Influence of Aging on the Physical Properties of Knitted Polymeric Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. Aging Protocol
2.3. Methods of Measurement
2.3.1. Microscopic Analysis
2.3.2. Thickness and Mass per Unit Area Testing
2.3.3. Horizontal and Vertical Density
2.3.4. Surface Roughness Testing
2.3.5. Tensile Testing
2.3.6. Water Vapor Permeability Test
2.3.7. Liquid Dispersion and Drying of Material
- -
- Wetting time, i.e., the time required for the absorption of the applied solution,
- -
- Wetting surface area, i.e., the surface area of the specimen with absorbed solution. The surface area was determined based on the maximum length of the wetted area in the directions of the x- and y-axes and according to the following formula:
- -
- Drying time, i.e., the time required for a solution to be absorbed. The time at which the solution was absorbed was defined as the time at which there were no differences between the temperatures of the wetted and non-wetted zones (what was observed trough the thermal image). The number of measurements performed for each polymeric material was 5.
2.3.8. The FTIR Analysis
3. Results and Discussion
3.1. Results of Microscopy Analysis
3.2. Results of Thickness and Mass per Unit Area Testing
3.3. Results of Material Density Testing
3.4. Results of Surface Roughness Testing
3.5. Results of Tensile Testing
3.6. Results of the Water Vapor Permeability Test
3.7. Results of the Liquid Dispersion and Drying of Material
3.8. Results of the FTIR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rujnić Havstad, M.; Tucman, I.; Katančić, Z.; Pilipović, A. Influence of Ageing on Optical, Mechanical, and Thermal Properties of Agricultural Films. Polymers 2023, 15, 3638. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Bai, Y.; Kong, F.; Wang, Z.; Fang, C. An Interval Prediction of Chloroprene Rubber Crack Propagation Characteristics Based on Thermal Accelerated Aging. Polymers 2023, 15, 2445. [Google Scholar] [CrossRef]
- Długa, A.; Bajer, D.; Kaczmarek, H. Photochemical and Thermal Stability of Bionanocellulose/Poly(Vinyl Alcohol) Blends. Polymers 2022, 14, 4364. [Google Scholar] [CrossRef]
- Ishida, T.; Kitagaki, R. Mathematical Modeling of Outdoor Natural Weathering of Polycarbonate: Regional Characteristics of Degradation Behaviors. Polymers 2021, 13, 820. [Google Scholar] [CrossRef] [PubMed]
- Csányi, G.M.; Bal, S.; Tamus, Z.Á. Dielectric Measurement Based Deducted Quantities to Track Repetitive, Short-Term Thermal Aging of Polyvinyl Chloride (PVC) Cable Insulation. Polymers 2020, 12, 2809. [Google Scholar] [CrossRef]
- Rudawska, A.; Frigione, M. Aging Effects of Aqueous Environment on Mechanical Properties of Calcium Carbonate-Modified Epoxy Resin. Polymers 2020, 12, 2541. [Google Scholar] [CrossRef] [PubMed]
- Babo, S.; Ferreira, J.L.; Ramos, A.M.; Micheluz, A.; Pamplona, M.; Casimiro, M.H.; Ferreira, L.M.; Melo, M.J. Characterization and Long-Term Stability of Historical PMMA: Impact of Additives and Acrylic Sheet Industrial Production Processes. Polymers 2020, 12, 2198. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Perra, E.; Zendri, E. Accelerated Ageing Procedures to Assess the Stability of an Unconventional Acrylic-Wax Polymeric Emulsion for Contemporary Art. Polymers 2020, 12, 1925. [Google Scholar] [CrossRef]
- Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020, 12, 1874. [Google Scholar] [CrossRef]
- Kashi, S.; De Souza, M.; Al-Assafi, S.; Varley, R. Understanding the Effects of In-Service Temperature and Functional Fluid on the Ageing of Silicone Rubber. Polymers 2019, 11, 388. [Google Scholar] [CrossRef]
- AATCC 169, 2020 ed.; 2020—Test Method for Weather Resistance of Textiles: Xenon Lamp Exposure. AATCC: Research Triangle Park, NC, USA, 2020.
- ASTM G151-10; Standard Practice for Exposing Nonmetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM D5427-98(Practice); Standard Practice for Accelerated Aging of Inflatable Restraint Fabrics. ASTM: West Conshohocken, PA, USA, 1998.
- ISO 877-1:2009; Plastics—Methods of Exposure to Solar Radiation, Part 1: General Guidance. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 877-2:2009; Plastics—Methods of Exposure to Solar Radiation, Part 2: Direct Weathering and Exposure Behind window glass. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 877-3:2018; Plastics—Methods of Exposure to Solar Radiation—Part 3: Intensified Weathering Using Concentrated Solar Radiation. International Organization for Standardization: Geneva, Switzerland, 2018.
- Wypych, G. Handbook of Material Weathering, 5th ed.; ChemTec Publishing: Toronto, ON, Canada, 2013; ISBN 978-1-895198-62-1. [Google Scholar]
- Nguyen-Tri, P.; Prud’Homme, R.E. Nanoscale analysis of the photodegradation of polyester fibers by AFM-IR. J. Photochem. Photobiol. A Chem. 2019, 371, 196–204. [Google Scholar] [CrossRef]
- Andersen, E.; Mikkelsen, R.; Hinge, M. Real-time aging of polyesters with varying diols. Mater. Chem. Phys. 2021, 261, 124240. [Google Scholar] [CrossRef]
- Arhant, M.; Le Gall, M.; Le Gac, P.Y.; Davies, P.D. Impact of hydrolytic degradation on mechanical properties of PET—Towards an understanding of microplastics formation. Polym. Degrad. Stab. 2019, 161, 175–182. [Google Scholar] [CrossRef]
- Cionek, C.A.; Nunes, C.; Freitas, A.; Homem, N.; Muniz, E.; Amorim, T. Degradation study of polyester fiber in swimming pool water. Text. Res. J. 2021, 91, 51–61. [Google Scholar] [CrossRef]
- Sørensen, L.; Groven, A.S.; Hovsbakken, I.-A.; Del Puerto, O.; Krause, D.F.; Sarno, A.; Booth, A.M. UV degradation of natural and synthetic microfibers causes fragmentation and release of polymer degradation products and chemical additives. Sci. Total Environ. 2021, 755, 143170. [Google Scholar] [CrossRef] [PubMed]
- Salopek Čubrić, I.; Skenderi, Z. Effect of finishing treatments on heat resistance of one- and two- layered fabrics. Fiber Polym. 2014, 15, 1635–1640. [Google Scholar] [CrossRef]
- Tiffin, L.; Hazlehurst, A.; Sumner, M.; Taylor, M. Reliable quantification of microplastic release from the domestic laundry of textile fabrics. J. Text. Inst. 2022, 113, 558–566. [Google Scholar] [CrossRef]
- Özkan, İ.; Gündoğdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. J. Text. Inst. 2021, 112, 264–272. [Google Scholar] [CrossRef]
- Pušić, T.; Vojnović, B.; Flinčec Grgac, S.; Čurlin, M.; Malinar, R. Particle Shedding from Cotton and Cotton-Polyester Fabrics in the Dry State and in Washes. Polymers 2023, 15, 3201. [Google Scholar] [CrossRef] [PubMed]
- Hazlehurst, A.; Tiffin, L.; Sumner, M.; Taylor, M. Quantification of microfibre release from textiles during domestic laundering. Environ. Sci. Pollut. Res. 2023, 30, 43932–43949. [Google Scholar] [CrossRef] [PubMed]
- Salopek Čubrić, I.; Čubrić, G.; Majumdar, A. Sensory attributes of knitted fabrics intended for next-to-skin clothing. J. Text. Inst. 2023, 114, 757. [Google Scholar] [CrossRef]
- Wei, H.T.; Chan, W.S.; Chow, D.H. Systematic review of selecting comfortable sportswear: Predicting wearing comfort based on physiological responses and materials properties. Text. Res. J. 2023, 93, 3926–3941. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Xiang, C.; Song, G. Assessment of thermal comfort of nanosilver-treated functional sportswear fabrics using a dynamic thermal model with human/clothing/environmental factors. Text. Res. J. 2018, 88, 413–425. [Google Scholar] [CrossRef]
- Souza, J.M.; Sampaio, S.; Silva, W.C.; de Lima, S.G.; Zille, A.; Fangueiro, R. Characterization of functional single jersey knitted fabrics using non-conventional yarns for sportswear. Text. Res. J. 2018, 88, 275–292. [Google Scholar] [CrossRef]
- Kim, Y.K.; Chalivendra, V.B.; Lewis, A.F.; Fasel, B. Designing flocked energy-absorbing material layers into sport and military helmet pads. Text. Res. J. 2022, 92, 2755–2770. [Google Scholar] [CrossRef]
- Troynikov, O.; Wardiningsih, W. Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer. Text. Res. J. 2011, 81, 621–631. [Google Scholar] [CrossRef]
- Wang, X.; Wan, A.; Zeng, D.; Qi, Q. Design and properties of shape memory sports bras for comfortable pressure based on ergonomics. Text. Res. J. 2023, 93, 5461–5474. [Google Scholar] [CrossRef]
- Helmi, M.; Tashkandi, S.; Wang, L. Design of sports-abaya and its thermal comfort evaluation. Text. Res. J. 2022, 92, 59–69. [Google Scholar] [CrossRef]
- Fan, J.; Hwk, T. Effect of Clothing Thermal Properties on the Thermal Comfort Sensation During Active Sports. Text. Res. J. 2008, 78, 111–118. [Google Scholar] [CrossRef]
- Turhan, G.; Kent, A. Consumption Goals of Attributes Associated with a Product: A Study of Smart Running Shoes for a Group of Consumers in Nottingham, UK. Fibres Text. East. Eur. 2021, 6, 18–21. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, X.; Wang, S. Development Processes and Property Measurements of Moisture Absorption and Quick Dry Fabrics. Fibres Text. East. Eur. 2009, 17, 46–49. [Google Scholar]
- Salopek Čubrić, I.; Čubrić, G.; Katić Križmančić, I.; Kovačević, M. Evaluation of Changes in Polymer Material Properties Due to Aging in Different Environments. Polymers 2022, 14, 1682. [Google Scholar] [CrossRef] [PubMed]
- Salopek Čubrić, I.; Čubrić, G.; Potočić Matković, V.M. Behavior of Polymer Materials Exposed to Aging in the Swimming Pool: Focus on Properties That Assure Comfort and Durability. Polymers 2021, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Katić Križmančić, I.; Salopek Čubrić, I.; Potočić Matković, V.M.; Čubrić, G. Changes in Mechanical Properties of Fabrics Made of Standard and Recycled Polyester Yarns Due to Aging. Polymers 2023, 15, 4511. [Google Scholar] [CrossRef]
- ISO 105-E04:2013; Textiles. Tests for Colour Fastness. Part E04: Colour Fastness to Perspiration. International Organization for Standardization: Geneva, Switzerland, 2013.
- ECMWF. Available online: https://www.ecmwf.int/en/forecasts/datasets/set-i (accessed on 1 August 2023).
- ISO 5084:1996; Textiles—Determination of Thickness of Textiles and Textile Products. International Organization for Standardization: Geneva, Switzerland, 1996.
- ISO 139:2005; Textiles—Standard Atmospheres for Conditioning and Testing. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 3274:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Nominal Characteristics of Contact (Stylus) Instruments. International Organization for Standardization: Geneva, Switzerland, 1996.
- Mooneghi, S.A.; Saharkhiz, S.; Varkiani, S.M.H. Surface Roughness Evaluation of Textile Fabrics: A Literature Review. J. Eng. Fibers Fabr. 2014, 9, 1–18. [Google Scholar] [CrossRef]
- ISO 13934-1:2013; Textiles—Tensile Properties of Fabrics—Part 1: Determination of Maximum Force and Elongation at Maximum Force Using The strip Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- Pavlović, Ž.; Sučić, T.; Vrljičak, Z. Stretchability of double knit plated fabrics for manufacturing recreational clothing. Tekstil 2017, 66, 135–144. [Google Scholar]
- Chowdhury, P.; Kartick, K.S.; Basak, S. Recent Development in Textile for Sportswear Application. Int. J. Eng. Res. Technol. 2014, 3, 1905–1910. [Google Scholar] [CrossRef]
Material ID | Material Composition | Mass per Unit Area, g/m2 | Yarn Fineness, Tex |
---|---|---|---|
M-155 | 100% PES (conventional yarn) | 155 | 12 |
M-151 | 100% PES (conventional yarn) | 151 | 10 |
M-145 | 100% PES (conventional yarn) | 145 | 10 |
M-130 | 100% PES (recycled yarn) | 130 | 10 |
Material ID | ||||
---|---|---|---|---|
M-155 | M-151 | M-145 | M-130 | |
Before aging | ||||
After aging |
Ra | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Materials ID | M-155 | M-151 | M-145 | M-130 | |||||||||
H | V | D | H | V | D | H | V | D | H | V | D | ||
Before ageing | Face | 18.468 | 9.105 | 19.768 | 15.238 | 8.645 | 15.870 | 16.184 | 8.769 | 16.058 | 26.392 | 12.462 | 21.750 |
Back | 20.774 | 10.483 | 21.292 | 15.508 | 10.404 | 13.778 | 17.220 | 9.995 | 13.836 | 20.094 | 10.072 | 19.032 | |
After aging | Face | 20.758 | 10.101 | 16.170 | 13.194 | 10.377 | 13.400 | 19.482 | 10.817 | 14.872 | 25.028 | 9.679 | 23.854 |
Back | 20.028 | 8.320 | 22.506 | 12.710 | 8.819 | 13.698 | 18.000 | 8.692 | 16.936 | 19.702 | 10.928 | 20.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, A.; Salopek Čubrić, I.; Čubrić, G. Influence of Aging on the Physical Properties of Knitted Polymeric Materials. Polymers 2024, 16, 513. https://doi.org/10.3390/polym16040513
Petrov A, Salopek Čubrić I, Čubrić G. Influence of Aging on the Physical Properties of Knitted Polymeric Materials. Polymers. 2024; 16(4):513. https://doi.org/10.3390/polym16040513
Chicago/Turabian StylePetrov, Antonija, Ivana Salopek Čubrić, and Goran Čubrić. 2024. "Influence of Aging on the Physical Properties of Knitted Polymeric Materials" Polymers 16, no. 4: 513. https://doi.org/10.3390/polym16040513
APA StylePetrov, A., Salopek Čubrić, I., & Čubrić, G. (2024). Influence of Aging on the Physical Properties of Knitted Polymeric Materials. Polymers, 16(4), 513. https://doi.org/10.3390/polym16040513