7.03 1.91 0.61 18.83 5.49
Sulfur1 1.87 21.34 19.47 0.39 0.95 178.57
Sulfur2 2.26 10.42 8.16 0.43 1.06 158.73
Sulfur3 2.35 17.81 15.46 0.41 1.01 166.67
Sulfur4 2.08 4.95 2.87 0.57 16.62 6.23
Sulfur5 2.17 13.90 11.73 0.39 0.90 196.08
Perox1 2.41 9.85 7.44 0.45 7.32 14.56
Perox2 2.44 11.34 8.90 0.56 8.58 12.47
Resin1 3.48 10.07 6.59 0.35 15.26 6.71
Resin2 3.19 11.64 8.45 0.41 12.06 8.58

The different compositions did not produce a significant change in vulcanization time (t90)
in the case of the sulfuric systems; nearly all compounds had a t90 around 1 min. Also, the
recipe without primary vulcanization agents (not counting the sulfur in CBS) (Sulfur 4)
showed signs of vulcanization. One explanation might be that the remaining sulfur present
in the dGTR acts as a residual vulcanizing agent. Another possible explanation could be
recombination, which supposedly occurs during devulcanization when the sulfur bridges
break up. When this breakup happens, the resulting half-bridges can react with each
other at the elevated temperature of devulcanization. When this reaction occurs between
half-bridges, they can recombine, forming new bridges. These are fewer in number, but they
make the devulcanization incomplete. The unbound half-bridges can account for the rapid
vulcanization during revulcanization. This effect can be observed on the vulcanization
curves; the neat dGTR also shows signs of vulcanization without any vulcanizing agent
or accelerators.

In the case of peroxidic curing, we slowed down the reaction considerably while
producing higher torques compared to the recipe with no crosslinking agents. This is
evident from the significantly lower CRI values. This is in connection with the crosslinking
mechanism of peroxides: they produce carbon–carbon links between chains by decompos-
ing at high temperatures. These links are not in connection with sulfur. Thus, the residue
in dGTR does not interfere with the crosslinking process. Vulcanization curves (Figure 2)
show that peroxide-cured compounds are less susceptible to reversion than the sulfur-cured
compounds. This effect is due to the stronger and more stable nature of carbon–carbon
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links compared to sulfur bridges. We also noted that using DIPP peroxide allows for higher
torques and slower vulcanization times than DCP.

We studied the vulcanization process using resorcinol-based vulcanization resins.
These materials are mainly used as adhesives that promote crosslinking, thus improving
adhesion to fabric and steel cord. This type of vulcanization yielded the slowest vulcaniza-
tion times without reversion in the corresponding curves. However, the measured torques
were relatively low compared to other compounds, indicating a weaker crosslink network.
This is confirmed by the fact that the sheets remained sticky after vulcanization and did
not retain their shape; they were deformed.

3.2.2. Crosslink Density

We determined the densities (ρr) of the samples to calculate their crosslink density.
The results (Table 5) show that the different vulcanization systems had no significant effect
on the density of the rubber samples.

Table 5. The density and crosslink density of the revulcanized samples.

Compound Density, ρr
(g/cm3)

Swelling Index
(%)

Crosslink Density, νe
(mol/cm3·10−4)

Neat dGTR 1.163 ± 0.003 346.3 ± 6.9 1.09 ± 0.04
Sulfur1 1.166 ± 0.003 163.6 ± 1.7 4.30 ± 0.08
Sulfur2 1.171 ± 0.002 194.8 ± 8.1 3.15 ± 0.23
Sulfur3 1.158 ± 0.017 171.8 ± 9.7 4.01 ± 0.29
Sulfur4 1.148 ± 0.010 299.8 ± 2.7 1.47 ± 0.02
Sulfur5 1.162 ± 0.007 197.5 ± 2.5 3.11 ± 0.07
Perox1 1.126 ± 0.006 257.6 ± 0.7 2.01 ± 0.01
Perox2 1.154 ± 0.010 240.6 ± 5.0 2.21 ± 0.08
Resin1 1.160 ± 0.008 189.8 ± 2.9 3.34 ± 0.09
Resin2 1.158 ± 0.004 180.2 ± 3.9 3.67 ± 0.14

The crosslink density values (Table 5) of the samples are in good agreement with those
observed during the investigation of the vulcanization characteristics (Figure 3) [44]. As
expected, neat dGTR had the lowest crosslink density, while a slight increase was observed
with the activator and accelerator (Sulfur4). Increasing the amount of sulfur increased the
amount of crosslinks in the samples. Peroxide-based compounds (Perox1 and Perox2) had
a lower crosslink density. For the resin-based compounds (Resin1 and Resin2), a similar
crosslink density was measured as for the sulfur-based ones. This contradicts our previous
experience. After drying the swollen specimens, we found that these samples became
stiffer than the original material or even the other compounds. This is probably due to
some chemical processes caused by toluene in the samples. Further measurements are
needed to prove this.Polymers 2024, 16, x FOR PEER REVIEW 9 of 20 

 

 

 
Figure 3. Correlation of crosslink density and S’max − S’min. 

3.2.3. Dynamic Properties 
We performed DMTA analysis to determine the viscoelastic properties of the dGTR-

based compounds (Figure 4). We found that their dynamic properties are closely con-
nected with their crosslink density. This can be observed best from the damping proper-
ties, as specimens with higher crosslink density (e.g., Sulfur1, Sulfur3, and Sulfur5) exhibit 
slightly worse damping than specimens with lower crosslink density. Increasing the cross-
link density makes the material stiffer, resulting in a reduced damping effect. As a result, 
neat dGTR and Sulfur4 exhibit the best damping since their crosslink density is the lowest 
of the specimens. 

As for the peroxidic systems, there are no significant differences in damping; the 
compound with the higher crosslink density (Perox2) shows smaller damping. The resin 
systems are close to each other, resulting from their almost identical crosslink density. 

  

Figure 3. Correlation of crosslink density and S′max − S′min.



Polymers 2024, 16, 455 9 of 19

3.2.3. Dynamic Properties

We performed DMTA analysis to determine the viscoelastic properties of the
dGTR-based compounds (Figure 4). We found that their dynamic properties are closely
connected with their crosslink density. This can be observed best from the damping prop-
erties, as specimens with higher crosslink density (e.g., Sulfur1, Sulfur3, and Sulfur5)
exhibit slightly worse damping than specimens with lower crosslink density. Increasing
the crosslink density makes the material stiffer, resulting in a reduced damping effect. As a
result, neat dGTR and Sulfur4 exhibit the best damping since their crosslink density is the
lowest of the specimens.
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As for the peroxidic systems, there are no significant differences in damping; the
compound with the higher crosslink density (Perox2) shows smaller damping. The resin
systems are close to each other, resulting from their almost identical crosslink density.

3.2.4. Hardness

The hardness of the rubber compounds (Table 6) shows that increasing the dGTR
content softens the material (100 to 167 phr dGTR). A conventional system (Sulfur3) resulted
in an even lower hardness than the semi-efficient (Sulfur2) system due to the resulting
elastic polysulfide crosslinks. Without incorporating any sulfur, the compound without
sulfur (Sulfur4) was the softest. The efficient system (Sulfur5) was slightly harder than
the conventional one due to the more stable and stiffer di- and monosulfide crosslinks.
Due to the carbon–carbon crosslinks, the peroxide-cured systems (Perox1 and Perox2) had
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decreased hardness compared to sulfuric recipes. The phenolic resin-cured systems had
similar hardness as sulfuric systems. However, they were far stickier compared to other
compounds and prone to tear during vulcanization, so we decided not to investigate the
phenolic resin-cured system further.

Table 6. Shore A hardness of the revulcanized samples.

Compound Hardness (ShA◦)

Sulfur1 59.9 ± 0.5
Sulfur2 52.0 ± 1.6
Sulfur3 49.3 ± 0.8
Sulfur4 34.4 ± 0.7
Sulfur5 51.2 ± 1.8
Perox1 38.7 ± 0.7
Perox2 42.5 ± 2.1
Resin1 53.8 ± 0.8
Resin2 52.9 ± 2.7

3.2.5. Tensile Tests

The tensile test results (Figure 5, Table 7) showed that the recipes yielded quite different
results, especially strain at break, which was mostly influenced. A higher amount of dGTR
did not have a significant impact on tensile strength; the results are overlapping. However,
we increased strain at break significantly due to the increased specific rubber content and
decreased filler content, which made the rubber compound more elastic because of the
lower crosslink density. We also found that increased sulfur content enhanced tensile
strength and moduli while reducing strain at break compared to the semi-efficient system.
If there was no sulfur in the recipe, the resulting vulcanizate was rather soft; it had low
tensile strength and the relatively high strain at break. It was caused by the low crosslink
density. Combining different accelerators does not produce a stiffer material; adding TMTD
to the recipe did not result in better mechanical properties. This may be because the reduced
amount of sulfur was not able to create a strong, elastic crosslink network.
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Table 7. Results of the tensile and tear tests.

Compound Tensile Strength
(MPa)

Strain at Break
(%)

M100
(MPa)

M200
(MPa)

Tear Strength
(N/mm)

Sulfur1 8.1 ± 0.5 199.2 ± 4.6 2.58 ± 1.72 - 29.3 ± 0.8
Sulfur2 8.6 ± 0.7 282.6 ± 21.6 2.43 ± 0.18 5.77 ± 0.52 37.2 ± 1.5
Sulfur3 9.0 ± 0.9 264.9 ± 34.9 2.73 ± 0.23 6.57 ± 0.54 20.7 ± 4.1
Sulfur4 3.2 ± 0.2 285.7 ± 7.9 1.18 ± 0.01 2.31 ± 0.01 6.5 ± 0.5
Sulfur5 8.0 ± 0.4 258.3 ± 11.7 2.50 ± 0.14 5.60 ± 0.33 12.4 ± 2.9
Perox1 6.1 ± 0.2 314.8 ± 4.4 1.53 ± 0.05 3.50 ± 0.13 5.9 ± 0.4
Perox2 7.8 ± 0.2 306.5 ± 31.8 1.91 ± 0.24 4.62 ± 0.64 5.6 ± 0.9

The peroxidic vulcanization systems provided the rubber compounds with the highest
strain at break. This is due to the stronger carbon–carbon crosslinks, which can withstand
higher elongation without breaking. However, the expected rise in tensile strength com-
pared to sulfuric recipes did not occur. This is in connection with the recipes; more peroxide
might have raised tensile strength. The difference between DCP and DIPP was evident:
DIPP produced a stiffer material with higher strength and lower strain at break. This may
be in connection with thermal stability: DIPP is characterized by a higher content of active
oxygen, which makes it more reactive than DCP. That resulted in a higher crosslink density
with stiffer behavior.

3.2.6. Tear Test

The tear tests (Figure 6, Table 7) are used to determine the resistance against crack
propagation. We found that the increase in dGTR content from 100 (Sulfur1) to 167 phr
(Sulfur2) in the recipe improved tear strength and strain significantly. This can be due
to the change in the ratio of residual accelerators and the vulcanization system, which
yielded a lower crosslink density. Increasing sulfur does not provide higher tear strength
compared to the semi-efficient system. This may be in connection with the formation of
polysulfide crosslinks, which are prone to high reversion at high temperatures (Figure 2).
These crosslinks are more elastic than mono- or disulfide crosslinks, which is also apparent
in this case. The absence of sulfur (Sulfur4) resulted in a rather soft material with low
resistance against cracking. The efficient system (Sulfur5) is characterized by lower tear
strength than other sulfuric systems. The resulting monosulfidic bonds also make for
low strain.
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The peroxidic recipes behaved similarly to each other, and they both fell short of
sulfuric systems. This behavior may be in connection with the vulcanizing mechanism of
peroxides: they break up chains by decomposition, and this breakup makes the material
vulnerable to crack propagation.

3.3. Recipes with Additional Uncured Virgin NR and Oils
3.3.1. Cure Characteristics

We formulated the second round of recipes with the modification of the Sulfur5
recipe from the first series. We increased the ratio of sulfur in the recipe to achieve better
mechanical properties, mainly elongation. The cure characteristics (Figure 7, Table 8) of the
compounds show that the dGTR-based compound was much faster than the NR without
dGTR because of the residual accelerators. We also found that the compound of NR and
dGTR resulted in a slower curing rate than dGTR, with usually higher torques. It can also
be seen that the addition of NR increased sensitivity against heat, as a higher reversion is
detectable on the curves.
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Table 8. Vulcanization times and torques of the rubber compounds with additional NR and oil.

Sample S′
min

(dNm)
S′

max
(dNm)

S′
max − S′

min
(dNm)

t10
(min)

t90
(min)

CRI
(min−1)

dGTRmix 1.43 13.37 11.94 0.35 0.65 333.33
dGTRsoybean 1.02 10.18 9.16 0.5 0.9 250.00
dGTRaromatic 1.36 12.14 10.78 0.54 0.96 238.10

NR 0.88 22.66 21.78 0.62 1.12 200.00
NRsoybean 0.52 15.36 14.84 0.64 1.08 227.27
NRaromatic 0.49 15.43 14.94 0.58 1.01 232.56

NR/dGTRmix 1.08 19.24 18.16 0.54 0.98 227.27
NR/dGTRsoybean 0.74 13.41 12.67 0.59 1.01 238.10
NR/dGTRaromatic 0.67 14.33 13.66 0.59 1.02 232.56

We found that the incorporation of oils into the dGTR compounds successfully decel-
erated the process in case of dGTR-based compounds and, of course, reduced the torques.
Soybean oil (SBO) is known to take part in the vulcanization process because of its unsatu-
rated nature. It means that it can take up the remaining accelerator and sulfur; this way,
it can slow the process down. Aromatic oil, on the other hand, is a highly reactive and
nonpolar oil that can also bind free radicals and residual accelerators, hindering vulcaniza-
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tion [45]. In the case of NR-based compounds, the incorporation of oils reduced sensitivity
against heat; reversion was decreased significantly.

3.3.2. Crosslink Density

We determined the densities (ρr) of the samples to calculate their crosslink density.
The results (Table 9) show that NR-based compounds have the lowest density. Compounds
containing dGTR have a slightly higher density due to the styrene–butadiene rubber content
of the ground tire rubber.

Table 9. The density and crosslink density of the samples with additional NR and oil.

Compound Density, ρr
(g/cm3)

Swelling Index
(%)

Crosslink Density, νe
(mol/cm3·10−4)

dGTRmix 1.149 ± 0.002 210.0 ± 3.3 2.83 ± 0.08
dGTRsoybean 1.142 ± 0.003 245.1 ± 2.5 2.16 ± 0.04
dGTRaromatic 1.142 ± 0.006 227.1 ± 3.7 2.48 ± 0.07

NR 1.127 ± 0.008 195.3 ± 1.5 3.34 ± 0.05
NRsoybean 1.118 ± 0.008 232.0 ± 2.6 2.48 ± 0.05
NRaromatic 1.118 ± 0.008 221.2 ± 2.6 2.71 ± 0.06

NR/dGTRmix 1.120 ± 0.004 208.4 ± 0.7 3.01 ± 0.02
NR/dGTRsoybean 1.136 ± 0.002 237.8 ± 4.7 2.31 ± 0.08
NR/dGTRaromatic 1.125 ± 0.004 229.1 ± 1.1 2.51 ± 0.02

The measured crosslink density values are consistent with the S′max − S′min values
(Figure 8). The oils in the compounds reduced their crosslink density. This reducing
effect was more significant for soybean oil. This is probably because soybean oil con-
tains unsaturated bonds that can bind sulfur, so less of it can be involved in crosslinking
the rubber.
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3.3.3. Dynamic Properties

We also studied the viscoelastic properties of the NR-based compounds (Figure 9).
We established a similar connection between crosslink density and damping as in the first
round: higher crosslink density produces a stiffer material characterized by lower damping.
This means that NR has the worst damping, and dGTR is characterized by relatively high
damping because of its lower crosslink density. The NR/dGTR mix is between the two
components in this regard.
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The effect of processing oil is not apparent on the damping of the dGTR compounds,
but the storage and loss moduli were reduced significantly. In the case of NR compounds,
damping was improved due to the incorporation of processing oils; they also altered
crosslink density significantly. The NR/dGTR mixes are similar to the dGTR compounds:
damping did not change significantly, unlike the storage and loss moduli.

3.3.4. Hardness

The hardness of the rubber sheets (Table 10) shows that both types of oils softened
the material significantly. We observed a more pronounced plasticizing effect in the case
of SBO. This can be associated with the lower viscosity of SBO compared to aromatic oil;
that way, it was able to diffuse into the molecules, allowing for a softer behavior. Another
explanation might be that SBO, as an unsaturated oil, is prone to use up sulfur, and this
way, we achieved lower crosslink density than aromatic oil.

Table 10. The hardness of the rubber compounds with additional NR and oil.

Compound Hardness (ShA◦)

dGTRmix 53.5 ± 0.8
dGTRsoybean 43.7 ± 0.4
dGTRaromatic 48.0 ± 1.0

NR 59.5 ± 0.4
NRsoybean 47.2 ± 1.1
NRaromatic 51.3 ± 0.9

NR/dGTRmix 54.4 ± 0.6
NR/dGTRsoybean 44.6 ± 1.0
NR/dGTRaromatic 48.7 ± 0.5

It can also be seen that dGTR-based compounds are much softer compared to
NR-based compounds. This is caused by the degradation of molecules, which is inevitable
during devulcanization.



Polymers 2024, 16, 455 15 of 19

3.3.5. Tensile Test

The results of the tensile tests (Figure 10, Table 11) show that modifying the Sulfur5
recipe from the first series of experiments resulted in higher tensile strength and elongation
at break. This indicates that the modified ratio of accelerators and vulcanizing agents
produced a more stable crosslink network. We also observed that while SBO improved
strain, the aromatic oil did not have such an effect. This may be because soybean oil
is a highly unsaturated vegetable oil, making it prone to covulcanization with rubber.
Thus, it can behave as a coupling agent between the rubber molecules and carbon black.
Additionally, SBO is highly unsaturated, which makes it prone to vulcanization. This can
result in covulcanization, where SBO reacts with sulfur and forms a stronger crosslink
network [46]. Additionally, the polar nature of SBO may have aided in the better dispersion
of polar carbon black in the nonpolar rubber matrix, resulting in fewer aggregates acting as
starting points for cracks.
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Table 11. Results of the tensile and tear tests of the rubber compounds with additional NR and oil.

Sample Tensile Strength
(MPa)

Strain at Break
(%)

M100
(MPa)

M200
(MPa)

Tear Strength
(N/mm)

dGTRmix 9.27 ± 0.31 320.9 ± 17.1 2.05 ± 0.07 5.05 ± 0.16 24.9 ± 5.0
dGTRsoybean 6.56 ± 0.32 340.8 ± 13.9 1.35 ± 0.02 3.29 ± 0.03 8.2 ± 0.4
dGTRaromatic 7.34 ± 0.55 306.6 ± 17.5 1.68 ± 0.04 4.22 ± 0.10 17.4 ± 3.2

NR 21.27 ± 1.00 454.3 ± 20.3 2.82 ± 0.02 7.60 ± 0.22 57.7 ± 2.4
NRsoybean 19.48 ± 1.02 570.3 ± 22.1 1.93 ± 0.11 5.05 ± 0.28 57.0 ± 5.1
NRaromatic 20.80 ± 0.90 550.9 ± 18.6 2.12 ± 0.17 5.63 ± 0.39 57.0 ± 6.4

NR/dGTRmix 15.00 ± 0.17 371.6 ± 5.9 2.47 ± 0.04 6.55 ± 0.11 48.7 ± 7.6
NR/dGTRsoybean 13.22 ± 0.69 461.1 ± 20.4 1.59 ± 0.05 4.22 ± 0.12 43.4 ± 3.1
NR/dGTRaromatic 15.52 ± 0.40 463.7 ± 7.2 1.91 ± 0.04 5.08 ± 0.09 40.6 ± 6.3

Similar behavior was observed in the case of NR compounds; unsaturated soybean oil
seemed to promote better adhesion between the molecules and carbon black.

The NR/dGTR compounds were characterized as intermediate between neat NR and
dGTR compounds. The adhesion between the rubbers was adequate, as we enhanced both
strain and tensile strength compared to neat dGTR.
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3.3.6. Tear Test

The tear tests (Figure 11, Table 11) indicate that the oils prompted a different kind of
response in dGTR compared to tensile tests: both tear force and strain decreased signif-
icantly. This may be caused by the fact that shorter molecular chains in dGTR are more
susceptible to crack propagation compared to neat NR, and this susceptibility was only
enhanced by the incorporated oil.
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In the case of neat NR and NR/dGTR compounds, additional oil enhanced the strain
but did not significantly decrease the tear force, thanks to the strong crosslink network
formed by the active softeners.

We concluded that substituting NR with dGTR did not hinder tear strength sig-
nificantly because of the good adhesion between the dGTR and NR phases. When the
dGTR phase breaks, the NR phase can still hold the specimen together due to its large
molecular weight.

4. Conclusions

We prepared several recipes based on commercial devulcanized ground tire rubber
and investigated their main features. The recipes we formulated contained a conventional,
an efficient, and a semi-efficient sulfuric system; two types of peroxides and two types
of phenol resins were used. The conventional recipe resulted in more polysulfide links,
which made the material elastic, and the semi-efficient and efficient systems created di- and
monosulfide links, which improved tensile properties.

The peroxide curing resulted in lower vulcanization because they did not react strongly
to residual sulfur in the dGTR. These systems also enhanced strain at break and reduced
reversion compared to sulfuric systems, but they also had lower tensile strength. We also
experienced similar results with the resin systems.

We studied the amount of dGTR in recipes and found that when filler residues are
taken into account, the resulting rubber becomes more elastic and softer. This is related
to higher specific rubber content and crosslink density. We also established a correlation
between crosslink density and damping; we found that adding dGTR to an NR recipe
significantly improves its damping ability.

We formulated rubber blends by replacing 50% of natural rubber with dGTR, observing
a minimal worsening of vulcanization, tensile, and tear properties. Among the processing
oils studied, soybean oil showed superior performance. With it, we produced high-quality,
greener vulcanizates using recycled GTR and processing oil from renewable sources. We



Polymers 2024, 16, 455 17 of 19

believe our work is an important step towards inserting rubber waste into the circular
economy alongside soybean oil and creating more sustainable rubber compounds that can
be used for high-quality applications (for example, tires).
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